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Abstract—The optimal source precoding matrix and relay am-
plifying matrix have been developed in recent works on multiple-
input multiple-output (MIMO) relay communication systems as-
suming that the instantaneous channel state information (CSI) is
available. However, in practical relay communication systems, the
instantaneous CSI is unknown, and therefore, has to be estimated
at the destination node. In this paper, we develop a novel channel
estimation algorithm for two-hop MIMO relay systems using
the parallel factor (PARAFAC) analysis. The proposed algorithm
provides the destination node with full knowledge of all channel
matrices involved in the communication. Compared with existing
approaches, the proposed algorithm requires less number of
training data blocks, and is applicable for both one-way and
two-way MIMO relay systems with single or multiple relay
nodes. Numerical examples demonstrate the effectiveness of the
PARAFAC-based channel estimation algorithm.

I. INTRODUCTION

Recently, there have been many research efforts on multiple-

input multiple-output (MIMO) relay systems [1]-[6]. For a

three-node two-hop MIMO relay system where the direct

source-destination link is omitted, the optimal relay amplifying

matrix is obtained in [2]-[3] to maximize the mutual infor-

mation between source and destination. In [4], optimal relay

matrices are developed to minimize the mean-squared error

(MSE) of the signal waveform estimation at the destination

node for a two-hop MIMO relay system with multiple parallel

relay nodes. A unified framework is established for optimizing

the source precoding matrix and the relay amplifying matrix of

two-hop linear non-regenerative MIMO relay systems with a

broad class of objective functions [5]. Recently, it has been

shown in [6] that by using a nonlinear decision feedback

equalizer (DFE) based on the minimal MSE (MMSE) criterion

at the destination node, the system bit-error-rate (BER) can be

significantly reduced.

For the aforementioned MIMO relay systems, the instanta-

neous channel state information (CSI) knowledge of both the

source-relay link and the relay-destination link is required at

the destination node to estimate the source signals. Moreover,

in order to optimize the source and/or relay matrices in

[1]-[6], the instantaneous CSI knowledge of both links is

needed to carry out the optimization procedure. However, in

practical relay communication systems, the instantaneous CSI

is unknown, and therefore, has to be estimated. Recently, a

tensor-based channel estimation algorithm is developed in [7]

for a two-way MIMO relay system. It is obvious that the

algorithm in [7] can not be applied in one-way MIMO relay

systems. In [8], a relay channel estimation algorithm using the

least-squares (LS) fitting is proposed. However, the number

of training data blocks required in [8] is at least equal to

the number of relay nodes, which is not spectral efficient.

For amplify-and-forward relay networks with single-antenna

source, relay, and destination nodes, the optimal training

sequence is developed in [9].

In this paper, we propose a novel channel estimation al-

gorithm for two-hop MIMO relay systems using the parallel

factor (PARAFAC) analysis [10]. The proposed algorithm pro-

vides the destination node with full knowledge of all channel

matrices involved in the communication. Compared with [8],

the proposed algorithm requires only two training data blocks

in many scenarios, and hence, has a higher spectral efficiency.

In contrast to [7], the proposed algorithm is applicable for both

one-way and two-way relay systems with single or multiple

relay nodes. In particular, for the direct source-destination

link in one-way relay systems, the MIMO channel matrix is

estimated by the LS approach. For the source-relay-destination

link in both one-way and two-way relay systems, we show

that under a mild condition of the channel training data block

length, the MIMO channel matrices of both hops can be

estimated up to permutation and scaling ambiguities, which are

inherent to the PARAFAC model. To remove the permutation

ambiguity, we exploit the knowledge of relay factors during

the channel training period which is designed beforehand and

known by both the relay nodes and the destination node.

Then by using a bilinear alternating least-squares (BALS)

algorithm, the channel matrix of each hop can be estimated

up to some scaling ambiguity. Finally, the scaling ambiguity

is taken care of by transmitting one complex number from

each relay antenna to the destination node over the control

channel available in a wireless network. This number contains

the channel state between the first antenna at the source node

and this relay antenna.

Since during the training period, the noise at the relay

nodes is amplified and forwarded to the destination node, the

effective noise vector at the destination node is non-white.

Taking this fact into account, we propose a weighted least-
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squares (WLS) approach to further improve the estimate of the

source-relay channel, by exploiting the initial estimate of the

relay-destination channel. Numerical examples demonstrate

the effectiveness of the proposed PARAFAC-based channel

estimation algorithm and the WLS approach.

