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Abstract 18 

Forward gravity modelling in the spectral domain traditionally relies on spherical approximation. 19 

However, this level of approximation is insufficient for some present-day high accuracy 20 

applications. Here we present two solutions that avoid the traditional spherical approximation in 21 

spectral forward gravity modelling. The first solution (the extended integration method) applies 22 

integration over masses from a reference sphere to the topography, and applies a correction for the 23 

masses between ellipsoid and sphere. The second solution (the harmonic combination method) 24 

computes topographic potential coefficients from a combination of surface spherical harmonic 25 

coefficients of topographic heights above the ellipsoid, based on a relation among spherical 26 

harmonic functions introduced by Claessens (2005, J. Geod. 79, 398-406). Using a degree-2160 27 

spherical harmonic model of the topographic masses, both methods are applied to derive Earth’s 28 

ellipsoidal topographic potential in spherical harmonics. The harmonic combination method 29 

converges fastest, and – akin to the EGM2008 geopotential model – generates additional spherical 30 

harmonic coefficients in spectral band 2161 to 2190 which are found crucial for accurate evaluation 31 

of the ellipsoidal topographic potential at high degrees. Therefore, we recommend use of the 32 

harmonic combination method to model ellipticity in spectral-domain forward modelling. The 33 

method yields ellipsoidal topographic potential coefficients which are ‘compatible’ with global 34 

Earth geopotential models constructed in ellipsoidal approximation, such as EGM2008. It shows 35 
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that the spherical approximation significantly underestimates degree correlation coefficients among 36 

geopotential and topographic potential. The topographic potential model is, for example, of 37 

immediate value for the calculation of Bouguer gravity anomalies in fully ellipsoidal 38 

approximation. 39 

 40 

1 Introduction 41 

 42 

Modelling of the gravitational potential generated by the topography of the Earth and other celestial 43 

objects has long been an active field of research. Knowledge of the topographic potential is useful 44 

mainly because the short-wavelength signal of observed gravity-related quantities is strongly 45 

dominated by the contribution from the topography. It can therefore be used to predict a detailed 46 

gravity field where no or only few observations are available. This is important for the construction 47 

of high-resolution Earth gravity models [e.g., Pavlis and Rapp 1990, Pavlis et al. 2012], modelling 48 

of the gravity field of celestial objects such as the Moon, Mars and Venus [e.g., Wieczorek 2007, 49 

Hirt et al. 2012a], and the creation of synthetic Earth gravity models [e.g., Haagmans 2000, 50 

Claessens 2003, Bagherbandi and Sjöberg 2012].  51 

 52 

A second major range of applications uses the differences between a model of the topographic 53 

potential and the contribution of topography from observed gravity-related quantities. Most 54 

importantly, this gives insight into mass irregularities within the planet’s interior [e.g., Völgyesi and 55 

Toth 1992, Wieczorek and Phillips 1998]. The resulting signal is much smoother than the actual 56 

gravity field, which also facilitates data prediction and downward continuation of satellite 57 

observations [e.g. Heck and Wild 2005, Grombein et al. 2013]. A related subject is that of terrain 58 

corrections in geoid determination according to Stokes’s theory, which requires the removal of all 59 

masses outside the geoid [e.g., Sjöberg 1998, Sun 2002]. 60 

 61 

Generation of a topographic potential model requires forward modelling of mass contributions 62 

through Newton’s integral, either in the space domain or in the spectral domain. Topography can be 63 

either uncompensated [e.g., Hirt et al. 2012b], or an isostatic compensation can be assumed [e.g., 64 

Rummel et al. 1988, Grafarend and Engels 1993]. See Tsoulis [2001] and Göttl and Rummel [2009] 65 

for a further discussion on isostatic compensation mechanisms and the topographic-isostatic 66 

potential. 67 

 68 

Many different methods for forward modelling in the space domain have been developed; an 69 

overview of and comparisons between the different methods are provided in Heck and Seitz [2007] 70 



and Tenzer et al. [2010]. Comparisons of forward modelling in the space and spectral domain are 71 

provided by Kuhn and Seitz [2005], Wild-Pfeiffer and Heck [2007] and Balmino et al. [2012]. 72 

 73 

Forward modelling in the spectral domain is computationally more efficient and has been widely 74 

used for several decades. The resolution of topographic potential models have increased from 75 

spherical harmonic degree and order 180 in the 1980s [Rapp 1982, Rummel et al. 1988] to 10,800 76 

recently [Balmino et al. 2012]. The increase in resolution demands more precise modelling 77 

methodologies. 78 

 79 

A common technique employed in spectral forward modelling is the use of a series expansion of 80 

powers of the topographic height and surface spherical harmonic coefficients (SHCs) of these 81 

powers of topographic height to generate solid SHCs of the topographic potential. Early 82 

contributions have used a linear approximation [e.g, Lambeck 1979, Rapp 1982]. Rummel et al. 83 

[1988] extended this to third-order powers and Balmino et al. [1994] generalised it to higher-order 84 

powers. Convergence of the series expansion was studied by Sun and Sjöberg [2001], Novák [2010] 85 

and Hirt and Kuhn [2012].  86 

 87 

One subject that has received little attention thus far is the evaluation of errors introduced by the 88 

spherical approximation that is used almost universally. In spectral forward modelling, a mass-89 

sphere is used as a reference, and the planet’s topography is assumed to reside on this spherical 90 

surface. It is well-known that the Earth is to a much higher degree of accuracy modelled by an 91 

oblate ellipsoid of revolution. This is commonly accounted for in the creation of global gravity 92 

models [e.g., Pavlis et al. 2012], but not in spectral forward modelling, which makes topographic 93 

potential models incompatible with global gravity models. The topographic potential generated 94 

taking into account the planet’s ellipticity is herein called the ellipsoidal topographic potential 95 

(ETP). 96 

 97 

Sjöberg [2004] derives ellipsoidal corrections to topographic effects in geoid modelling, but this 98 

work does not provide a methodology for generating the ETP. Furthermore, the corrections derived 99 

were limited to the order of the squared first numerical eccentricity of the ellipsoid 𝑒𝑒2, which is 100 

insufficient for high degree and order SHCs. To our knowledge, spectral forward modelling of the 101 

ETP has been studied only by Novák and Grafarend [2005], Balmino et al. [2012] and Wang and 102 

Yang [2013].  103 

 104 



Novák and Grafarend [2005] model the ETP and its vertical gradient by a series of base functions 105 

that are orthonormal on the ellipsoid [Grafarend and Engels 1992], using geodetic coordinates. 106 

These base functions are different from the spherical harmonic functions used in global gravity 107 

models, so the resulting expansion of the ETP is not directly compatible with global gravity models. 108 

