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Abstract—In this paper, we address the optimal source and
relay matrices design issue for a multiple-input multiple-output
(MIMO) relay network using the dirty paper coding (DPC)
scheme at the source node. The aim is to minimize the mean-
squared error (MSE) of the signal waveform estimation at the
destination. Using the property of uplink-downlink duality, the
original DPC-based MIMO relay system is first converted to
a dual system with a decision feedback equalizer (DFE) at
the destination. Then we jointly optimize the source and relay
matrices of the dual system. Finally the optimal source and relay
matrices of the DPC-based system are obtained by exploiting
the link between the source, relay, and destination matrices of
the original and dual MIMO relay systems. Simulation results
demonstrate that the proposed DPC-based MIMO relay system
performs much better than the existing linear minimal MSE
(MMSE)-based relaying approach in terms of bit-error-rate.

I. INTRODUCTION

Relay communication is well known for being a cost-
effective approach in improving the energy-efficiency of com-
munication system in the case of long source-destination
distance. When nodes in the relay network are equipped
with multiple antennas, we call such system a multiple-
input multiple-output (MIMO) relay system. MIMO relays
are particularly useful in extending the network coverage and
improve the link reliability of the network.

The capacity of a MIMO relay channel has been studied
in [1] and [2]. Several other works studied the optimal relay
amplifying matrix for a variety of objective functions. In [3]
and [4], the optimal relay amplifying matrix which maximizes
the mutual information (MI) between source and destination
was derived assuming that the source covariance matrix is an
identity matrix. In [5] and [6], minimal mean-squared error
(MMSE)-based approaches for MIMO relay systems have
been studied. Assuming that a linear MMSE receiver is used at
the destination, the structure of the optimal source precoding
matrix and the optimal relay amplifying matrices for most
commonly used objective functions have been investigated
in [7] and [8]. All these works [3]-[8] considered a linear
transmitter at the source and a linear receiver at the destination.

A MIMO relay system using a nonlinear decision feedback
equalizer (DFE) at the destination has been developed in [9].
The DFE technique is also well-known as the successive
interference cancellation (SIC) technique. It is shown in [9]

that the DFE-based MIMO relay system has a much better
bit-error-rate (BER) and MI performance than MIMO relay
systems using linear receivers. However, an inherent drawback
of the DFE receiver is the error propagation effect, especially
in the case of large modulation constellations and/or large
system dimension [10].

An efficient approach to remove the error propagation effect
of the DFE receiver is to perform the interference cancellation
at the source node. This error propagation-free interference
cancellation scheme is known as dirty paper coding (DPC)
from Costa’s seminal work [11]. The optimal source precoding
matrix and the optimal receiving matrix of a single-hop (point-
to-point) MIMO system using the DPC scheme have been
developed in [12]. It has been shown that in the case of large
modulation constellations, the DPC-based MIMO system has
better BER performance than that of MIMO system using the
DFE receiver. The uplink-downlink duality [13] was applied in
[12] to optimize the source precoding matrix and the receiving
matrix.

In this paper, we consider a MIMO relay system using the
DPC scheme at the source node. We aim at jointly optimizing
the source precoding matrix and the relay amplifying matrix
to minimize the MSE of signal waveform estimation at the
destination. The optimization problem is highly nonconvex
and a closed-form solution of the optimal source and relay
matrices is intractable. Even the structure of the optimal source
and relay matrices of the DPC-based MIMO relay system
is difficult to obtain. Thanks to the uplink-downlink duality
in MIMO relay channel [14], we first convert the original
DPC-based MIMO relay system to a dual system with a
DFE receiver at the destination. Then we jointly optimize the
source and relay matrices of the dual system by applying the
majorization theory [15] and the recently developed matrix
generalized triangular decomposition (GTD) tool [9], [16].
Finally the optimal source, relay, and receiver matrices of the
DPC-based system are obtained by exploiting the link between
the source, relay, and destination matrices of the original and
dual MIMO relay system. Simulation results demonstrate that
the proposed DPC-based MIMO relay system performs much
better than the existing MMSE-based approach in terms of
BER.

