
Joint MMSE Transceiver Design in
Non-Regenerative MIMO Relay Systems with

Covariance Feedback
Lenin Gopal∗, Yue Rong† and Zhuquan Zang∗

∗Department of Electrical and Computer Engineering,
Curtin University, Miri, 98009, Sarawak, Malaysia

Email: lenin@curtin.edu.my, zqzang@curtin.edu.my
†Department of Electrical and Computer Engineering,

Curtin University, Bentley, WA 6102, Australia
Email: y.rong@curtin.edu.au

Abstract— In this paper, the problem of transceiver design
in a non-regenerative MIMO relay system is addressed, where
linear signal processing is applied at the relay and destination to
minimize the mean-squared error (MSE) of the signal waveform
estimation. The optimal structure of the relay precoding matrix
is derived with the assumption that the relay knows the channel
covariance information of the relay-destination link and the full
channel state information (CSI) of the source-relay link. Simula-
tion results demonstrate that the proposed scheme outperforms
conventional relay algorithms, and its performance is comparable
to the optimal relay algorithm using the full relay-destination
CSI.

Index Terms— MIMO relay, MMSE, Covariance Feedback.

I. INTRODUCTION

Wireless relaying is essential to provide reliable and cost
effective, wide-area coverage for wireless networks in a variety
of applications. In a cellular environment, a relay can be
deployed in areas where there are strong shadowing effects,
such as inside buildings and tunnels. For mobile ad-hoc
networks, relaying is essential not only to overcome shad-
owing due to obstacles but also to reduce transmission power
from source to neighbouring nodes. For tactical applications,
dynamic deployment of manned or unmanned relays is useful
to enhance the networks reliability, throughput, and minimize
interception by unwanted users.

There are two types of relay strategies: non-regenerative
scheme and regenerative scheme [1] - [3]. Compared with the
regenerative scheme, the non-regenerative scheme is easy to
implement, and thus is embraced by industry.

Recent studies show that performing linear precoding at
the relays in a non-regenerative MIMO relay system can
provide higher rate data transmission than a single-antenna
system in a scattered environment. In [4] and [5] a relay
precoding scheme in non-regenerative MIMO relaying has
been proposed to increase the capacity between the source
and destination with further signal processing. In this scheme,
the relay multiplies the received signal by a linear precoding
matrix and retransmits the precoded signal to the destination.
In [6] - [8], the precoding matrix was designed by minimizing
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Fig. 1. Non-regenerative MIMO relay system

the MSE of the signal waveform estimation at the destination.
An optimal precoding matrix based on the maximum signal-
to-noise ratio (SNR) criterion is developed in [7]. A unified
framework is developed in [8] to jointly optimize the source
precoding matrix and the relay amplifying matrix for a broad
class of objective functions. In [6] - [8], the full channel state
information (CSI) for all link is assumed to be available at the
relay.

In a practical system with a limited feedback rate, the
assumption that the relay knows the full CSI for the relay-
destination link is not feasible, especially in the situation when
the mobile node is moving rapidly. The covariance matrix is
more stable than the instantaneous channel matrix because
the scattering environment changes more slowly compared to
the mobile location. In [9] and [10], the precoding matrix is
derived for maximizing the ergodic capacity when only the
partial CSI for the relay-destination link is available at the
relay. Recently, covariance feedback based minimum mean-
squared error (MMSE) estimator is proposed in [11] and the
estimator is only suitable for a MIMO relay system, where
the number of antennas at the destination is greater than the
relay antennas. In this paper, optimal precoder is proposed
to minimize the MSE of the symbol estimation in a non-
regenerative MIMO relay system, when the covariance infor-
mation for the relay-destination link is available at the relay. It
is assumed that the relay knows the full CSI of the source-relay
link and channel covariance information (CCI) of the relay
destination link. As well as by restraining power consumption
at the relay node, we derive the optimal precoding matrix to
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minimize the MSE of the estimated symbols at the destination.
The proposed algorithm is not constrained by the number of
antennas at the destination as in [11]. Simulation results show
the effectiveness of the proposed MSE scheme.