The approach has also not been applied globally, and the convergence of the series expansions has 109 

not been studied. Balmino et al. [2012] provide a method to compute the ETP using surface 110 

spherical harmonic expansions, but they use the spherical approximation for their numerical 111 

computations (up to d/o 10,800). They did compute ellipsoidal corrections, but only for long 112 

wavelengths (up to d/o 120). Wang and Yang [2013] use two methods to compute the ETP: a 113 

spherical harmonic solution that requires a global integration for every degree n, and a solution 114 

using ellipsoidal harmonics which is implemented up to degree and order 180 only. 115 

 116 

In this paper, two methods that avoid the classical spherical approximation in spectral domain 117 

forward-modelling are introduced. Both methods use surface spherical harmonic expansions with 118 

respect to a reference ellipsoid. Use of only spherical harmonics has several advantages over 119 

ellipsoidal harmonics: it is simple, does not require the use of ellipsoidal coordinates, and the 120 

resulting expansion of the ETP is directly compatible with global gravity models. It also avoids 121 

numerical issues in the computation of ellipsoidal harmonic functions [e.g., Sona 1995], although 122 

much improvement in this field has been made recently [e.g., Sebera et al. 2012, Fukushima 2013].  123 

 124 

The first of our two methods is similar to one suggested by Balmino et al. [2012]; it is also similar 125 

to the spherical harmonic solution by Wang and Yang [2013], but it uses binomial expansions 126 

instead of ‘brute-force’ computations that include a global integration for every degree n. The 127 

second method is a new, different method which will prove to have significant advantages.  128 

 129 

The two methods are derived in section 2. In section 3 they are compared to the spherical 130 

approximation and to one another, both theoretically and numerically, and the resulting power 131 

spectrum of the ETP is compared to that of the EGM2008 global gravity model [Pavlis et al. 2012]. 132 

Some examples of applications are provided in section 4, and the final section contains a discussion 133 

of the results. 134 

 135 

2 Methods 136 

 137 

2.1 Topographic potential 138 



The spherical harmonic expansion of the gravitational potential of a body is [e.g., Rummel et al. 139 

1988] 140 
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where 𝑉𝑉(𝑃𝑃) is the gravitational potential in point 𝑃𝑃, 𝐺𝐺 is the universal gravitational constant, 𝐺𝐺 is 141 

the mass of the body, 𝑅𝑅 is a reference sphere radius, 𝑟𝑟𝑃𝑃 is the distance between point 𝑃𝑃 and the 142 

coordinate system origin, 𝑛𝑛,𝑛𝑛 are the spherical harmonic degree and order,  𝑌𝑌�𝑛𝑛𝑛𝑛  are fully 143 

normalised (4π-normalised) spherical harmonic functions, and the SHCs 𝑉𝑉�𝑛𝑛𝑛𝑛𝑅𝑅   are [Rummel et al. 144 

1988] 145 

 𝑉𝑉�𝑛𝑛𝑛𝑛𝑅𝑅 =
1

𝐺𝐺(2𝑛𝑛 + 1)��
𝑟𝑟𝑄𝑄
𝑅𝑅
�
𝑛𝑛
𝜌𝜌𝛴𝛴(𝑄𝑄)

𝛴𝛴

𝑌𝑌�𝑛𝑛𝑛𝑛 (𝑄𝑄)𝑑𝑑𝛴𝛴𝑄𝑄 (2) 

where the integration is over the whole body (domain 𝛴𝛴) and 𝜌𝜌𝛴𝛴(𝑄𝑄) is the density of the body in 146 

evaluation point 𝑄𝑄. In spherical coordinates, Eq. (2) reads 147 
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where 𝜃𝜃 is the spherical polar co-latitude, 𝜆𝜆 is the longitude, 𝑟𝑟 is the distance from the origin and 148 

𝑟𝑟𝛴𝛴(𝜃𝜃, 𝜆𝜆) is the distance between the origin and the body surface.  149 

 150 

The topographic potential is commonly defined as the potential generated by topographic masses, 151 

either with respect to the geoid [e.g., Sjöberg 1998] or the reference ellipsoid [e.g., Novák and 152 

Grafarend 2005, Vajda et al. 2007]. A further alternative, less common in geodesy, is to define the 153 

topography with respect to a spherical surface, using topographic heights above a sphere [e.g., 154 

Wieczorek and Phillips 1998]. Balmino et al. [2012] discuss the differences between these 155 

definitions. Here, we use a definition with respect to the ellipsoid. 156 

 157 

We define the topographic potential as the difference between potentials generated by a) a body 158 

with irregular topography and density distribution 𝜌𝜌𝛴𝛴(𝑄𝑄) (Eq. 3) and b) a reference ellipsoid with 159 

density distribution 𝜌𝜌𝑒𝑒(𝑄𝑄), where 𝜌𝜌𝑒𝑒(𝑄𝑄) = 𝜌𝜌𝛴𝛴(𝑄𝑄) for all points Q that fall inside both the body (𝛴𝛴) 160 

and the ellipsoid. As a result, it contains the combined effect of topographic masses above the 161 

ellipsoid (where terrain height is positive) and the lack of topographic mass under the ellipsoid 162 

(where terrain height is negative).  163 

 164 

The SHCs of the topographic potential are then 165 
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and 𝑟𝑟𝑒𝑒  is the distance from the origin to an ellipsoidal reference surface (the ellipsoidal radius). Note 167 

that the square of the reference radius has been moved outside the integrals in Eq. (4) for 168 

mathematical convenience. To allow analytical integration over 𝑟𝑟 in Eq. (5), the density is usually 169 

assumed radially invariant. An alternative that assumes a variable density function as a power series 170 

of the radial distance is provided in Ramillien [2002]. In the case of radial invariance, the integral in 171 

Eq. (5) is simple, and identical for both cases 172 
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where 𝜌𝜌(𝜃𝜃, 𝜆𝜆) = 𝜌𝜌𝛴𝛴  for   𝑟𝑟𝛴𝛴 > 𝑟𝑟𝑒𝑒  and 𝜌𝜌(𝜃𝜃, 𝜆𝜆) = 𝜌𝜌𝑒𝑒  for   𝑟𝑟𝛴𝛴 < 𝑟𝑟𝑒𝑒 . 173 

 174 

Where information about radial variations in density within the topography is available, the 175 

topography can be replaced by a layer of constant density and the same mass as the original layer: 176 

the equivalent rock topography/rock-equivalent topography (ERT/RET) [e.g., Balmino et al. 1973, 177 