The rest of this paper is organized as follows. In Section II,

we introduce the model of a two-hop amplify-and-forward

MIMO relay communication system. The proposed channel es-

timation algorithm is developed in Sections III. In Section IV,

we show some numerical examples. Conclusions are drawn in

Section V.

II. SYSTEM MODEL

We consider a two-hop MIMO communication system

where the source node transmits information to the destination

node with the aid of M relay nodes as shown in Fig. 1.

The source node and the destination node are equipped with

Ns ≥ 2 and Nd ≥ 2 antennas, respectively. Each relay

node has one or multiple antennas. For the simplicity of

explanation, we assume that each relay node has one antenna.

It will be shown later that the proposed channel estimation

algorithm can be extended to the case where each relay

node has (different number of) multiple antennas. Considering

the practical half-duplex constraint at each relay node, the

communication process between the source and destination

nodes is completed in two time slots. In the first time slot,

the Ns × 1 modulated signal vector xs(t) is transmitted to all

relay nodes and the destination node, and the received signal

vectors are respectively given by

yr(t) = Hsrxs(t) + vr(t), yd(t) = Hsdxs(t) + vd(t)
(1)

where yr(t) is an M×1 vector stacking the received signals at

all relay nodes on top of each other, yd(t) is an Nd×1 received

signal vector at the destination node, Hsr is the M × Ns

MIMO fading channel matrix between the source node and

all relay nodes, Hsd is the Nd×Ns MIMO source-destination

channel matrix, vr(t) is an M ×1 vector stacking the noise at

all relay nodes on top of each other, and vd(t) is the Nd × 1
noise vector at the destination node.
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Fig. 1. Two-Hop MIMO relay system with M relay nodes.

In the second time slot, the source node is silent, and each

relay node amplifies the received signal with fi and forwards

the amplified signal to the destination node. The received

signal vector at the destination node is

yd(t+1) = HrdDfHsrxs(t)+HrdDfvr(t)+vd(t+1) (2)

where Hrd is the Nd × M MIMO fading channel matrix

between the destination node and all relay nodes, Df ,
diag(f1, f2, · · · , fM ), and vd(t+1) is an Nd×1 noise vector

at the destination node at time t+ 1. Here diag(·) stands for

a diagonal matrix. We assume that all noises are complex

circularly symmetric with zero mean and unit variance. We

also assume that Hsr, Hrd, and Hsd are quasi-static block

fading which means they are constant over some time interval

before changing to another realization. Combining (1) and (2),

the received signals at the destination node over two time slots

are given by

y(t) =

[

HrdDfHsr

Hsd

]

xs(t)

+

[

HrdDfvr(t) + vd(t+ 1)
vd(t)

]

. (3)

Due to its lower computational complexity, linear receiver is

used at the destination node to retrieve the transmitted signal

vector xs(t) [2]-[6]. The estimated signal waveform vector is

given by x̂s(t) = WHy(t), where W is the 2Nd×Ns weight

matrix. From (3), the MSE of the signal waveform estimation

can be written as

e = tr
(

E
[

(x̂s(t)− xs(t))(x̂s(t)− xs(t))
H
])

(4)

where E[·] stands for statistical expectation, tr(·) and (·)H
denote matrix trace, and matrix Hermitian transpose, respec-

tively. The receiver weight matrix which minimizes (4) is the

Wiener filter given by [11]

W =
(

H̄H̄H + C̄
)−1

H̄ (5)

where

H̄,
[

HrdDfHsr

Hsd

]

, C̄,
[

HrdDfD
H
f HH

rd + INd
0Nd×Nd

0Nd×Nd
INd

]

.

Here (·)−1 stands for the matrix inversion, 0m×n denotes an

m× n matrix with all zeros entries, and In denotes an n× n
identity matrix.

It can be clearly seen from (5) that in order to compute W,

the CSI knowledge of Hsr, Hrd, and Hsd is required at the

destination node. In the following, we develop a PARAFAC

analysis based algorithm to estimate all channel matrices (Hsr,

Hrd, Hsd) at the destination node.