The rest of the paper is organized as follows. In Section II,
we introduce the system model of a two-hop non-regenerative
MIMO relay system. The proposed algorithm is developed in
Section III. In Section IV, we show some numerical examples.
The conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the non-regenerative MIMO relay system as shown
in Fig.1, where the source, relay and destination have 𝑁𝑆 , 𝑁𝑅

and 𝑁𝐷 antennas, respectively. It is assumed that there is no
direct link exist between the source and destination due to
long distance between these two points. The data transmission
takes place over two time slots. The received signal at the relay
during the first time slot is given by

y1 = H1x+ n1 (1)

where H1 ∈ ℂ
𝑁𝑅×𝑁𝑆 is the channel matrix of the source-relay

link, x ∈ ℂ
𝑁𝑆×1 is the transmitted vector with covariance

matrix 𝐸{xx𝐻} = 𝜎2
𝑥I𝑁𝑆

, n1 ∈ ℂ
𝑁𝑅×1 is the circularly

symmetric complex Gaussian noise vector with zero mean and
covariance matrix 𝐸{n1n

𝐻
1 } = 𝜎2

1I𝑁𝑅
. Here 𝐸[.] denotes the

statistical expectation.
The received signal at the destination in the second time

slot is given by

y2 = H2GH1x+H2Gn1 + n2 (2)

where H2 ∈ ℂ
𝑁𝐷×𝑁𝑅 is the channel matrix of the relay-

destination link, G ∈ ℂ
𝑁𝑅×𝑁𝑅 is a precoding matrix of

the relay, n2 ∈ ℂ
𝑁𝐷×1 is the circularly symmetric complex

Gaussian noise vector with zero mean and covariance matrix
𝐸{n2n

𝐻
2 } = 𝜎2

2I𝑁𝐷
. Let us introduce

H = H2GH1 (3)

and
n = H2Gn1 + n2 (4)

where H ∈ ℂ
𝑁𝐷×𝑁𝑆 is the equivalent MIMO channel matrix,

and n ∈ ℂ
𝑁𝐷×1 represents the equivalent noise vector. Now

(2) can be written as

y2 = Hx+ n. (5)

Similar to [10], let us assume that the channel of the relay-
destination link is correlated at the transmit antennas and is
uncorrelated at the receive antennas. The model is suitable for
an environment where the relay is not encumbered by local
scatters and the destination is fully surrounded by local scatters
[12]. It is assumed that H2 can be expressed as

H2 = H𝜔Σ
1/2 (6)

where H𝜔 is an 𝑁𝐷 × 𝑁𝑅 Gaussian matrix having i.i.d.
circularly symmetric complex entries with zero mean and unit

variance, and Σ is an 𝑁𝑅 ×𝑁𝑅 covariance matrix of H2 at
the relay side.

To reduce implementation complexity, linear receiver W is
applied at the destination, the estimated signal is given by

x̃ = WHx+Wn. (7)

We assume that the average power used by the source is
upper bounded by 𝑃𝑠, and the average power used by the
relay is upper bounded by 𝑃𝑟. Since the transmitted signal
from the relay is Gy1 = GH1x+Gn1, the power constraint
on the relay can be expressed as

𝑝(G) = 𝑡𝑟
{
G(𝜎2

𝑥H1H
𝐻
1 + 𝜎2

1I𝑁𝑅
)G𝐻

}
≤ 𝑃𝑟 (8)

where 𝑡𝑟{.} is the trace of a matrix. Our goal is to design G
and W so as to obtain the estimated signal which minimizes
the following MSE function subject to the power constraint
(8).

𝐽(G,W) = 𝑡𝑟
{
𝐸
[
(x̃− x)(x̃− x)𝐻

]}
(9)

Mathematically, this problem can be formulated as

(G,W) = argmin
(G,W)

𝐽(G,W), 𝑠.𝑡. 𝑝(G) ≤ 𝑃𝑟. (10)

After substituting (7) into (9), the MSE function (9) is sim-
plified to

𝐽(G,W)=𝑡𝑟
{
𝜎2
𝑥

(
WH− I𝑁𝑆

)(
WH− I𝑁𝑆

)𝐻
+WR𝑛W

𝐻
}

(11)

where R𝑛 is the equivalent noise covariance matrix, given by

R𝑛=𝐸
[
nn𝐻

]
=𝐸
[(
H2Gn1 + n2

)(
H2Gn1 + n2

)𝐻]
=𝜎2

1H2GG𝐻H𝐻
2 + 𝜎2

2I𝑁𝐷
. (12)

Note that directly solving the constrained optimization
problem (10) is difficult due to the fact that both the cost
function 𝐽(G,W) and the power constraint are non-linear
function of G and W. In the following section a suboptimal
approach will be used to tackle the constrained non-linear
optimization problem. First, the problem will be solved for
the optimal linear receiver W for any given precoding matrix
G which satisfies the power constraint (8). Then, the optimal
precoding matrix G will be found by solving a closely related
constrained optimization problem.