Tsoulis 1999, Hirt et al. 2012b]. The height of this layer, the rock-equivalent height, can be 178 

computed in planar approximation [e.g., Balmino et al. 1973, Rummel et al. 1988, Hirt et al. 2012b] 179 

or in spherical approximation [e.g., Claessens 2003, Mladek 2006]. It is customary to replace ocean 180 

water, fresh lake water and ice by equivalent rock layers, resulting in negative RET heights over all 181 

of Earth’s oceans [e.g., Hirt et al. 2012b]. 182 

 183 

Lateral variations in density can be accommodated by using surface density functions [Kuhn and 184 

Featherstone 2003], by using different surface harmonic analyses over various domains [Balmino et 185 

al. 2012], or by including the density function in the global integration within the spherical 186 

harmonic analyses [Eshagh 2009, Tenzer et al. 2012]. In the remainder of this paper, we assume 187 

constant density of rock-equivalent topography (𝜌𝜌(𝜃𝜃, 𝜆𝜆) = 𝜌𝜌) for the sake of simplicity, but our 188 

results can be extended to accommodate laterally variant density using one of the above-mentioned 189 

methods. An isostatic compensation mechanism can also be applied to generate the so-called 190 

topographic-isostatic potential [e.g. Rapp 1982, Sünkel 1986, Rummel et al. 1988]. Here, we only 191 



consider the uncompensated topographic potential, but our results can easily be extended to also 192 

include an isostatic compensation part. 193 

 194 

2.2 Ellipsoidal topographic potential 195 

In practical applications of spectral forward modelling of the topographic potential, a spherical 196 

approximation is commonly applied to simplify Eq. (6). The approximations made are 197 

 𝑟𝑟𝑒𝑒 = 𝑅𝑅 (7) 

and 198 

 𝑟𝑟𝛴𝛴 = 𝑅𝑅 + 𝐻𝐻 (8) 

where 𝐻𝐻 is the orthometric height of the topography. However, this spherical approximation is no 199 

longer sufficient, especially for spectral analysis of high-degree and -order SHCs.  200 

 201 

Instead of the spherical approximations in Eqs. (7) and (8), we use Eq. (6) in unaltered form. The 202 

spherical harmonic synthesis in Eq. (4), with Eq. (6), could be performed numerically [Wang and 203 

Yang 2013], but this is computationally inefficient because 𝑉𝑉𝑇𝑇  is dependent on spherical harmonic 204 

degree 𝑛𝑛. To make the computations more efficient, a binomial expansion can be applied to the 205 

terms in Eq. (6) that are dependent on 𝑛𝑛. This is commonly done in spherical approximation [e.g., 206 

Rummel et al. 1988, Wieczorek and Phillips 1998], and can also be applied in the current ellipsoidal 207 

approximation. In spherical approximation, the second term between the square brackets in Eq. (6) 208 

cancels, but it needs to be taken into account in ellipsoidal approximation. Below, we derive two 209 

different methods to do this.   210 

 211 

2.3 Method 1: Extended integration (EI) method 212 

The first term within the square brackets in Eq. (6) can be expanded into a binomial series [cf. 213 

Claessens 2006] 214 
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where 215 

 𝑙𝑙𝛴𝛴 = 𝑟𝑟𝛴𝛴 − 𝑅𝑅 (10) 

Note that the reference radius of the spherical harmonic expansion 𝑅𝑅 is commonly set equal to the 216 

semi-major axis of the geodetic reference ellipsoid. Given the Earth’s flattening, 𝑙𝑙𝛴𝛴 reaches values 217 

with an absolute magnitude in excess of 20 km near the poles on Earth.  218 

A similar binomial series can be applied to the second term within the square brackets in Eq. (6)  219 
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where 220 

 𝑙𝑙𝑒𝑒 = 𝑟𝑟𝑒𝑒 − 𝑅𝑅 (12) 

Inserting Eqs. (9) and (11) into Eq. (6) gives 221 

 
𝑉𝑉𝑇𝑇(𝑄𝑄) =

𝑅𝑅𝜌𝜌
𝑛𝑛 + 3

�� �𝑛𝑛 + 3
𝑘𝑘 � ��

𝑙𝑙𝛴𝛴
𝑅𝑅
�
𝑘𝑘
�

𝑛𝑛+3

𝑘𝑘=1

− ��
𝑙𝑙𝑒𝑒
𝑅𝑅
�
𝑘𝑘

�� (13) 

The summation runs from 𝑘𝑘 = 1, because the term with 𝑘𝑘 = 0 vanishes. Inserting Eq. (13) into Eq. 222 

(4) and rearranging the order of summation and integration gives 223 
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The two integrations over the unit sphere can be combined into one, but we separate them here, as it 224 

provides a useful interpretation of the process when compared to the spherical approximation. 225 

Equation (14) can be simplified to 226 
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where we have introduced the following fully normalised surface spherical harmonic series  227 

 
�
𝑙𝑙𝛴𝛴
𝑅𝑅
�
𝑘𝑘

= �𝑙𝑙�̅�𝑛𝑛𝑛
(𝑘𝑘)𝑌𝑌�𝑛𝑛𝑛𝑛

𝑛𝑛 ,𝑛𝑛

 (16) 

with 228 

 
𝑙𝑙�̅�𝑛𝑛𝑛

(𝑘𝑘) =
1

4𝜋𝜋
��

𝑙𝑙𝛴𝛴
𝑅𝑅
�
𝑘𝑘

𝑌𝑌�𝑛𝑛𝑛𝑛 𝑑𝑑
𝜎𝜎

𝜎𝜎 (17) 

and 229 
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with 230 
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This shows that it is possible to model the topographic potential with respect to the ellipsoid using 231 

only spherical harmonics.  232 

 233 



Comparing Eq. (15) to the solutions in spherical approximation of Rummel et al. [1988] and 234 

Wieczorek and Phillips [1998], it is obvious that this method essentially computes the contribution 235 

from the sphere to the topography (taken with respect to the ellipsoid, resulting in integration over a 236 

generally extended range) and then subtracts the contribution from the mass between the sphere and 237 

the ellipsoid. Balmino et al. [2012] have derived a solution similar to this, but appear not to have 238 

implemented it.  239 

 240 

Because the series in Eq. (15) converges, not all 𝑛𝑛 + 3 terms need to be taken into account but the 241 

series can be truncated after sufficient precision has been obtained. If applied to Earth, series 242 

convergence is slower than in spherical approximation, because 𝑙𝑙𝛴𝛴 and 𝑙𝑙𝑒𝑒  reach significantly larger 243 

magnitudes than the rock-equivalent heights. The rate of convergence is shown in section 3.2. 244 