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

In order to estimate the channel matrices, training symbols

are transmitted from the source node. The overall channel

training period is divided into K time blocks (the minimal

K required will be determined later). In each time block, the

same Ns × L orthogonal channel training sequence S with

SSH = INs
is transmitted by the source node, where L

(L ≥ Ns) is the length of each block. Such S is optimal

in terms of the MSE of channel estimation [12] and can be

easily constructed, for example, from the normalized discrete
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Fourier transform (DFT) matrix. In the kth time block, the

mth relay node amplifies the received signal with fk,m and

forwards the amplified signal to the destination node. From

(3), the received signal matrices at the destination node over

K time blocks are given by

Yk ,
[

Y
(1)
k

Y
(2)
k

]

=

[

HrdDk{F}Hsr

Hsd

]

S+

[

HrdDk{F}Vr,k +V
(1)
d,k

V
(2)
d,k

]

k = 1, · · · , K (6)

where F is a K × M matrix whose kth row contains the

amplifying factors of all M relay nodes at the kth time block,

Dk{·} is the operator that makes a diagonal matrix by selecting

the kth row and putting it on the main diagonal while putting

zeros elsewhere, Vr,k is the M × L noise matrix at the relay

nodes during the kth time block, V
(i)
d,k, i = 1, 2, is the Nd ×

L noise matrix at the destination node at the ith time slot

during the kth time block, and Y
(1)
k and Y

(2)
k , k = 1, · · · , K ,

are matrices containing the first and the last Nd rows of Yk,

respectively.

At the destination node, by multiplying both sides of (6)

with SH , we obtain

YkS
H=

[

HrdDk{F}Hsr

Hsd

]

+

[

HrdDk{F}Vr,kS
H+V

(1)
d,kS

H

V
(2)
d,kS

H

]

, k = 1, · · · , K.(7)

From (7), an LS estimate of Hsd is given by

Ĥsd =
1

K
Y(2)(1K ⊗ S)H = Hsd +

1

K
V

(2)
d (1K ⊗ S)H

where Y(2) ,
[

Y
(2)
1 ,Y

(2)
2 , · · · ,Y(2)

K

]

, V
(2)
d ,

[

V
(2)
d,1 ,V

(2)
d,2 ,

· · · ,V(2)
d,K

]

, 1K denotes a 1 ×K vector with all 1 elements,

and ⊗ stands for the Kronecker matrix product [13]. In the

following, we show how to estimate Hrd and Hsr at the

destination node.

A. PARAFAC model and identifiability of channel matrices

Let us introduce

X̃k , Y
(1)
k SH = Xk +Vk, k = 1, · · · , K (8)

Xk , HrdDk{F}Hsr, k = 1, · · · , K (9)

Vk , HrdDk{F}Vr,kS
H +V

(1)
d,kS

H , k = 1, · · · , K (10)

where Xk is the matrix-of-interest containing both Hrd and

Hsr, Vk is the effective noise matrix, and X̃k is a noisy

observation of Xk. We would like to mention that F is

designed beforehand and is known at the destination node.

By assembling the set of K matrices (9) together along the

direction of the index k (the third dimension), we obtain an

Nd × Ns ×K three-way array X, whose (i, j, k)-th element

is given by

x(i, j, k) =

M
∑

m=1

hrd(i,m)f(k,m)hsr(m, j) (11)

for all i = 1, · · · , Nd, j = 1, · · · , Ns, and k = 1, · · · , K .

Here hrd(i,m), f(k,m), and hsr(m, j) stand for the (i,m)-
th, (k,m)-th, and (m, j)-th elements of Hrd, F, and Hsr,

respectively. Equation (11) expresses x(i, j, k) as a sum of

M rank-1 triple products, which is known as the trilinear

decomposition, or PARAFAC analysis of x(i, j, k) [10]. Cor-

respondingly, assembling K matrices of X̃k in (8) along the

index k leads to a noise-contaminated X given by X̃ = X+V.

It can be shown by using the identifiability theorem of the

PARAFAC model in [10] and [14] that if

kHrd
+ kF + kHsr

≥ 2M + 2 (12)

then the triple (Hrd,F,Hsr) is unique up to permutation

and scaling ambiguities, i.e., if there exists any other triple

(H̄rd, F̄, H̄sr) that gives rise to (9), then it is related to

(Hrd,F,Hsr) via

H̄rd = HrdΠ∆1, F̄ = FΠ∆2, H̄T
sr = HT

srΠ∆3 (13)

where (·)T stands for matrix (vector) transpose, Π is an

M ×M permutation matrix, and ∆i, i = 1, 2, 3, are M ×M
diagonal (complex) scaling matrices satisfying

∆1∆2∆3 = IM . (14)

In (12), for a matrix C, kC denotes the Kruskal rank (or k-

rank) [14] of C.