The rest of this paper is organized as follows. In Section II,
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the system model of a DPC-based MIMO relay system is
introduced. The optimal source precoding matrix, the optimal
relay amplifying matrix and the optimal receiving matrix are
developed in Section III. Section IV shows the simulation re-
sults which justify the significance of the proposed DPC-based
MIMO relay design. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a two-hop MIMO relay communication system
as illustrated in Fig. 1 where the source node transmits
information to the destination node with the aid of a relay
node. The source, relay and destination nodes are equipped
with Ns, Nr, and Nd antennas, respectively. We denote Nb

as the number of independent data streams from the source to
the destination. To efficiently exploit the system hardware, the
relay node uses the same antennas to transmit and receive
signals. For simplicity, a linear nonregenerative strategy is
applied at the relay node to amplify and forward the received
signals.

Fig. 1. MIMO relay system model based on DPC.

We make the common assumption that the relay node works
in the half-duplex mode. Thus, the communication between the
source and destination is completed in two time slots. In the
first time slot, a DPC encoder is used at the source node to
encode the information-carrying symbol vector u substream-
by-substream removing the interference from the substreams
already encoded. We assume that E[uuH ] = INb

, where
E[·] stands for the statistical expectation, (·)H denotes the
Hermitian transpose, and In is an n× n identity matrix.

Then the Nb × 1 DPC-encoded signal vector s is linearly
precoded at the source by the Ns×Nb source precoding matrix
P. The precoded signal vector

x = Ps (1)

is transmitted to the relay node from the source node. The
received signal vector at the relay node can be written as

yr = Hx + nr (2)

where H is the Nr ×Ns MIMO channel matrix between the
source and the relay, yr and nr are the total received signal
and the additive Gaussian noise vectors at the relay node,
respectively.

In the second time slot, the source node remains silent
and the relay node multiplies (linearly precodes) the received
signal vector yr by an Nr × Nr relay amplifying matrix F
and transmits the amplified signal vector

xr = Fyr (3)

to the destination node. The received signal vector at the
destination node can be written as

yd = Gxr + nd (4)

where G is the Nd × Nr MIMO channel matrix between
the relay and the destination nodes, yd and nd are the total
received signal and the additive Gaussian noise vectors at the
destination node, respectively. Substituting (1)-(3) into (4), we
obtain

yd = GFHPs + GFnr + nd = H̄s + n̄

where H̄ , GFHP is the equivalent MIMO channel matrix
of the source-relay-destination link, and n̄ , GFnr + nd is
the equivalent noise vector.

We assume that the channel matrices H and G are quasi-
static and known to the relay and the destination nodes. The
relay node calculates the optimal source (P) and relay (F) ma-
trices and forwards P and H̄ to the source and the destination
nodes, respectively. Without loss of generality, we assume that
all noises are independent and identically distributed (i.i.d.)
complex circularly symmetric Gaussian noise with zero mean
and unit variance. We also assume that a linear receiver is used
at the destination node to retrieve the transmitted signals. Thus
the estimated signal vector is given by

ŝ = WHyd

where W is an Nd×Nb weight matrix. Finally, an estimation
of the information-carrying symbol û is obtained by passing
ŝ through the DPC decoder.

III. OPTIMAL DPC-BASED MIMO RELAY SYSTEM

In this section, we develop the optimal source precoding
matrix P, receiver weight matrix W and the optimal relay
amplifying matrix F to minimize the MSE of the signal
waveform estimation, i.e., tr(E[(û−u)(û−u)H ]), where tr(·)
stands for matrix trace.

A. Uplink-Downlink Duality in MIMO Relay Channel

A direct construction of the structure of the optimal P, F
and W is difficult. In this paper, we exploit the interesting
uplink-downlink duality of MIMO relay channel [14] to opti-
mize P, F and W. If we treat the DPC-based MIMO relay
system in Fig. 1 as a downlink MIMO communication system,
then the input-output equation of the associated uplink MIMO
relay channel can be written as