 245 

2.4 Method 2: Harmonic combination (HC) method 246 

A second, new method avoids the use of 𝑙𝑙𝛴𝛴 and 𝑙𝑙𝑒𝑒 , which are large over much of the Earth’s surface. 247 

It is based on a different binomial expansion of the second term in Eq. (6), taking into account that 248 

the ellipsoidal surface is easily described mathematically as a function of latitude [e.g., Claessens 249 

2006]. It also relies on a relation among spherical harmonic functions derived by Claessens [2005].  250 

 251 

First, Eq. (6) is rewritten as follows 252 
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We now apply a binomial series expansion to the term between square brackets  253 

 
�
𝑟𝑟𝛴𝛴
𝑟𝑟𝑒𝑒
�
𝑛𝑛+3

− 1 = ��𝑛𝑛 + 3
𝑘𝑘 � �

𝑑𝑑𝛴𝛴
𝑟𝑟𝑒𝑒
�
𝑘𝑘𝑛𝑛+3

𝑘𝑘=1

= �
1
𝑘𝑘!
�(𝑛𝑛 + 4 − 𝑗𝑗)
𝑘𝑘

𝑗𝑗=1

�
𝑑𝑑𝛴𝛴
𝑟𝑟𝑒𝑒
�
𝑘𝑘𝑛𝑛+3

𝑘𝑘=1

 (21) 

where 254 

 𝑑𝑑𝛴𝛴 = 𝑟𝑟𝛴𝛴 − 𝑟𝑟𝑒𝑒  (22) 

The distance 𝑑𝑑𝛴𝛴  closely approximates the ellipsoidal height of the rock-equivalent topography, but 255 

is measured along the direction to the ellipsoid’s origin. Inserting Eqs. (20) and (21) into Eq. (4) 256 

gives, after changing the order of integration and summation  257 
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We now apply a second binomial series to the first term within the integral [cf. Claessens 2006] 258 
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(24) 

As is common in geodesy, we have here assumed that the reference ellipsoid is an oblate ellipsoid 259 

of revolution defined by its semi-major axis 𝑎𝑎 and semi-minor axis 𝑏𝑏 or squared first numerical 260 

eccentricity 𝑒𝑒2. Note the difference with the binomials series used in method 1 (Eq. 11). The series 261 

in Eq. (24) is infinite, but Claessens [2006] has shown that it always converges. Convergence is 262 

most rapid for low degrees 𝑛𝑛. We also apply the following relation among spherical harmonic 263 

functions of equal order 𝑛𝑛 [Claessens 2005, Eq. 27] 264 
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 (25) 

where 𝐾𝐾�𝑛𝑛𝑛𝑛
2𝑖𝑖 ,2𝑗𝑗  are fully normalised sinusoidal Legendre weight functions [Claessens 2005, 2006], 265 

which can be computed through the recursion relations in Appendix A. Inserting Eqs. (24) and (25) 266 

into Eq. (23) gives 267 
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(26) 

Introducing the following fully normalised surface spherical harmonic series 268 
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where 269 
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gives the final expression for the solid SHCs of the ETP 270 
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This method thus relies on a combination of surface SHCs of equal order 𝑛𝑛. The summations over 271 

𝑘𝑘 and 𝑗𝑗 can be truncated; the rate of convergence is shown in section 3.3. When a spherical 272 

reference surface is selected, the solutions of both methods (Eqs. 15 and 29) degenerate into the 273 

well-known spherical approximation [e.g., Rummel et al. 1988, Wieczorek and Phillips 1998] 274 
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Balmino et al. [2012] derive an ellipsoidal correction to the spherical approximation which, like our 276 

solution, involves a summation over surface SHCs of equal order 𝑛𝑛. However, their corrections use 277 

an expansion of the ellipsoidal radius to the first order of the ellipsoid’s flattening. This is akin to 278 

truncating Eq. (24) after 𝑗𝑗 = 1, which is insufficient for high degree SHCs due to the appearance of 279 

degree 𝑛𝑛 in the binomial coefficient. 280 

 281 

3 Numerical study 282 

 283 

3.1 General remarks 284 

The primary purpose of the numerical study is to (i) analyse the convergence behaviour of the EI-285 

method and the HC-method (cf. Sect. 2.3 and 2.4) separately, and (ii) compare the methods to gain 286 

insight into similarities and differences.  In all tests, we use the RET2012 rock-equivalent 287 

topography model developed at Curtin University. RET2012 is a spherical-harmonic model of 288 

Earth’s uncompensated topographic masses complete to degree and order 2160, which corresponds 289 

to 5 arc-min spatial resolution. It describes the masses of (i) Earth’s visible topography, (ii) ocean 290 

water, (iii) major ice-sheets of Greenland and Antarctica, and (iv) major inland lakes (of North 291 

America and Asia) using a single constant mass-density of 2670 kg m-3 . The compression of water 292 

and ice masses was accomplished as described in Hirt et al. [2012b, Sect 3.2] for a degree-360 293 

predecessor of the degree-2160 RET2012 model. Full details on data sets and methods used is in 294 

Hirt [2013, Appendix A]. The SHCs of RET2012 are publicly available via 295 

http://geodesy.curtin.edu.au/research/models/Earth2012/, file Earth2012.RET2012.SHCto2160.dat. 296 

 297 

Our numerical tests use the geometrical and physical parameters of the GRS80 reference ellipsoid: 298 

semi-major axis a = 6378137 m, semi-minor axis b = 6356752.3141 m, and GM = 3.986005 × 1014 299 

m3 s-2 [Moritz 2000]. With the CODATA (Committee on Data for Science and Technology) 300 

numerical value for G = 6.67384 × 10-11 m3 kg-1 s-2 [Mohr et al. 2012, p 72], it follows for Earth’s 301 

mass: M = 5.9725810 × 1024 kg. For all spherical approximations tested in this study, we use the 302 

GRS80 semi-major axis a as the reference sphere radius R. 303 

 304 

http://geodesy.curtin.edu.au/research/models/Earth2012/


Testing of the two methods described in Sect. 2 requires geocentric radii of the topography  𝑟𝑟𝛴𝛴 305 

which were obtained from expanding the RET2012 topography to degree and order 2160. The 306 

quantities 𝑙𝑙𝛴𝛴   (Eq. 10), 𝑙𝑙𝑒𝑒    (Eq. 12) and  𝑑𝑑𝛴𝛴   (Eq. 22) and the topographic height functions 307 

