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Abstract—In this paper, we study the optimal structure of
the source precoding matrix and the relay amplifying matrices
for multiple-input multiple-output (MIMO) relay communication
systems with parallel relay nodes. In particular, a nonlinear
decision feedback equalizer (DFE) is used at the destination
node, and the minimal mean-squared error (MMSE) criterion
is used to detect the transmitted signal at each stream. We show
that the optimal source precoding matrix and the optimal relay
amplifying matrices have a beamforming structure. Using such
optimal source and relay matrices and the MMSE-DFE receiver,
a joint source and relay power loading algorithm is developed to
minimize the MSE of the signal waveform estimation. Compared
with existing algorithms for parallel MIMO relay networks, the
proposed source and relay design together with the MMSE-DFE
receiver has a significant improvement in the system bit-error-
rate performance.

Index Terms—multiple-input multiple-output (MIMO), relay
networks, parallel relay, minimum mean-squared error (MMSE),
decision feedback equalizer (DFE).

I. INTRODUCTION

It is well known that relay techniques are very efficient in
enhancing the coverage and the energy efficiency of wireless
communication systems [1], [2]. When nodes in the relay
system are installed with multiple antennas, we call such sys-
tem multiple-input multiple-output (MIMO) relay communi-
cation system. Recently, MIMO relay communication systems
have attracted much research interest and provided significant
improvement in terms of both spectral efficiency and link
reliability [3]-[14]. Many works have studied the optimal relay
amplifying matrix for the source-relay-destination channel. In
[5] and [6], the optimal relay amplifying matrix maximizing
the mutual information (MI) between the source and destina-
tion was derived assuming that the source covariance matrix is
an identity matrix. In [7] and [8], the relay amplifying matrix
was designed to minimize the mean-squared error (MSE) of
the signal waveform estimation at the destination.

A few research has studied the jointly optimal structure of
the source precoding matrix and the relay amplifying matrix
for the source-relay-destination channel. In [9], both the source
covariance matrix and the relay amplifying matrix were jointly
designed to maximize the source-destination MI. In [10] and
[11], a unified framework was developed to jointly optimize
the source precoding matrix and the relay amplifying matrix
for a broad class of objective functions. All the works [5]-[11]

focus on MIMO relay systems with a single relay node at each
hop.

MIMO relay systems with multiple parallel relay nodes
have been investigated in [12] and [13]. In [12], the op-
timal relay amplifying matrices are developed to minimize
the MSE of the signal waveform estimation. However, the
source precoding matrix is not optimized in [12]. In [13],
the authors investigated the jointly optimal structure of the
source precoding matrix and the relay amplifying matrices
when a linear minimal MSE (MMSE) receiver is used at the
destination.

In this paper, we study MIMO parallel relay systems with a
nonlinear decision feedback equalizer (DFE) at the destination.
In particular, the MMSE criterion is used to estimate the
transmitted signal at each stream. We call such receiver an
MMSE-DFE receiver. We develop the jointly optimal source
precoding matrix and relay amplifying matrices for MIMO
parallel relay systems with nonlinear MMSE-DFE receiver.
Simulation results show that the proposed source and relay
matrices together with the MMSE-DFE receiver yield a sig-
nificant bit-error-rate (BER) improvement compared with the
linear MMSE based relay algorithm developed in [13].

We would like to mention that for MIMO relay system with
a single relay node, the optimal source and relay matrices
using the nonlinear MMSE-DFE receiver have been developed
in [14]. This paper generalizes the relay design from a single
relay node case to multiple parallel relay nodes scenario.

The rest of this paper is organized as follows. The system
model is described in Section II. In Section III we study the
optimal structure of the source and relay matrices. Section IV
shows the simulation results. Conclusions are drawn in Section
V.

II. SYSTEM MODEL

Fig. 1 illustrates a two-hop MIMO relay communication
system consisting of one source node, K parallel relay nodes,
and one destination node. We assume that the source and
destination nodes have Ns and Nd antennas, respectively, and
each relay node has Nr antennas. The generalization to the
system with different number of antennas at each relay node
is straightforward. To efficiently exploit the system hardware,
each relay node uses the same antennas to transmit and receive
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Fig. 1. Block diagram of a parallel MIMO relay communication system.

signals. Due to its merit of simplicity, we consider the amplify-
and-forward relaying scheme at each relay.