ỹd = HHF̃GHP̃u + HHF̃nr + ñd = H̃u + ñ

where ỹd and ñd are the Ns × 1 total received signal and
the Gaussian noise vectors at the receiver of the dual uplink
channel, F̃ is the Nr ×Nr relay amplifying matrix, P̃ is the
Nd × Nb source precoding matrix, H̃ , HHF̃GHP̃ is the
equivalent MIMO channel matrix, and ñ , HHF̃nr + ñd

is the equivalent noise vector in the dual channel. Note that
in the dual uplink channel, the roles of the transmitter and
the receiver are exchanged. In fact, in the dual system, a
linear transmitter is used at the source node, a DFE receiver is

329



applied at the destination node, and the channel matrices are
replaced by their Hermitian transpose. Moreover, it is shown in
[14] that equal signal-to-interference-noise ratios (SINRs) can
be achieved in both the uplink and the downlink MIMO relay
channel provided that: (1) the order of the symbol detection in
the DFE receiver in the dual channel is the reverse of the Costa
precoding order in the original channel; (2) the total power
allocated at the source and relay node for the dual channel
is switched to be the power assigned to the relay and source
nodes of the original DPC-based relay channel. Based on this
duality property, we can use the receiving filter in the dual
uplink channel to construct the source precoding matrix in the
DPC-based downlink system, and the receiving matrix in the
DPC-based downlink system can be obtained based on the
source precoding matrix in the dual uplink channel. Finally,
the relay matrix in the downlink system is simply a scaled
version of the relay matrix in the dual uplink system. Details
will be shown later on in Section III-C.

B. DFE-Based Relay System Design in the Dual Channel

In the dual channel, a nonlinear DFE receiver is used
to detect the information-carrying symbols successively with
the Nbth symbol detected first and the first symbol detected
last. Assuming that there is no error propagation in the DFE
receiver, the kth information-carrying symbol is estimated as

ũk = w̃H
k ỹd −

Nb∑

l=k+1

ck,lul, k = 1, · · · , Nb (5)

where w̃k is the feed-forward vector and ck,l, l = k +
1, · · · , Nb, are the feedback coefficients for the kth sub-
stream. By introducing W̃ = [w̃1, w̃2, · · · , w̃Nb

], ũ =
[ũ1, ũ2, · · · , ũNb

]T , and an Nb×Nb strictly upper-triangle ma-
trix C with nonzero elements ck,l, we can represent (5) in
matrix form as

ũ = W̃H ỹd −Cu = (W̃HH̃−C)u + W̃H ñ

where W̃ and C are the feed-forward and feedback matrices
of the DFE receiver, respectively. Here (·)T denotes the
matrix (vector) transpose. The MSE of the signal waveform
estimation of the kth substream, k = 1, · · · , Nb, is given by

MSEk , E
[|ũk − uk|2

]

= |w̃H
k h̃k − 1|2 + |w̃H

k Cñw̃k|2

+
Nb∑

l=k+1

|w̃H
k h̃l − ck,l|2 +

k−1∑

l=1

|w̃H
k h̃l|2 (6)

where Cñ , HHF̃F̃HH + INs is the equivalent noise
covariance matrix of the dual channel, and for a matrix A,ak

is its kth column vector. It is obvious to see from (6) that
to minimize the MSEs of the signal estimation, the optimal
feedback coefficient should be

ck,l = w̃H
k h̃l, 1 ≤ k ≤ l ≤ Nb

or equivalently in matrix form as

C = U [W̃HH̃] (7)

where U [W̃HH̃] denotes the strictly upper-triangular part of
W̃HH̃. Substituting (7) back into (5), we obtain

ũk = w̃H
k

(
[H̃]1:k[u]1:k + ñ

)
, k = 1, · · · , Nb (8)

where [a]1:k denotes a vector containing the first k elements
of vector a, and [A]1:k stands for a matrix containing the first
k columns of A.

When the MMSE criterion is used to estimate each symbol,
from (8) the feed-forward matrix W̃ is given as

w̃k =
(
[H̃]1:k[H̃]H1:k + Cñ

)−1
h̃k, k = 1, · · · , Nb

where (·)−1 denotes the matrix inversion. Let us introduce the
following QR decomposition of the augmented matrix

Ga ,
[
C−1/2

ñ H̃
INb

]
= QR =

[
Q̄
Q

]
R (9)

where R is an Nb×Nb upper-triangular matrix with all positive
diagonal elements, Q is an (Nb+Ns)×Nb semi-unitary matrix
with QHQ = INb

, Q̄ is a matrix containing the first Ns rows
of Q, and Q contains the last Nb rows of Q.