(THF) 𝑙𝑙𝛴𝛴/𝑅𝑅 ,  𝑙𝑙𝑒𝑒/𝑅𝑅 and 𝑑𝑑𝛴𝛴/𝑟𝑟𝑒𝑒  were prepared in terms of 2 arc-min global grids (however, due to the 308 

limited resolution of the RET2012 model these grids do not contain information at spatial scales 309 

smaller than 5 arc-min) . The THFs were then raised to integer powers k (ranging from 1 up to 25) 310 

and the resulting (𝑙𝑙𝛴𝛴/𝑅𝑅)𝑘𝑘  ,  (𝑙𝑙𝑒𝑒/𝑅𝑅)𝑘𝑘  and (𝑑𝑑𝛴𝛴/𝑟𝑟𝑒𝑒)𝑘𝑘  harmonically analysed to give sets of SHCs  𝑙𝑙�̅�𝑛𝑛𝑛
(𝑘𝑘)  , 311 

𝑙𝑙𝑒𝑒�𝑛𝑛𝑛𝑛
(𝑘𝑘) and �̅�𝑑𝑛𝑛𝑛𝑛

(𝑘𝑘) . Note that surface spherical harmonic expansions are not restricted to data being on a 312 

sphere [e.g., Jekeli 1988]. All spherical harmonic analyses were carried out to degree and order 313 

2699 with the algorithm of Driscoll and Healy [1994] as implemented in the SHTools package 314 

(http://shtools.ipgp.fr/). Note that the resulting expansions lack power in the highest degrees due to 315 

the limited resolution of the RET2012 model. However, these expansions were only used to degree 316 

2160 (EI-method) and 2220 (HC-method). 317 

 318 

3.2 Method 1: Extended integration (EI) method  319 

We investigated the convergence of the ellipsoidal topographic potential from the EI-method by 320 

evaluating Eq. (18) separately for integer powers of the THF from 𝑘𝑘 = 1, 𝑘𝑘 = 2 to 𝑘𝑘 = 25. The 321 

(dimensionless) potential degree variances of the resulting contributions  𝑉𝑉�𝑛𝑛𝑛𝑛
𝑅𝑅 (𝑘𝑘) are shown in Fig. 1 322 

together with the total (accumulative)  𝑉𝑉�𝑛𝑛𝑛𝑛𝑅𝑅  resulting from addition of the first 25 contributions.   323 

 324 

From Fig. 1, integer contributions are required up to 𝑘𝑘 = 22 to sufficiently converge at degree and 325 

order 2160. This is substantially slower than in the spherical case where convergence is reached 326 

with 𝑘𝑘 = 7 [cf. Hirt and Kuhn, 2012, Fig. 1]. The degree variances of the single contributions 327 

exhibit numerous intersections in spectral band of degrees ~700 to 2160, showing that much of the 328 

high-degree spectral energy is delivered by the higher-order powers. In spectral band ~1000 to 329 

2160, powers 𝑘𝑘 = 5 to 15  of the THFs make larger contribution than the low-integer powers 1 to 4. 330 

This behaviour is very different to the spherical case, where in spectral band of 0 to 2160 each 331 

integer power  of the THF makes a contribution smaller than the previous one [cf. Hirt and Kuhn, 332 

2012, Fig. 1], with the first intersection observed only around degree ~3000 [cf. Balmino et al., 333 

2012, Fig. 7].  334 

http://shtools.ipgp.fr/


 335 

Figure 1. EI-method: Potential contributions of the first 25 integer powers of the topography. Blue: 336 

contribution of 1st power, red: contribution of 25th power. Black line: total contribution.  Shown are 337 

dimensionless potential degree variances of the differences (𝑙𝑙𝛴𝛴 minus 𝑙𝑙𝑒𝑒). 338 

 339 

 340 

Figure 2. EI-method: Potential contributions of the first three integer powers of the topography.    341 

Shown are dimensionless potential degree variances of 𝑙𝑙𝛴𝛴, 𝑙𝑙𝑒𝑒  and (𝑙𝑙𝛴𝛴 minus 𝑙𝑙𝑒𝑒). 342 



Fig. 1 also shows that over most parts of the spectrum there are always single contributions 𝑉𝑉�𝑛𝑛𝑛𝑛
𝑅𝑅 (𝑘𝑘) 343 

that have higher spectral energy than the total contribution 𝑉𝑉�𝑛𝑛𝑛𝑛𝑅𝑅 , and this effect becomes more 344 

pronounced the shorter the spatial scales. At degree 2160, the spectral power of the first 16 integer 345 

contributions is larger than that of the total contribution. Hence, addition of successive contributions 346 

has some ‘cancellation effect’ on the total contribution. Notwithstanding this observation, with 347 

𝑘𝑘 = 22 the EI-method requires a large number of integer power contributions to converge, and this 348 

is owing to the fact that the THFs are much larger than in the spherical case. 349 

 350 

For the first four integer powers (𝑘𝑘 = 1 to 𝑘𝑘 = 4) we analysed the potential contribution made by 351 

the two THFs 𝑙𝑙𝛴𝛴/𝑅𝑅  and  𝑙𝑙𝑒𝑒/𝑅𝑅   used as input in the EI-method [Eq. (15)]. As expected, the 𝑙𝑙𝑒𝑒/𝑅𝑅-352 

contributions – those of the masses between the ellipsoid and sphere – are of very long-wavelength 353 

character (Fig. 2).  Akin to the potential coefficients of a normal gravity field implied by a reference 354 

level ellipsoid (e.g., GRS80), the spectral power of 𝑙𝑙𝑒𝑒/𝑅𝑅  is restricted to the even low-degree zonal 355 

harmonics [e.g., Moritz, 2000, p 130], and negligible for harmonic degrees of ~12 and larger (Fig. 356 

2).   357 

 358 

A detailed inspection of the 𝑙𝑙𝛴𝛴/𝑅𝑅-, 𝑙𝑙𝑒𝑒/𝑅𝑅-, and (𝑙𝑙𝛴𝛴/𝑅𝑅  minus 𝑙𝑙𝑒𝑒/𝑅𝑅)-contributions reveals that at even 359 

low-degree harmonic degrees the 𝑙𝑙𝛴𝛴/𝑅𝑅-contribution is always larger than that of the difference 360 

(𝑙𝑙𝛴𝛴/𝑅𝑅  minus 𝑙𝑙𝑒𝑒/𝑅𝑅), hence 𝑙𝑙𝑒𝑒/𝑅𝑅 reduces the energy of 𝑙𝑙𝛴𝛴/𝑅𝑅  (note the reduction of ‘spike-like 361 

effects in  𝑙𝑙𝛴𝛴/𝑅𝑅  in Fig. 2). Relative to the total contribution shown in Fig. 1, the spectral energy of 362 

the 𝑙𝑙𝑒𝑒/𝑅𝑅–contribution is at least 10 orders of magnitudes smaller for 𝑘𝑘 ≥ 4, so can be safely 363 

neglected for all higher integer powers. 364 

 365 

3.3 Method 2: Harmonic combination (HC) method  366 

The convergence behaviour of method 2 (HC-method) was investigated by evaluating Eq. (29) for 367 

all indices 𝑘𝑘 = 1 to 𝑘𝑘 = 10 separately.  The inner summations (over j) were evaluated to 𝑗𝑗𝑛𝑛𝑎𝑎𝑚𝑚 = 30 368 

which ensures convergence of these terms [cf. Claessens 2006, p 140, Claessens and Featherstone 369 