III. OPTIMAL TRANSCEIVER DESIGN

For any given precoding matrix G which satisfies the power
constraint (8), the optimal linear receiver W that minimizes
the MSE function 𝐽(G,W) is the same as the MMSE
(Weiner) receiver [13], which is given by

W = 𝜎2
𝑥H

𝐻(𝜎2
𝑥HH𝐻 +R𝑛)

−1. (13)
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After substituting (13) into (11), the MSE function is obtained
as

𝐽(G) = 𝜎2
𝑥𝑡𝑟
{
I𝑁𝑆

− 𝜎2
𝑥H

𝐻(𝜎2
𝑥HH𝐻 +R𝑛)

−1H
}
. (14)

Note that H = H2GH1. Using the following matrix inversion
lemma [13]

(A+BCD)−1=A−1 −A−1B

×(DA−1B+C−1)−1DA−1, (15)

the MSE function (14) can be written as

𝐽(G) = 𝜎2
𝑥𝑡𝑟
{[

I𝑁𝑆
+ 𝜎2

𝑥H
𝐻R−1

𝑛 H
]−1}

. (16)

Substituting (3) and (12) into (16), the MSE function can be
expressed as

𝐽(G)=𝜎2
𝑥𝑡𝑟
{[

I𝑁𝑆
+ 𝜎2

𝑥H
𝐻
1 G𝐻H𝐻

2

×
(
𝜎2
1H2GG𝐻H𝐻

2 + 𝜎2
2I𝑁𝐷

)−1

H2GH1

]−1}
.(17)

Now the problem is reduced to find the optimal G that
minimize 𝐽(G) subject to the power constraint (8). Let us
introduce the singular value decomposition (SVD) of H1

H1 = U1Λ
1/2
1 V𝐻

1 (18)

where Λ1 = diag{Λ1,1 ⋅ ⋅ ⋅Λ1,𝑁𝑅
} is a diagonal matrix

with Λ1,1 ≥ ⋅ ⋅ ⋅ ≥ Λ1,𝑁𝑅
. We introduce the eigenvalue

decomposition of Σ as Σ = VΣΛΣV
𝐻
Σ where ΛΣ =

diag{ΛΣ,1 ⋅ ⋅ ⋅ΛΣ,𝑁𝑅
} with ΛΣ,1 ≥ ⋅ ⋅ ⋅ ≥ ΛΣ,𝑁𝑅

. The
columns of VΣ are the eigenvectors of Σ for the correspond-
ing eigenvalues. Then H2 can be rewritten as

H2 = ZΛ
1/2
Σ V𝐻

Σ (19)

where Z ≜ H2VΣΛ
−1/2
Σ . Then Z has the same distribution

as H𝑤 because H2VΣΛ
−1/2
Σ = H𝜔VΣ. Let’s assume that

the optimal precoding matrix G which minimizes (17) can be
expressed as

G = VΣΛ
1/2
𝐺 U𝐻

1 (20)

where Λ𝐺 = diag{Λ𝐺,1 ⋅ ⋅ ⋅Λ𝐺,𝑁𝑅
}. Using the matrix inver-

sion lemma (15), the MSE function (17) can be written as

𝐽(G)=𝜎2
𝑥𝑡𝑟
{[

I𝑁𝑆
+

𝜎2
𝑥

𝜎2
1

H𝐻
1

[
I𝑁𝑅

−
(
I𝑁𝑅

+
𝜎2
1

𝜎2
2

G𝐻H𝐻
2 H2G

)−1]
H1

]−1}
. (21)

Substituting (18) - (20) in (21), now the MSE function is given
by

𝐽(G)=𝜎2
𝑥𝑡𝑟
{[

I𝑁𝑆
+

𝜎2
𝑥

𝜎2
1

V1Λ
1/2
1 U𝐻

1

×
[
I𝑁𝑅

−D1

]
U1Λ

1/2
1 V𝐻

1

]−1}
(22)

where

D1 =
(
I𝑁𝑅

+
𝜎2
1

𝜎2
2

U1Λ
1/2
𝐺 Λ

1/2
Σ Z𝐻ZΛ

1/2
Σ Λ

1/2
𝐺 U𝐻

1

)−1

.