The communication process between the source and desti-
nation nodes is completed in two time slots. In the first time
slot, the Nb×1 modulated symbol vector s is linearly precoded
as

x = Bs (1)

where B is an Ns×Nb source precoding matrix. We assume
that E[ssH ] = INb

, where (·)H denotes matrix (vector)
Hermitian transpose, E[·] stands for statistical expectation, and
In is an n × n identity matrix. The precoded vector x is
transmitted to the relay nodes and the received signal at the
ith relay node can be written as

yr,i = Hsr,ix + vr,i, i = 1, · · · ,K (2)

where Hsr,i is the Nr × Ns MIMO channel matrix between
the source and the ith relay node, yr,i and vr,i are the received
signal and the additive Gaussian noise vectors at the ith relay
node, respectively.

In the second time slot, the source node is silent, while
each relay node transmits the amplified signal vector to the
destination node as

xr,i = Fiyr,i, i = 1, · · · ,K (3)

where Fi is the Nr × Nr amplifying matrix at the ith relay
node. Thus the received signal vector at the destination node
can be written as

yd =
K∑

i=1

Hrd,ixr,i + vd (4)

where Hrd,i is the Nd ×Nr MIMO channel matrix between
the ith relay and the destination node, yd and vd are the total
received signal and the additive Gaussian noise vectors at the
destination node, respectively.

Substituting (1)-(3) into (4), we obtain

yd =
K∑

i=1

(Hrd,iFiHsr,iBs + Hrd,iFivr,i) + vd

= HrdFHsrBs + HrdFvr + vd (5)

where we define

Hsr , [HT
sr,1,H

T
sr,2, · · · ,HT

sr,K ]T

Hrd , [Hrd,1,Hrd,2, · · · ,Hrd,K ]
F , bd[F1,F2, · · · ,FK ]

vr ,
[
vT

r,1,v
T
r,2, · · · ,vT

r,K

]T
.

Here (·)T denotes the matrix (vector) transpose, bd(·) stands
for a block-diagonal matrix, Hsr is a KNr × Ns channel
matrix between the source node and all relay nodes, Hrd is
an Nd×KNr channel matrix between all relay nodes and the
destination node, vr is obtained by stacking the noise vectors
at all the relays and F is the equivalent KNr ×KNr block
diagonal relay matrix. The diagram of the equivalent MIMO
relay system described by (5) is shown in Fig. 2.

By introducing
F̄ , HrdF (6)

the received signal vector at the destination can be equivalently
written as

yd = F̄HsrBs + F̄vr + vd = H̄s + v̄

where we define H̄ , F̄HsrB as the effective MIMO
channel matrix of the source-relay-destination link, and v̄ as
the equivalent noise with v̄ , F̄vr + vd. Compared with
single-hop MIMO systems, in a parallel MIMO relay system,
the channel matrix H̄ is a function of both B and F, and
the noise v̄ also depends on F. This greatly complicates the
system optimization issue as will be seen later.

Fig. 2. Block diagram of the equivalent MIMO relay system.

III. OPTIMAL SOURCE AND RELAY DESIGN

At the destination node, a nonlinear DFE receiver is used to
detect the source symbols successively with the Nbth symbol
detected first and the first symbol detected last. Assuming that
there is no error propagation in the DFE receiver, the kth
source symbol is estimated as

ŝk = wH
k yd −

Nb∑

l=k+1

ck,lsl, k = 1, · · · , Nb (7)

where wk is the feed-forward vector for the kth symbol, and
ck,l, l = k + 1, · · ·, Nb, are the feedback coefficients for the
kth symbol. By introducing W = [w1,w2, · · ·,wNb

], ŝ =
[ŝ1, ŝ1, ···, ŝNb

]T , and an Nb×Nb strictly upper-triangle matrix
C with nonzero elements ck,l, we can represent (7) in matrix
form as

ŝ = WHyd −Cs = (WHH̄−C)s + WH v̄ (8)
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where W and C are the feed-forward matrix and the feedback
matrix of the DFE receiver, respectively. To minimize error of
the signal estimation in (8), we get

C = U [WHH̄] (9)

where U [WHH̄] denotes the strictly upper-triangular part of
WHH̄. Substituting (9) back into (7), we obtain

ŝk = wH
k

(
[H̄]1:k[s]1:k + v̄

)
, k = 1, · · · , Nb (10)

where [a]1:k denotes a vector containing the first k elements
of vector a, and [A]1:k stands for a matrix containing the first
k columns of A.

When the MMSE criterion is used to estimate each symbol,
from (10) the feed-forward matrix W is given as

wk =
(
[H̄]1:k[H̄]H1:k + Cv̄

)−1
h̄k, k = 1, · · ·, Nb

where Cv̄ is the equivalent noise covariance matrix given
by Cv̄ = E[v̄v̄H ] = F̄F̄H + INd

, (·)−1 denotes the matrix
inversion, and h̄k is the kth column of H̄. Let us introduce
the following QR decomposition

G ,
[
C−1/2

v̄ H̄
INb

]
= QR =

[
Q̄
Q

]
R (11)

where R is an Nb×Nb upper-triangular matrix with all positive
diagonal elements, Q is an (Nb+Nd)×Nb semi-unitary matrix
with QHQ = INb

, Q̄ is a matrix containing the first Nd rows
of Q, and Q contains the last Nb rows of Q.