2005, Fig. 2]. Fig. 3 shows the single contributions made by the first 10 integer powers of the THF 370 

𝑑𝑑𝛴𝛴/𝑟𝑟𝑒𝑒 .  In contrast to the EI-method, sufficient convergence is already reached for 𝑘𝑘 = 7, which is 371 

comparable to the topographic potential contributions in spherical approximation [Hirt and Kuhn, 372 

2012, Fig. 1]. In a relative sense, the behaviour of the contributions shown in Fig. 3 is comparable 373 

to the spherical case, and there are no intersections in the spectral band of degrees 0 to 2160. Due to 374 

this faster convergence, the HC-method is computationally more efficient than the EI-method. 375 



 376 

Figure 3. HC-method: Potential contributions of the first 10 integer powers of the topography.  Blue: 377 

contribution of 1st power, red: contribution of 10th power. Shown are dimensionless potential degree 378 

variances in spectral band of degrees 0 to 2220. 379 

 380 

Figure 4. HC-method: As Fig. 3, but focus on spectral band of degrees 2140 to 2220. 381 

 382 



The most important observation is made around harmonic degree 2160 where all contributions 383 

experience a drop in spectral energy. Fig. 4 provides a detail plot of all contributions in spectral 384 

band 2150 to 2195, showing that the terms 𝑉𝑉�𝑛𝑛𝑛𝑛
𝑅𝑅 (𝑘𝑘) beyond degree 2160 make some notable 385 

contribution to about 2175, while diminishing around degree 2190. This reflects an important 386 

attribute of the HC-method. Each coefficient  𝑉𝑉�𝑛𝑛𝑛𝑛
𝑅𝑅 (𝑘𝑘)   depends on a group of SHCs �̅�𝑑𝑛𝑛+2𝑖𝑖,𝑛𝑛

(𝑘𝑘)  within a 387 

spectral bracket of 2 × 𝑗𝑗𝑛𝑛𝑎𝑎𝑚𝑚  (60 in the present case) to either side of spherical harmonic degree n, 388 

resulting in additional SHCs of up to degree 2220 in the present case. However, because of the 389 

convergence of the summation over 𝑗𝑗 in Eq. (29), the coefficients 𝑉𝑉�𝑛𝑛𝑛𝑛
𝑅𝑅 (𝑘𝑘) become negligible beyond 390 

harmonic degree ~2180.   391 

 392 

The observed behaviour is a key characteristic of ellipsoidal potential modelling [Claessens, 2006] 393 

and also seen in high-degree geopotential models such as EGM2008 [Pavlis et al., 2012] that are 394 

based on ellipsoidal approximation. EGM2008 was developed in ellipsoidal harmonics to degree 395 

and order 2160 and transformed to spherical harmonics using the transformation described in Jekeli 396 

[1988]. In case of EGM2008, Jekeli’s transformation gives rise to additional SHCs in the spectral 397 

band of degrees 2161 to 2190 as discussed in detail by Holmes and Pavlis [2007]. In direct analogy 398 

to EGM2008, consideration of these additional SHCs is crucially important to accurately represent 399 

the ETP, as will be demonstrated in Sect. 3.5. 400 

 401 

3.4 Comparisons in the spectral domain 402 

Fig. 5a compares degree variances of the (total contributions from the) EI- and HC-methods with 403 

each other, with those from (conventional) topographic potential modelling in spherical 404 

approximation [Eq.  (30)], and with degree variances from the EGM2008 global gravity model.  For 405 

reasons of consistency, the latter were computed from the SHCs of EGM2008, not from ellipsoidal 406 

harmonic coefficients which are also available. 407 

 408 

The degree variances from the two ellipsoidal methods (EI and HC) are in close agreement over 409 

most of the spectrum.  The spectrum of the topographic potential in spherical approximation has 410 

seemingly more power as the degree increases, with differences of about one order of magnitude at 411 

n = 2160. These differences are as expected, given different reference surfaces (surface of sphere 412 

vs. surface of ellipsoid) were used in the creation of the SHCs in spherical and ellipsoidal 413 

approximation. The reference sphere radius in spherical approximation was set equal to the semi-414 

major axis 𝑎𝑎 (the customary value), which places the topography further from the Earth’s origin 415 

compared to the ellipsoidal solution, resulting in more power at higher degrees.  416 

 417 



 418 

Figure 5. Comparison among the methods in the spectral domain, (a) potential degree variances 419 

of the topographic potential in spherical and ellipsoidal approximation (methods EI and HC), and 420 

of EGM2008, all in spectral band 0 to 2220 and 2150 to 2200 (close-up), (b) as before, but in 421 

spectral band 0 to 300, (c) ETP degree variances of the EI and HC-methods, and their differences 422 

in spectral band 0 to 2220. 423 

 424 

 425 

Fig. 5b shows that the signals from the two ETP methods are commensurate with EGM2008 from 426 

harmonic degree of ~250 and higher, while the topographic potential has significantly higher power 427 

at lower harmonic degrees. This well-known behaviour is caused by isostatic compensation masses 428 

at medium and long wavelengths, which are not modelled by the (uncompensated) RET2012 429 



topography and derived potential coefficients, but a constituent of Earth’s observed gravity field, 430 

see also Rummel et al. [1988], Watts [2001], Wieczorek [2007], Hirt et al. [2012a]. 431 

 432 

Fig. 5a (inside panel) provides a detail view on the spectra of the four potential models in spectral 433 

band 2140 to 2220, exemplifying the similar characteristics of EGM2008 and the ETP from the HC-434 

method (Sect. 3.3). Both models provide additional SHCs beyond degree 2160, which rapidly loose 435 

spectral power and reach the level of 10-32 (this is 10 orders of magnitude smaller than the signal) 436 

near degree 2190 for EGM2008 and near degree 2180 for the ETP.   437 

 438 

Fig. 5c compares the degree variances of the two ETP methods, and those of their coefficient 439 

differences. The degree variances of the coefficient differences (i.e., the difference spectrum) are 440 

found to be 5 to 7 order of magnitudes smaller than the signal of the topographic potential itself. 441 