Using the SVD and trace properties, the MSE function (22)
can be simplified to

𝐽(G) = 𝜎2
𝑥𝑡𝑟
{[

I𝑁𝑆
+

𝜎2
𝑥

𝜎2
1

(
Λ1 −Λ

1/2
1 D2Λ

1/2
1

)]−1}
= 𝜎2

𝑥𝜎
2
1𝑡𝑟
{[

𝜎2
1I𝑁𝑆

+ 𝜎2
𝑥

(
Λ1 −Λ

1/2
1 D2Λ

1/2
1

)]−1}
(23)

where

D2 =
(
I𝑁𝑅

+
𝜎2
1

𝜎2
2

Λ
1/2
𝐺 Λ

1/2
Σ Z𝐻ZΛ

1/2
Σ Λ

1/2
𝐺

)−1

.

It can be seen from (23) that 𝐽(G) depends on Z, which is ran-
dom and unknown. In the following, we optimize 𝐸Z[𝐽(G)],
where 𝐸Z[.] indicates that the expectation is taken with respect
to the random matrix Z. Now 𝐸Z[𝐽(G)] can be expressed as

𝐸Z[𝐽(G)]=𝜎2
𝑥𝜎

2
1𝐸Z

[
𝑡𝑟
{[

𝜎2
1I𝑁𝑆

+ 𝜎2
𝑥

×
(
Λ1 −Λ

1/2
1 D2Λ

1/2
1

)]−1}]
(24)

where

D2 =
(
I𝑁𝑅

+
𝜎2
1

𝜎2
2

Λ
1/2
𝐺 Λ

1/2
Σ Z𝐻ZΛ

1/2
Σ Λ

1/2
𝐺

)−1

.

Now the work is left to determine the diagonal elements Λ𝐺

of precoder matrix G. The optimal precoder allocates power
according to the eigenmodes of H1H

𝐻
1 and Σ.

Direct minimization of (24) for the optimal power allocation
is difficult. In the following, the lower bound of the MSE
is used together with the power constraint (8) to derive
the suboptimal power allocation for the precoder matrix G.
Assume that the MSE function is convex in Z𝐻Z and has the
following lower bound using Jensen’s inequality

𝐽𝐿(G) = 𝜎2
𝑥𝜎

2
1𝑡𝑟
{[

𝜎2
1I𝑁𝑆

+ 𝜎2
𝑥Λ1 − 𝜎2

𝑥Λ
1/2
1 D3Λ

1/2
1

]−1}
where

D3 =
(
I𝑁𝑅

+
𝜎2
1

𝜎2
2

Λ
1/2
𝐺 Λ

1/2
Σ 𝐸Z[Z

𝐻Z]Λ
1/2
Σ Λ

1/2
𝐺

)−1

.

Now the MSE function is simplified to

𝐽𝐿(G) = 𝜎2
𝑥𝜎

2
1𝑡𝑟
{[

𝜎2
1I𝑁𝑆

+ 𝜎2
𝑥Λ1

− 𝜎2
𝑥Λ1

(
I𝑁𝑅

+
𝜎2
1

𝜎2
2

Λ𝐺ΛΣ𝑁𝐷

)−1]−1}
(25)

where 𝐸Z(Z
𝐻Z) = 𝑁𝐷I𝑁𝑅

. Inserting (18) and (20) into (8),
the power constraint for the relay node can be expressed as

𝑝(G)=𝑡𝑟
{
VΣΛ

1/2
𝐺 U𝐻

1

(
𝜎2
𝑥U1Λ1U

𝐻
1 + 𝜎2

1I𝑁𝑅

)
×U1Λ

1/2
𝐺 V𝐻

Σ

}
≤ 𝑃𝑟. (26)

Using the SVD and trace properties, the power constraint (26)
can be simplified to

𝑝(G) = 𝑡𝑟
{(

𝜎2
𝑥Λ1 + 𝜎2

1I𝑁𝑅

)
Λ𝐺

}
≤ 𝑃𝑟. (27)
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Fig. 2. BER versus 𝑆𝑁𝑅2 while 𝑆𝑁𝑅1 = 20𝑑𝐵.