Using the QR decomposition (11), it has been shown in [14]
that the feed-forward weight matrix W, the feedback matrix C
and the MSE matrix E = E

[
(ŝ− s)(ŝ− s)H

]
can be written

as

W = C−1/2
v̄ Q̄D−1

R , C = D−1
R R− INb

, E = D−2
R (12)

where DR is a matrix taking the diagonal elements of R as the
main diagonal and zero elsewhere. Using (11) and (12), the
joint source and relay optimization problem which minimizes
the MSE of the signal waveform estimation can be formulated
as

min
F̄,B

tr
(
D−2

R

)
(13)

s.t.
[
C−1/2

v̄ H̄
INb

]
= QR (14)

tr(BBH) ≤ Ps (15)
tr

(
F̄

[
HsrBBHHH

sr+INr

]
F̄H

)≤ Pr (16)

where tr(·) stands for matrix trace, (15) is the transmit power
constraint at the source node, while (16) is the power constraint
at the output of Hrd [12], [13]. Here Pr > 0 and Ps > 0 are
the corresponding power budgets.

Let Hsr = UsΛsVH
s denote the singular value decomposi-

tion (SVD) of Hsr, where the dimensions of Us, Λs, Vs are
KNr ×KNr, KNr ×Ns, Ns×Ns, respectively. We assume
that the main diagonal elements of Λs are arranged in a
decreasing order. We also introduce M = min(Rh, Nb), where
Rh , min(rank(Hsr), rank(Hrd)) and rank(·) denotes the

rank of a matrix. Using the nonlinear MMSE-DFE receiver
at the destination node of a parallel MIMO relay network,
the optimal source precoding matrix and the relay amplifying
matrices as the solution to the problem (13)-(16) are given by

F̄ = VΛfUH
s,1, B = Vs,1ΛbVH

r (17)

where Λf and Λb are M × M diagonal matrices, V is any
Nd×M semi-unitary matrix with VHV = IM , Us,1 and Vs,1

contain the leftmost M vectors of Us and Vs, respectively,
and Vr is an Nb × M semi-unitary matrix (VH

r Vr = IM )
such that the QR decomposition in (14) holds. The proof of
(17) is similar to the proof of Theorem 2 in [14].

From (17), we find that both F̄ and B have a beamforming
structure. In particular, they jointly diagonalize the source-
relay-destination channel matrix H̄ up to rotational matrices
V and Vr. It can be shown similar to [14] that the constraint
(14) can be equivalently written as

d[DR] ≺ σG (18)

where ≺ stands for multiplicative majorization [15], σG is a
column vector containing singular values of G, and d[DR] is
a column vector containing all diagonal elements of DR. Let
us denote λf,i, λs,i, λb,i, i = 1, · · · , M , as the main diagonal
elements of Λf , Λs, Λb, respectively. Using (17) and (18), the
optimization problem (13)-(16) can be equivalently rewritten
as

min
{λf,i},{λb,i}

tr
(
D−2

R

)
(19)

s.t. d
[
D2

R

]≺w



{

1 +

(
λf,iλs,iλb,i

)2

λ2
f,i + 1

}T

,1Nb−M




T

(20)

M∑

i=1

λ2
b,i ≤ Ps (21)

M∑

i=1

λ2
f,i

[(
λs,iλb,i

)2+1
] ≤ Pr (22)

λb,i ≥ 0, λf,i ≥ 0, i = 1, · · · , M (23)

where ≺w stands for weakly multiplicative submajorization
[15], {a} stands for an M × 1 vector [a1, a2, · · · , aM ]T ,
1Nb−M denotes a 1× (Nb −M) vector with all 1 elements.

The problem (19)-(23) is highly nonconvex and a closed-
form solution is intractable to obtain. In the following, we
develop an iterative method to obtain a numerical solution of
the optimal {λf,i} and {λb,i}. Let us define

ai , λ2
s,i, xi , λ2

b,i,

yi , λ2
f,i

[(
λs,iλb,i

)2+1
]
, i = 1, · · · ,M. (24)

Then using the definition of the operator ≺w in [15], the
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optimization problem (19)-(23) can be equivalently written as

min
{xi},{yi}

−
M∑

i=1

log

(
1 +

aixiyi

aixi+1

1 + yi

aixi+1

)
(25)

s.t.
M∑

i=1

xi ≤ Ps (26)