Inequality (12) establishes the sufficient condition for the

identifiability of (Hrd,F,Hsr). Since F is designed before-

hand (e.g., based on the DFT matrix), one can guarantee that

F has full k-rank. Moreover, both Hsr and Hrd are random

matrices, and hence have full k-rank. Therefore, in such case,

condition (12) becomes

min(Nd,M) +min(K,M) +min(Ns,M) ≥ 2M + 2. (15)

From (15), the identifiability condition can be summarized as

follows:

THEOREM: The PARAFAC model (11) is identifiable if

Ns ≥ 2, Nd ≥ 2, and 2 ≤ M ≤ Ns +Nd − 2. Moreover, K
should satisfy the following:

K ≥















2M + 2−Ns −Nd M ≥ Ns, Nd

M + 2−Nd Nd ≤ M ≤ Ns

M + 2−Ns Ns ≤ M ≤ Nd

2 M ≤ Ns, Nd

. (16)

PROOF: It can be easily proven from (15) by expanding

three min(·) operations. �
Interestingly, it can be seen from (16) that if Nd ≥ M and

Ns ≥ M , then as less as two training data blocks (K = 2)

is sufficient to estimate both Hrd and Hsr at the destination

node. While in [8], K = M training data blocks are required

to perform the channel estimation. We also observe that if (16)

is satisfied, then it holds that KNd > M and KNs > M .
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B. Bilinear alternating least-squares (BALS) fitting

Since F is known at the destination node, this information

can be exploited to solve the permutation ambiguity Π and

the scaling ambiguity ∆2 in (13), i.e., ∆2 = IM . In this

subsection, we develop a BALS algorithm to estimate the

channel Hsr and Hrd by carrying out the PARAFAC model

fitting. First we show some rearrangements of three-way arrays

X, V, and X̃ which will be used later.

By stacking K matrices of Xk in (9) on top of each other,

we obtain

X ,







X1

...

XK






=







HrdD1{F}
...

HrdDK{F}






Hsr = (F⊙Hrd)Hsr

(17)

where ⊙ stands for the Khatri-Rao (column-wise Kronecker)

matrix product [13]. Correspondingly, stacking matrices X̃k

in (8) on top of each other gives rise to

X̃ =







X1

...

XK






+







V1

...

VK






= X+V. (18)

By slicing X perpendicular to the dimension of j, we obtain

a set of Ns matrices Zj = FDj{HT
sr}HT

rd, j = 1, · · · , Ns.

By stacking Ns matrices of Zj on top of each other, we have

Z ,







Z1

...

ZNs






=







FD1{HT
sr}

...

FDNs
{HT

sr}






HT

rd = (HT
sr⊙ F)HT

rd.

(19)

Similarly, by slicing X̃ perpendicular to the dimension of j
and stacking the resulting matrices on top of each other, we

have

Z̃ =







Z1

...

ZNs






+







W1

...

WNs






(20)

where Wj , j = 1, · · · , Ns, are the slabs of V along the

dimension of j.

The BALS fitting starts at a random Ĥrd. In each iteration,

we first update Hsr using the LS fitting with fixed F and Ĥrd.

Using (17) and (18), we obtain an updated Hsr as

Ĥsr = argmin
Hsr

∥

∥X̃− (F⊙ Ĥrd)Hsr

∥

∥ = (F⊙ Ĥrd)
† X̃ (21)

where ‖·‖ denotes the matrix Frobenius norm, and for a matrix

C, C† , (CHC)−1CH . Then we update Hrd through the LS

fitting with known F and Ĥsr, and obtain Ĥrd using (19) and

(20) as

Ĥrd = argmin
Hrd

∥

∥Z̃− (ĤT
sr ⊙ F)HT

rd

∥

∥ =
[

(ĤT
sr ⊙ F)† Z̃

]T
.

(22)

Since the conditional update of matrices in (21) and (22) may

either improve or maintain but cannot worsen the current LS

fit, a monotonic convergence of the BALS procedure to (at

least) a locally optimal solution follows directly from this

observation.