Using the QR decomposition (9), it has been shown in [9]
that the feed-forward weight matrix W̃, the feedback matrix
C and the MSE matrix E = E

[
(ũ− u)(ũ− u)H

]
can be

written as

W̃ = C−1/2
ñ Q̄D−1

R , C = D−1
R R− INb

, E = D−2
R (10)

where DR is a matrix taking the diagonal elements of R as
the main diagonal and zero elsewhere. Using (9) and (10), the
joint source and relay optimization problem which minimizes
the MSE of the signal waveform estimation can be formulated
as

min
F̃,P̃

tr
(
D−2

R

)
(11)

s.t.
[
C−1/2

ñ H̃
INb

]
= QR (12)

tr(P̃P̃H) ≤ Ps (13)

tr
(
F̃

[
GHP̃P̃HG + INr

]
F̃H

)
≤ Pr (14)

where (13) is the transmit power constraint at the source node,
while (14) is the power constraint at the relay node for the dual
channel. Here Pr > 0 and Ps > 0 are the corresponding power
budgets.

Let H , UHΣHVH
H and G , UGΣGVH

G denote the
singular value decomposition (SVD) of H and G, respectively,
where the dimensions of UH , ΣH , VH are Nr×Nr, Nr×Ns,
Ns × Ns, respectively and the dimensions of UG, ΣG, VG

are Nd × Nd, Nd × Nr, Nr × Nr, respectively. We assume
that the main diagonal elements of ΣH and ΣG are arranged
in decreasing order. We also introduce M = min(Rh, Nb),
where Rh , min(rank(H), rank(G)) and rank(·) denotes the
rank of a matrix. Using the nonlinear MMSE-DFE receiver at
the destination node of the dual channel, the optimal source
precoding matrix and the relay amplifying matrix as the
solution to the problem (11)-(14) are given by [9]

P̃ = UG,1ΛP VH
P , F̃ = UH,1ΛF VH

G,1 (15)
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where ΛP and ΛF are M×M diagonal matrices, UG,1, UH,1

and VG,1 contain the leftmost M vectors of UG, UH and
VG, respectively, and VP is an Nb ×M semi-unitary matrix
(VH

P VP = IM ) such that the QR decomposition in (12) holds.
The proof of (15) is similar to the proof of Theorem 2 in [9].

Let us now denote σGa
as a column vector containing

the singular values of Ga, d[DR] as a column vector con-
taining all diagonal elements of DR, and λp,i, σh,i, λf,i, σg,i,
i = 1, · · · ,M , as the ith main diagonal element of ΛP , ΣH ,
ΛF , and ΣG respectively. Then in [9], it is shown that with
the optimal structure of the source and relay matrices (15), the
complicated matrix-variable optimization problem (11)-(14) is
simplified to an equivalent optimization problem with scalar
variables as

min
{λp,i},{λf,i}

tr
(
D−2

R

)
(16)

s.t. d
[
D2

R

]≺w



{

1 +

(
λp,iσh,iλf,iσg,i

)2

σ2
h,iλ

2
f,i + 1

}T

,1Nb−M




T

(17)

M∑

i=1

λ2
p,i ≤ Ps (18)

M∑

i=1

λ2
f,i

[(
λp,iσg,i

)2+1
] ≤ Pr (19)

λp,i ≥ 0, λf,i ≥ 0, i = 1, · · · ,M (20)

where ≺w stands for weakly multiplicative submajorization
[15], {a} stands for an M × 1 vector [a1, a2, · · · , aM ]T ,
1Nb−M denotes a 1 × (Nb −M) vector with all 1 elements.
Problem (16)-(20) can be efficiently solved using the iterative
water-filling approach developed in [9] to obtain ΛP and ΛF .
The rotation matrix VP in (15) can be computed using the
matrix GTD developed in [16]. The procedure of optimizing
F̃ and P̃ of the dual uplink MIMO relay system is summarized
in Table I.