This indicates a reasonable agreement among the methods over most of the spectrum.  Importantly, 442 

the spectra of the HC and EI-methods increasingly deviate from each other at high spatial degrees, 443 

as is indicated by the difference spectrum. At degree 2160, the difference spectrum is less than one 444 

order of magnitude below the signal curve, which points at a significant discrepancy among the two 445 

methods very close to the maximum degree.  446 

 447 

3.5 Comparisons in the space domain 448 

In order to further investigate the discrepancies among the two methods, radial derivatives of the 449 

topographic potential (also known as gravity disturbances, short: gravity) were calculated at the 450 

surface of the GRS80 ellipsoid (HC and EI methods), and at the surface of the sphere with radius R 451 

(from the topographic potential model in spherical approximation). From Fig. 6a, ellipsoidal 452 

topographic gravity from the HC-method and gravity in spherical approximation are in close 453 

agreement, with the differences (RMS 1 mGal, maximum difference 4.7 mGal) likely reflecting the 454 

effect of different mass arrangement in the two approximations. Differences in gravity from the two 455 

methods exhibit large latitude-dependent discrepancies that increase towards the poles (Fig. 6b) to 456 

magnitudes as large as ~150 mGal. These discrepancies are caused by the lack of coefficients 457 

beyond degree and order 2160 in the EI-method, as exemplified in the next paragraph. We note that 458 

the ETP from the HC-method was evaluated in our tests to degree 2190, and not to degree 2160 459 

(e.g. Fig. 6a). 460 

 461 



 462 

Figure 6. Comparison among the methods in the spatial domain, (a) Ellipsoidal effect: differences 463 

among gravity disturbances from HC-method in ellipsoidal approximation (band 0 to 2190) and in 464 

spherical approximation (band 0 to 2160), min/max/mean/rms = -2.9/4.7/0.6/1.2 mGal, (b) 465 

Differences among gravity disturbances from the HC- method (band 0 to 2190) and the EI-method 466 

(band 0 to 2160),  min/max/mean/rms = -180/193/0/17 mGal. 467 

 468 

 469 

Figure 7. Gravity disturbances from the transformation method over Europe in spectral band 721 to 470 

2160 (a), band 2161 to 2190 (b) and band 721 to 2190 (c), units in mGal. 471 



Fig. 7 shows the importance of taking into account the SHCs beyond degree 2160 for the accurate 472 

evaluation of ETP at high degrees. Restricting the evaluation to degree 2160 produces latitude-473 

dependent patterns in high latitudes, which increase towards the poles and reach ~100 mGal 474 

amplitudes (Fig. 7a). Similar effects were reported by Holmes and Pavlis [2007] for a predecessor 475 

model of EGM2008 if truncated to degree 2160. Evaluation of the SHCs beyond harmonic degree 476 

2160 produces almost identical patterns, however, with opposite sign (Fig. 7b), which is why 477 

evaluation to degree 2190 is free of any latitude-dependent patterns Fig. 7c). 478 

 479 

 480 

Figure 8. Maximum differences between gravity disturbances from the EI- and HC-methods along 481 

parallels for four different spectral bands (0 to 720, 0 to 1800, 0 to 2100 and 0 to 2160), units in 482 

mGal. 483 

 484 

These comparisons provide evidence that (i) the EI and HC-methods are not rigorously compatible, 485 

and – from Fig. 6 and 7 – (ii) the latitude-dependent errors are unambiguously attributable to the EI-486 

method. We finally attempted to narrow the discrepancies among the HC and EI-methods, by 487 

evaluating gravity disturbances from both methods in spectral bands of harmonic degrees 0 to 720, 488 

0 to 1800, 0 to 2100 and 0 to 2160, and analysing their differences along latitude bands (similar to 489 

Holmes and Pavlis [2007]). Fig. 8 shows the maximum difference as a function of the latitude, and 490 

spectral bands. The agreement among gravity from both approaches is better than 0.1 mGal 491 

(expanded to degree 720), and better than 0.5 mGal (to degree 1800) anywhere on Earth (cf. Fig. 8), 492 



which is satisfactory. However, the maximum discrepancies increase to ~5 mGal (when evaluating 493 

to degree 2100) and deteriorate to ~150 mGal (degree 2160). Together with Fig. 6, this shows that 494 

the ‘problems’ with the EI-method chiefly reside in the high degrees and high latitudes, while the 495 

HC-method is free of those effects (see Fig. 6a and Fig. 7). 496 

 497 

 498 

Figure 9. Ellipsoidal effect: differences among height anomalies from HC-method in ellipsoidal 499 

approximation (band 0 to 2190) and in spherical approximation (band 0 to 2160), units in m.  500 

 501 

The differences in terms of height anomalies between the topographic potential in spherical 502 

approximation and the ellipsoidal topographic potential (using the HC-method) are shown in Fig. 9. 503 

These differences reach a magnitude of ~15 m, and are predominantly of a long-wavelength nature. 504 

 505 

4 Application examples 506 

 507 

We applied the HC-method (Sect 2.4) along with the RET2012 topography model (Sect. 3.1) for 508 

computation of the first degree-2190 EGM2008 Bouguer gravity map in fully-ellipsoidal 509 

approximation.  We computed gravity disturbances from (i) EGM2008 and (ii) RET2012/HC in full 510 

resolution, i.e., from degree 2 to 2190 at the Earth’s surface in terms of 5 arc-min resolution grids. 511 

This was accomplished by calculating gravity disturbances and their first five radial derivatives 512 

from both models at a reference height of 4000 m above the GRS80 reference ellipsoid, and 513 

continuation of gravity disturbances from the reference height to the Earth’s surface using Taylor 514 

expansions as described in Hirt [2012] for EGM2008 and Hirt and Kuhn [2012] for the topographic 515 

potential.   516 



 517 

 518 

Figure 10. EGM2008 Bouguer gravity disturbances at the Earth’s surface in fully-ellipsoidal   519 

approximation in spectral band 0 to 2190, topographic gravity disturbances from the HC-method,  520 

min/max/mean/rms = -964/455/-34/201 mGal. 521 

 522 

The Earth’s surface was represented by the Earth2012 surface model 523 

(http://geodesy.curtin.edu.au/research/models/Earth2012/, file Earth2012.topo_air.SHCto2160.dat). 524 

EGM2008 Bouguer gravity disturbances, obtained as difference between EGM2008 and RET2012-525 

implied gravity effects in ellipsoidal approximation, are shown in Fig. 10. The map conceptually 526 

improves on the previously published map by Balmino et al. [2012], which is based on a mixture of 527 

approximation levels (topography-implied gravity effects in spherical approximation with only low-528 

degree ellipsoidal corrections, combined with EGM2008 in full ellipsoidal approximation). From 529 