C. Scaling ambiguity resolving

After the convergence of the BALS algorithm, the remaining

scaling ambiguity ∆1 (∆3 = ∆−1
1 according to (14)) can be

resolved by exploiting the estimation of Hsr at the relay nodes

as follows. During the channel training period, the received

signal vector at the mth relay node over K time blocks is

given by

ym = hsr,m(1K ⊗ S) + vm, m = 1, · · · ,M (23)

where hsr,m is the mth row of Hsr, and vm is a 1×KL noise

vector. An easily implementable LS estimate of hsr,m can be

obtained from (23) as h̃sr,m = 1
K
ym(1K⊗S)H . Then the first

element of h̃sr,m, denoted as h̃sr(m, 1) is transmitted from the

mth relay node to the destination node, for example, over the

control channel available in a wireless network. We assume

that h̃sr(m, 1),m = 1, · · · ,M , can be perfectly received at the

destination node as the other information transmitted through

the control channel. Now the destination node can resolve the

scaling ambiguity by computing δm = h̃sr(m, 1)/ĥsr(m, 1),
m = 1, · · · ,M , where δm is the mth main diagonal element

of ∆1 and ĥsr(m, 1) is the (m, 1)-th element of Ĥsr.

D. Weighted least-squares (WLS) algorithm

It can be seen from (10) that the covariance matrix of

the effective noise Vk at the destination node is given by

Ck , E[VkV
H
k ] = NsHrdDk{F}(Dk{F})HHH

rd + NsINd
,

k = 1, · · · , K . Obviously, Vk is non-white due to the channel

Hrd and the relay amplifying factor F. Therefore, after an

initial estimation of Hrd is obtained by the BALS algorithm

in Section III-B, the initial estimation of Hsr can be improved

by the WLS approach with

H̆sr = argmin
Hsr

tr
(

(

X̃− (F⊙ Ĥrd)Hsr

)H
Ĉ−1

×
(

X̃− (F⊙ Ĥrd)Hsr

)

)

=
(

Ĉ− 1
2 (F⊙ Ĥrd)

)†
Ĉ− 1

2 X̃ (24)

where Ĉ = bd
[

Ĉ1, Ĉ2, · · · , ĈK

]

, Ĉ
1
2 Ĉ

1
2 = Ĉ, and Ĉk =

NsĤrdDk{F}(Dk{F})HĤH
rd +NsINd

, k = 1, · · · , K , is an

estimate of Ck using Ĥrd. Here bd[·] stands for a block

diagonal matrix. It will be seen in Section IV that there is an

obvious improvement in estimating Hsr by using (24) after

the convergence of the BALS algorithm.

Similarly, we expect that the initial estimation of Hrd

can be improved by the WLS approach. It can be shown

from (20) that the covariance matrix of the noise Wj ,

denoted as Θj , E[WjW
H
j ], j = 1, · · · , Ns, is a di-

agonal matrix whose (k, k)-th diagonal element is given

by
∑M

m=1 ‖f(k,m)hrd,m‖2 + Nd, where hrd,m is the mth

column of Hrd. Since Θj is diagonal, it will be shown in

Section IV that performing the WLS algorithm after the BALS

fitting has only negligible performance gain in estimating Hrd.

Thus, in practice, we only need to carry out the WLS step for

estimating Hsr.
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E. Extensions

For relay nodes with (possibly different number of) multiple

antennas, we can write

Hrd = [Hrd,1,Hrd,2, · · · ,Hrd,M ]

Hsr =
[

HT
sr,1,H

T
sr,2, · · · ,HT

sr,M

]T

Df = bd[D1,D2, · · · ,DM ]

where Hrd,m, m = 1, · · · ,M , is the MIMO channel be-

tween the destination node and the mth relay node, Hsr,m,

m = 1, · · · ,M , is the MIMO channel between the source

node and the mth relay node, Dm is the diagonal relay

amplifying matrix at the mth relay node. It is obvious that the

system model (2) is still valid and the proposed PARAFAC-

based channel estimation algorithm developed in Section III-A

to Section III-D can be straightforwardly applied to estimate

Hsr and Hrd. In the following, we show that the proposed

algorithm can also be used for channel estimation in two-way

MIMO relay systems.

In a two-way relay system, two users exchange their infor-

mation through one or multiple relay nodes [15]. The received

signal matrices at two nodes during the kth time block of the

channel training period are given respectively by

Y1,k = H1,rDk{F}Hr,2S2 +H1,rDk{F}Hr,1S1

+H1,rDk{F}Vr,k +V1,k, k = 1, · · · , K (25)

Y2,k = H2,rDk{F}Hr,1S1 +H2,rDk{F}Hr,2S2

+H2,rDk{F}Vr,k +V2,k, k = 1, · · · , K (26)

where Hr,i, i = 1, 2, is the MIMO channel from node i to

all relay nodes, Hi,r, i = 1, 2, is the MIMO channel from all

relay nodes to node i, and Vi,k, i = 1, 2, is the noise matrix

at node i during the kth time block.