TABLE I
PROCEDURE OF DFE-BASED OPTIMAL RELAY SYSTEM DESIGN

1) Compute the SVD of H and G.
2) Obtain ΛP , ΛF and DR by solving problem (16)-(20), and obtain

F̃ = UH,1ΛF VH
G,1.

3) Calculate the GTD

Ψ ,
[

C
−1/2
ñ HH F̃GHUG,1ΛP

INb

]
= QΨRPH

Ψ

where R has same diagonal elements as DR from step 2.
4) Obtain the precoding matrix P̃ = UG,1ΛP VH

P with VP =[
PH

Ψ

]
1:M

.

5) Compute the feed-forward matrix W̃ = C
−1/2
ñ Q̄D−1

R and the
feedback matrix C = D−1

R R − INb
where Q̄ consists of the first

Ns rows of QΨ.

C. DPC-Based Optimal MIMO Relay System

Given the optimal source precoding matrix P̃, relay am-
plifying matrix F̃ and receiver matrix W̃ for the DFE-based
relay system design in the dual uplink channel, the precoding

matrix for the DPC-based MIMO relay system can be obtained
based on theorem 2 in [14] as

P =
[√

α1w̄1,
√

α2w̄2, · · · ,
√

αNb
w̄Nb

]

where w̄k, k = 1, · · · , Nb, are obtained by scaling w̃k in (10)
such that ‖w̄k‖ = 1, k = 1, · · · , Nb, and αk, k = 1 · · ·Nb,
will be obtained later on in (25) to meet the SINR requirements
of all the substreams. Here ‖·‖ stands for the vector Euclidean
norm. The relay amplifying matrix of the DPC-based relay
system is F = cF̃H where c is a positive scaling coefficient to
meet the power constraint Ps at the relay node. The receiving
matrix W is obtained as

W = [η1p̄1, η2p̄2, · · · , ηNb
p̄Nb

]

where p̄k, k = 1, · · · , Nb are unit-norm columns of P̃ in (15),
and ηk = 1/(

√
αkp̄H

k GFHw̄k), k = 1, · · · , Nb.
To obtain αk, k = 1, · · · , Nb, we can assume for the mo-

ment that ηk = 1, k = 1, · · · , Nb, since scaling the receiving
vector does not change the output SINR. At the source node,
we apply the DPC scheme successively with the first substream
encoded first and the last substream encoded last. For the kth
substream, the information-carrying symbol uk is encoded into
sk by treating

∑k−1
l=1

√
αlp̄H

k GFHw̄lsl as the interference
known at the transmitter. It should be emphasized that the
interference term

∑Nb

l=k+1

√
αlp̄H

k GFHw̄lsl is unknown at
this step. At the receiver side, after applying the linear filter
W and the DPC decoder, we obtain Nb equivalent subchannels
given by

ûk =
√

αkp̄H
k GFHw̄kuk +

Nb∑

l=k+1

√
αlp̄H

k GFHw̄lsl + p̄H
k n̄

k = 1, · · · , Nb

with the output SINR

βk =
c2|p̄H

k GF̃HHw̄k|2αk∑Nb

l=k+1c
2|p̄H

k GF̃HHw̄l|2αl+c2p̄H
k GF̃HF̃GH p̄k+1

k = 1, · · · , Nb. (21)

The power utilized by the relay node in the DPC-based relay
system is

Ps = c2tr

(
F̃H

(
Nb∑

k=1

αkHw̄kw̄H
k HH + INr

)
F̃

)

= c2

(
Nb∑

k=1

w̄H
k HHF̃F̃HHw̄kαk + tr

(
F̃HF̃

))
. (22)

On the other hand, the SINR in the DFE-based dual channel
is given by

γk =
|w̄H

k HHF̃GH p̄k|2pk∑k−1
l=1 |w̄H

k HHF̃GH p̄l|2pl + w̄H
k HHF̃F̃HHw̄k + 1

k = 1, · · · , Nb (23)

where pk = ‖p̃k‖2, k = 1, · · · , Nb, is the transmit
power for the kth substream in the DFE-based relay sys-
tem. For notational simplicity, let us now denote ak ,
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w̄H
k HHF̃F̃HHw̄k, b , tr(F̃HF̃), dkl , |p̄H

k GF̃HHw̄l|2
and ek , p̄H

k GF̃HF̃GH p̄k. Thus from (22), we have

c2 =
Ps∑Nb

k=1 akαk + b
. (24)

Then using (21), (23) and (24), we obtain
k−1∑

l=1

alαl +
(

ak − Psdkk

γk

)
αk +

Nb∑

l=k+1

(dklPs + al) αl

= −Psek − b, k = 1, · · · , Nb (25)

which is a system of Nb linear equations and can be easily
solved to obtain the values of αk. The constant c is then
obtained from (24) such that the transmission power at the
relay node is constrained to Ps. It can be shown similar to
[14] that the power consumed by the source node is Pr.