Fig. 6a, the ellipsoidal effect (i.e., differences among spherical and ellipsoidal approximation) on 530 

the topography-implied gravity is at the mGal-level, so comparatively small, but non-negligible for 531 

accurate applications. 532 

 533 

As a second application example, we computed degree correlation coefficients among EGM2008, 534 

and the RET2012 topographic potential model in ellipsoidal (using the HC-approach) and spherical 535 

approximation (Fig. 11).  The correlation among EGM2008 and the topographic potential in 536 

spherical approximation increases at low and medium degrees, reaches a maximum of about +0.85 537 

around degree 500 before decreasing to +0.6 at degree 2000.  However, a more realistic picture of 538 

the EGM2008 quality is obtained from the ellipsoidal topographic potential, with correlation 539 

coefficients found to be as large as +0.92 around degree 1000, and +0.87 at degree 2000. To our 540 

knowledge, this high correlation between geopotential and topographic potential coefficients has 541 

http://geodesy.curtin.edu.au/research/models/Earth2012/


not been observed before. It is obvious that topographic potential SHCs in spherical approximation 542 

considerably underestimate the correlation, indicating poorer model quality at shorter spatial scales, 543 

which makes them of little use for evaluation of high-degree geopotential models such as EGM2008 544 

which are developed in ellipsoidal approximation. 545 

 546 

 547 

Figure 11. Degree correlation coefficients among SHCs of EGM2008 and of the implied 548 

topographic potential in spherical and ellipsoidal approximation (HC-method). 549 

 550 

5 Discussion, conclusions and recommendations 551 

 552 

The effect of the spherical approximation in forward gravity modelling has been shown to be 553 

significant in both the spatial and the spectral domain, especially affecting the power of high-degree 554 

topographic potential SHCs. It is therefore most crucial for quantities with substantial power in the 555 

higher degrees, and for computation of global gravity models or any type of spectral analysis. The 556 

two methods introduced here for modelling the ellipsoidal topographic potential, though distinctly 557 

different in their approach, show good agreement across almost the entire spectrum. It can be 558 

concluded that of the two methods, the harmonic combination method is superior, because i) it 559 

provides faster convergence and hence requires less powers of the THFs, and more importantly ii) it 560 

provides additional coefficients beyond degree 2160 that are vital for accurate evaluation of the 561 

ETP.  562 

The correlation between the ETP and EGM2008 coefficients was found to be much greater for the 563 

ellipsoidal approximation than for the spherical approximation. Not only do the degree variance 564 



spectra of the ETP and EGM2008 exhibit similar power from degree ~250 onwards, the degree 565 

correlation coefficients are also much higher than for the spherical approximation. These numerical 566 

results clearly show that the solution in ellipsoidal approximation delivers a significant 567 

improvement over the spherical approximation. We recommend that the harmonic combination 568 

method be used for spectral forward gravity modelling of any celestial object that can closely be 569 

approximated by an oblate ellipsoid of revolution. 570 
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Appendix A: Legendre weight functions 697 

 698 

The fully normalised sinusoidal Legendre weight functions 𝐾𝐾�𝑛𝑛𝑛𝑛
2𝑖𝑖 ,2𝑗𝑗  in Eq. (25) can be computed via 699 

various recursive schemes [Claessens 2005] 700 

 
𝐾𝐾�𝑛𝑛𝑛𝑛

2𝑖𝑖 ,2𝑗𝑗 = � 𝐾𝐾�𝑛𝑛𝑛𝑛
2𝑖𝑖−2𝑘𝑘 ,2𝑗𝑗−2𝐾𝐾�𝑛𝑛+2𝑖𝑖−2𝑘𝑘 ,𝑛𝑛

2𝑘𝑘 ,2
1

𝑘𝑘=−1

 (A1) 

 
𝐾𝐾�𝑛𝑛𝑛𝑛

2𝑖𝑖 ,2𝑗𝑗 = � 𝐾𝐾�𝑛𝑛𝑛𝑛
2𝑘𝑘 ,2𝐾𝐾�𝑛𝑛+2𝑘𝑘 ,𝑛𝑛

2𝑖𝑖−2𝑘𝑘 ,2𝑗𝑗−2
1

𝑘𝑘=−1

 (A2) 

 
𝐾𝐾�𝑛𝑛𝑛𝑛

2𝑖𝑖 ,2𝑗𝑗 = � 𝐾𝐾�𝑛𝑛𝑛𝑛
2𝑖𝑖+2𝑘𝑘 ,2𝑗𝑗−2𝐾𝐾�𝑛𝑛+2𝑖𝑖 ,𝑛𝑛

2𝑘𝑘 ,2
1

𝑘𝑘=−1

 (A3) 

where (A3) follows from (A1) and the relation 701 

 𝐾𝐾�𝑛𝑛𝑛𝑛
2𝑖𝑖 ,2𝑗𝑗 = 𝐾𝐾�𝑛𝑛+2𝑖𝑖 ,𝑛𝑛

−2𝑖𝑖 ,2𝑗𝑗  (A4) 

Equations (A1) to (A3) can all be used to compute the function 𝐾𝐾�𝑛𝑛𝑛𝑛
2𝑖𝑖 ,2𝑗𝑗  for any pair of i and j from 702 

the initial values 703 

 
𝐾𝐾�𝑛𝑛𝑛𝑛
−2,2 = −�

(𝑛𝑛2 −𝑛𝑛2)[(𝑛𝑛 + 1)2 −𝑛𝑛2]
(2𝑛𝑛 − 3)(2𝑛𝑛 − 1)2(2𝑛𝑛 + 1)

 (A5) 

 
𝐾𝐾�𝑛𝑛𝑛𝑛

0,2 =
2(𝑛𝑛2 + 𝑛𝑛2 + 𝑛𝑛 − 1)

(2𝑛𝑛 − 1)(2𝑛𝑛 + 3)
 (A6) 

 
𝐾𝐾�𝑛𝑛𝑛𝑛

2,2 = −�
[(𝑛𝑛 + 1)2 −𝑛𝑛2][(𝑛𝑛 + 2)2 −𝑛𝑛2]

(2𝑛𝑛 + 1)(2𝑛𝑛 + 3)2(2𝑛𝑛 + 5)
 (A7) 

The initial values shown here only hold for the fully-normalised (4π-normalised) functions. Any 704 

other form of normalisation will not affect the recursion relations, but will result in different initial 705 

values, which can easily be derived. Details on the practical and numerical differences between the 706 

various recursive schemes can be found in Claessens [2005]. 707 
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