From (25) and (27), we can have the following constrained
optimization problem.

min 𝐽𝐿(G) = 𝜎2
𝑥

𝑁𝑆∑
𝑖=1

𝜎2
1𝑁𝐷ΛΣ,𝑖Λ𝐺,𝑖 + 𝜎2

2

(𝜎2
𝑥Λ1,𝑖 + 𝜎2

1)𝑁𝐷ΛΣ,𝑖Λ𝐺,𝑖 + 𝜎2
2

(28)

𝑠.𝑡. 𝑝(G) =

𝑁𝑆∑
𝑖=1

(𝜎2
𝑥Λ1,𝑖 + 𝜎2

1)Λ𝐺,𝑖 ≤ 𝑃𝑟. (29)

Using the Karush-Kuhn-Tucker (KKT) conditions [14], the
optimal diagonal elements of Λ𝐺,𝑖 are obtained as

Λ𝐺,𝑖 =
1

𝐷4

(√
𝜎2
𝑥𝜎

2
2𝑁𝐷Λ1,𝑖ΛΣ,𝑖

𝜇(𝜎2
𝑥Λ1,𝑖 + 𝜎2

1)
− 𝜎2

2

)+

(30)

where (𝑥)+ = max(𝑥, 0), 𝐷4 = (𝜎2
𝑥Λ1,𝑖 + 𝜎2

1)𝑁𝐷ΛΣ,𝑖 and 𝜇
should be chosen to meet the power constraint (29). Inserting
(30) and (18)-(20) into (13) leads to obtain the optimal receiver
matrix W.

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
scheme by numerical examples. We simulate the MIMO relay
system with 𝑁𝑆 = 𝑁𝑅 = 𝑁𝐷=4. The channel matrices H1

and H𝜔 are generated as complex Gaussian variables with
zero mean and unit variance and the symbols are generated
from QPSK constellation.

The elements of covariance matrix Σ of H2 is generated
by Σ𝑖,𝑗 = 𝑗0(△𝜋∣𝑖− 𝑗∣) [12], where 𝑗0(.) is the zeroth order
Bessel function of the first kind, △ the angle of fading spread.
We consider the angle spread as △ = 5𝑜. The SNRs for the
source-relay and relay-destination links are defined as follows
𝑆𝑁𝑅1 =

𝜎2
𝑥

𝜎2
1

, 𝑆𝑁𝑅2 = 𝑃𝑟

𝑁𝑅𝜎2
2

.
We compare the performance of the proposed scheme with

that of the full CSI scheme [6], the MMSE-COV scheme
[11], and the traditional AF scheme. The full CSI scheme,
also known as JMMSE [6] provides the lower-bound of the
proposed scheme. Similar to [11] for MMSE-COV scheme,
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Fig. 3. BER versus 𝑆𝑁𝑅1 while 𝑆𝑁𝑅2 = 20𝑑𝐵.

the MIMO relay system is simulated with 𝑁𝑆 = 𝑁𝑅 =4 and
𝑁𝐷=5. In the conventional AF scheme, the relay precoder is
obtained by G = 𝛼I, where 𝛼 is determined to meet the power
constraint (29).

Fig.2 shows the performance of MMSE schemes in terms of
BER versus 𝑆𝑁𝑅2 while fixing 𝑆𝑁𝑅1 = 20dB. The proposed
scheme shows better BER performance over all range of
𝑆𝑁𝑅2 than the MMSE-COV scheme and the AF scheme. For
high 𝑆𝑁𝑅2, the BER performance of the proposed scheme is
closer to that of the full CSI scheme.

Fig.3 shows the BER performance for various 𝑆𝑁𝑅1 while
fixing 𝑆𝑁𝑅2= 20dB. In Fig.3 the proposed scheme perfor-
mance is similar to the MMSE-COV and AF schemes in low
𝑆𝑁𝑅1 (e.g. 𝑆𝑁𝑅1 < 5dB) because the received signal at the
relay is impaired by the noise. For high 𝑆𝑁𝑅1, the proposed
scheme shows better BER performance than the MMSE-COV
scheme and the conventional AF scheme. In other words the
proposed scheme outperforms the MMSE-COV scheme and
the conventional AF scheme.

V. CONCLUSION

We derived the optimal structure of the non-regenerative
MIMO relay matrix to minimize the MSE of the symbol
estimation at the destination with the assumption that the
covariance feedback of the relay-destination link is available
at the relay. We assumed that the relay knows the full CSI of
the source-relay link. Simulation results show that the derived
optimal solution which minimize the upper-bound of the MSE
is achieved and the simulation results demonstrate that the
proposed scheme has better performance in terms of BER as
compared to the conventional MSE schemes.
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