IV. SIMULATION RESULTS

In this section, we study the performance of the pro-
posed DPC-based source precoding matrix and relay ampli-
fying matrix through numerical simulations. To precode the
kth information-carrying symbol uk into the source symbol
sk, k = 1, · · · , Nb, we apply the Tomlinson-Harashima coding
technique [17], [18], which is a simple but suboptimal im-
plementation of the DPC scheme. The Tomlinson-Harashima
scheme makes use of modulo operation to remove the inter-
ference from the preceding substreams without increasing the
transmission power at the source node.

The source, relay and destination nodes are all equipped
with multiple antennas. We simulate a flat Rayleigh fading
environment where the channel matrices have entries with
zero mean and variances σ2

h/Ns and σ2
g/Nr for H and G,

respectively. We define

SNRs−r , σ2
hPrNr

Ns
, SNRr−d ,

σ2
gPsNd

Nr

as the signal-to-noise ratio (SNR) of the source-relay and
relay-destination links, respectively. All simulation results
are averaged over 500 independent channel realizations. We
consider two different schemes of SNR in our experiment.
First, we vary SNRs−r fixing SNRr−d = 20dB, then we vary
SNRr−d keeping SNRs−r = 20dB.

We compare the performance of the proposed optimal DPC-
based algorithm with the existing MMSE algorithm in [8]
and the naive amplify-and-forward (NAF) scheme in terms
of BER. For the NAF scheme, we used P =

√
Pr

Ns
INs and

F =

√
Ps

tr (HPPHHH + INr )
INr .

In the simulations, we set Nb = Ns = Nr = Nd = 3.
Fig. 2 shows the BER performance of all three algorithms
with varying SNRs−r and SNRr−d = 20dB, whereas Fig. 3
demonstrates the BER performance versus SNRr−d with
SNRs−r = 20dB.

Our results clearly demonstrate the better performance of
the proposed DPC-based joint source and relay optimization
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Fig. 2. BER versus SNRs−r in MIMO relay channel. SNRr−d = 20dB.
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Fig. 3. BER versus SNRr−d in MIMO relay channel. SNRs−r = 20dB.

technique. It can be seen that the proposed optimal algorithm
yields the lowest BER compared to the other two approaches.
The existing relay algorithms using a linear receiver yield
much higher BER compared with the DPC-based relay tech-
nique.

V. CONCLUSIONS

We have developed the optimal structure of the source
precoding matrix and the relay amplifying matrix for non-
regenerative DPC-based MIMO relay networks to jointly min-
imize the MSE of the signal waveform estimation. The uplink-
downlink duality has been applied to optimize the source and
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relay matrices. Simulation results demonstrate that the pro-
posed DPC-based source and relay design algorithm performs
much better than the existing linear MMSE-based approach
in terms of BER. Future works may include considering DPC
for multiuser MIMO relay networks.

REFERENCES

[1] B. Rankov and A. Wittneben, “On the capacity of relay-assisted wireless
MIMO channels,” in Proc. 5th IEEE Workshop on Signal Processing
Advances in Wireless Commun., Lisbon, Portugal, Jul. 2004, pp. 323-
327.

[2] B. Wang, J. Zhang, and A. Høst-Madsen, “On the capacity of MIMO
relay channels,” IEEE Trans. Inf. Theory, vol. 51, pp. 29-43, Jan. 2005.

[3] X. Tang and Y. Hua, “Optimal design of non-regenerative MIMO
wireless relays,” IEEE Trans. Wireless Commun., vol. 6, pp. 1398-1407,
Apr. 2007.
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