M∑

i=1

yi ≤ Pr (27)

xi ≥ 0, yi ≥ 0, i = 1, · · · ,M . (28)

For a fixed {yi} satisfying (27) and (28), the problem of
optimizing {xi} can be written as

min
{xi}

M∑

i=1

log
(

aixi + yi + 1
aixiyi + aixi + yi + 1

)
(29)

s.t.
M∑

i=1

xi ≤ Ps (30)

xi ≥ 0, i = 1, · · · ,M. (31)

The Lagrangian function associated with the problem (29)-(31)
can be written as

L=
M∑

i=1

log
(

aixi + yi + 1
aixiyi + aixi + yi + 1

)
+µ1

( M∑

i=1

xi−Ps

)
(32)

where µ1 ≥ 0 is the Lagrangian multiplier. Taking the
derivative of (32) with respect to xi equal to zero, we obtain

xi =
1

2ai

[√
yi

2 +
4aiyi

µ1
− yi − 2

]†
, i = 1, · · · ,M

where [x]† , max(x, 0), and µ1 is the solution to the
following nonlinear equation

M∑

i=1

1
ai

[√
yi

2 +
4aiyi

µ1
− yi − 2

]†
= 2Ps.

In a similar fashion, for a fixed {xi} satisfying (26) and
(28), we can update {yi} as

yi =
1
2

[√
ai

2xi
2 +

4aixi

µ2
− aixi − 2

]†
, i = 1, · · · ,M

where µ2 ≥ 0 is the solutions to the following nonlinear
equation

M∑

i=1

[√
ai

2xi
2 +

4aixi

µ2
− aixi − 2

]†
= 2Pr.

The iterative algorithm can be initialized at any random
feasible x or y. Since the conditional updates of {xi} and
{yi} may either decrease or maintain but cannot increase
the objective function in (25). Monotonic convergence of
{xi} and {yi} to a locally optimum solution follows directly
from this observation. After the convergence of the alternating
algorithm, λf,i and λb,i can be obtained from (24) as

λf,i =
√

yi

aixi + 1
, λb,i =

√
xi, i = 1, · · · , M

and then the optimal structure of F̄ and B is given by (17). The
rotation matrix Vr in (17) can be computed using the numer-
ical method developed in [16]. From (6), we have Hrd,iFi =
VΛfUH

s,i, where matrix UH
s,i contains the (i − 1)Nr + 1

to iNr columns of UH
s . Finally Fi = (Hrd,i)

+ VΛfUH
s,i,

i = 1, · · · ,K, where (·)+ denotes matrix pseudo-inverse.

IV. SIMULATIONS

In this section, we study the performance of the proposed
optimal joint source and relay beamforming algorithm for
parallel MIMO relay systems with MMSE-DFE receiver at the
destination. All simulations are conducted in a flat Rayleigh
fading environment using the BPSK constellation, and the
noises are i.i.d. Gaussian with zero mean and unit variance.
The channel matrices have zero-mean entries with variances
σ2

s/Ns and σ2
r/(KNr) for Hsr and Hrd, respectively. We

vary the signal-to-noise ratio (SNR) in the source-to-relay link
SNRs while fixing the SNR in the relay-to-destination link
SNRr to 20dB. We transmit 1000 randomly generated bits in
each channel realization, and the BER results are averaged
through 200 channel realizations. Here we set Nb = Ns =
Nr = Nd = 3.

In the first example, we simulate K = 3 and compare the
BER performance of the proposed optimal joint source and
relay algorithm with the naive amplify-and-forward (NAF)
algorithm where both the source and relay matrices are scaled
identity matrices, and the joint source and relay algorithm for
parallel MIMO relay systems where a linear MMSE receiver is
applied at the destination [13]. The latter algorithm is denoted
as MMSE algorithm. From Fig. 3, it can be seen that the NAF
algorithm has the worst performance. The proposed algorithm
outperforms the other two approaches.
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Fig. 3. Example 1. BER versus SNRs with K = 3.

In the second example, we study the effect of the number
of relays to the system BER performance using the proposed
algorithm. Fig. 4 shows the BER performance with K = 2, 3,
and 5. It can be seen that at BER = 10−3, we achieve a 5-dB
gain by increasing from K = 2 to K = 5.
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Fig. 4. Example 2. BER versus SNRs with varying K.

V. CONCLUSIONS

In this paper, we have derived the optimal structure of the
source precoding matrix and the relay amplifying matrices
for parallel MIMO relay communication systems when the
nonlinear MMSE-DFE receiver is used at the destination node.
The proposed source and relay matrices jointly diagonalize the
source-relay-destination channel up to two rotation matrices
and minimize the MSE of the signal waveform estimation.
The proposed algorithm has an improved BER performance
compared with existing techniques.
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