The Ni × L training sequence Si used by node i, i = 1, 2,

in (25) and (26) is designed such that

SiS
H
i = INi

, i = 1, 2, S1S
H
2 = 0N1×N2 (27)

where Ni is the number of antennas at node i, and 0N1×N2 is

an N1×N2 matrix with all zero elements. Note that S1 and S2

satisfying (27) can be easily constructed from the normalized

DFT matrix with L ≥ N1 + N2. Multiplying both sides of

(25) with SH
2 and both sides of (26) with SH

1 , we have

Y1,kS
H
2 =H1,rDk{F}Hr,2 +H1,rDk{F}Vr,kS

H
2 +V1,kS

H
2

k = 1, · · · , K
Y2,kS

H
1 =H2,rDk{F}Hr,1 +H2,rDk{F}Vr,kS

H
1 +V2,kS

H
1

k = 1, · · · , K.

Now the proposed PARAFAC-based algorithm developed in

Section III-A to Section III-D can be applied at node 1 to

estimate H1,r and Hr,2 and at node 2 to estimate H2,r and

Hr,1.
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Fig. 2. Example 1: Normalized MSE versus Ps. K = 3.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

channel estimation algorithm through numerical simulations.

We consider a two-hop MIMO relay communication system

where the source and the destination nodes are equipped with

Ns = Nd = 3 antennas, respectively. For simplicity, there

is one relay node in the system with three antennas (equiv-

alent to M = 3). All channel matrices have i.i.d. complex

Gaussian entries with zero-mean and variances of 1/Ns, 1/M ,

1/(8Ns) for Hsr, Hrd, and Hsd, respectively. Throughout

the simulations, we use the minimal L, i.e., L = Ns = 3.

The transmission power at the relay node is set to be 20dB

above the noise level. All simulation results are averaged over

2000 independent channel realizations. For each channel real-

ization, the normalized channel estimation error is calculated

as ‖Ĥsr−Hsr‖2/‖Hsr‖2 and ‖H̆sr−Hsr‖2/‖Hsr‖2 for the

estimation of Hsr without and with using the additional WLS

step, respectively. The channel estimation error of Hrd and

Hsd are calculated in a similar way to that of Hsr.

In the first example, we study the normalized MSE (NMSE)

of channel estimation versus the source node transmission

power Ps with K = 3. It can be seen from Fig. 2 that

the NMSE of channel estimation decreases as Ps increases.

As expected, the estimation of Hsr is improved by carrying

out the additional WLS step, while the improvement in the

estimation of Hrd using the WLS step is negligible. We also

observe from Fig. 2 that after the WLS step, the NMSE of

Hsr is smaller than that of the Hrd at medium to high Ps.

While at low Ps level, the NMSE of Hsr is larger than that

of the Hrd. This is because Ĥrd, rather than the perfect Hrd

is used to calculate the weight matrix C in the WLS step (see

(24)), and the mismatch between Ĥrd and Hrd is bigger when

Ps is low.

In the second example, we study the performance of the

proposed channel estimation algorithm versus K . It can be

seen from Fig. 3 that the NMSE decreases with increasing K .
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Fig. 3. Example 2: Normalized MSE versus K . Ps = 20dB.
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Fig. 4. Example 3: BER versus Ps. K = 3.

We would like to mention that the system spectral efficiency is

reduced by increasing K . Such performance-efficiency trade-

off is important for practical relay communication systems.

In the third example, we investigate the impact of channel

estimation on the system BER performance. Fig. 4 shows

the comparison of BERs between the system using the CSI

estimated by the proposed algorithm and the system with the

perfect CSI. The algorithm proposed in [5] is used to optimize

the source precoding matrix and the relay amplifying matrix

for both systems with the perfect and the estimated CSI. QPSK

constellations are used to modulate the source symbols, and

3000 randomly generated bits are transmitted for each channel

realization. It can be seen from Fig. 4 that at Ps = 15dB, there

is only around 1.5dB loss by using the estimated CSI, which

is quite reasonable for practical systems. Moreover, we also

observe from Fig. 4 that by applying the WLS step, the system

BER can be slightly improved.

V. CONCLUSIONS

We have developed a novel PARAFAC-based channel es-

timation method for two-hop MIMO relay communication

systems. The proposed algorithm provides the destination node

with full knowledge of all channel matrices involved in the

communication. Compared with existing approaches, the pro-

posed algorithm requires less number of training data blocks,

and is applicable for both one-way and two-way MIMO relay

systems. Simulation results demonstrate the effectiveness of

the proposed channel estimation algorithm.
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