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Abstract—In this paper, we develop the optimal transmit beam-
forming vector and the relay amplifying factors for a multiple-
input multiple-output (MIMO) relay communication system with
distributed relay nodes. Using the optimal beamforming vector,
an iterative joint source and relay beamforming algorithm is
developed to minimize the mean-squared error (MSE) of the
signal waveform estimation. Numerical simulations are carried
out to demonstrate the performance of the proposed joint source
and relay beamforming algorithm.

Index Terms—Multiple-input multiple-output (MIMO), relay
networks, parallel relay, beamforming.

I. INTRODUCTION

In order to establish a reliable wireless communication link,

one needs to compensate for the effects of signal fading and

shadowing. An efficient way to address this issue is to transmit

signals through one or multiple relays [1]-[4]. Introducing mul-

tiple antennas at transmitting and receiving ends, which we call

multiple-input multiple-output (MIMO) relay communication

systems, can provide further improvement in terms of both

spectral efficiency and link reliability [3]-[4]. Many works

have studied the optimal relay amplifying matrix for MIMO

relay channels. In [5] and [6], the optimal relay amplifying

matrix is designed to maximize the mutual information (MI)

between the source node and the destination node, assuming

that the source covariance matrix is an identity matrix. In [7]

and [8], the optimal relay amplifying matrix was designed

to minimize the mean-squared error (MSE) of the signal

waveform estimation at the destination.

However, few research have studied the jointly optimal

source precoding matrix and the relay amplifying matrix

for the source-relay-destination channel. In [9], the source

covariance matrix and the relay amplifying matrix were jointly

designed to maximize the source-destination MI. In [10],

a unified framework was developed to jointly optimize the

source precoding matrix and the relay amplifying matrix for

a broad class of objective functions. All the works [3]-[10]

focus on MIMO relay systems with a single relay node at each

hop. In [11] and [12], the optimal source and relay matrices

are designed for a multihop MIMO relay network with serial

relays.

MIMO relay systems with multiple parallel relay nodes have

been investigated in [13]-[15]. In [14], the authors investigated
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Fig. 1. Block diagram of a distributed MIMO relay communication system.

the jointly optimal structure of the source precoding matrix

and the relay amplifying matrices considering a linear minimal

MSE (MMSE) receiver at the destination. In [15], a non-linear

receiver is used to design the matrices. On the other hand, a

distributed relay network is investigated in [16] where multiple

users and relays, each having a single antenna, are considered.

In this paper, we propose a jointly optimal source and

relay beamforming algorithm which minimizes the MSE of the

signal waveform estimation for single-antenna relay nodes in a

MIMO relay communication system. In contrast to [13]-[15],

where the receive power constraint at the destination node is

considered, we consider in this paper the sum transmit power

constraint throughout all relay nodes.

The rest of this paper is organized as follows. The system

model is described in Section II. In Section III, we study the

jointly optimal source and relay algorithm. Section IV shows

the simulation results. Conclusions are drawn in Section V.

II. SYSTEM MODEL

Fig. 1 illustrates a two-hop MIMO relay communication

system consisting of one source node, K parallel relay nodes,

and one destination node. We assume that the source and

the destination nodes have Ns and Nd antennas, respectively,

whereas each relay node has a single antenna. Due to its merit

of simplicity, we consider the amplify-and-forward scheme at

each relay. The communication process between the source
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and destination nodes is completed in two time slots. In the

first time slot, the modulated symbol s is linearly precoded as

x = bs (1)

where b is an Ns × 1 transmit beamforming vector. The

precoded vector x is then transmitted to the relay nodes. The

received signal at the ith relay node can be written as

yr,i = hsr,ix+ vr,i, i = 1, · · · , K (2)

where hsr,i is the 1×Ns channel vector between the source

and the ith relay node, yr,i and vr,i are the received signal and

the additive Gaussian noise at the ith relay node, respectively.

In the second time slot, the source node is silent, while each

relay node transmits the amplified signal to the destination

node as

xr,i = fiyr,i, i = 1, · · · , K (3)

where fi is the amplifying coefficient at the ith relay node. The

received signal vector at the destination node can be written

as

yd =
K∑

i=1

hrd,ixr,i + vd (4)

where hrd,i is the Nd×1 channel vector between the ith relay

and the destination node, yd and vd are the received signal

and the additive Gaussian noise vectors at the destination node,

respectively.

Substituting (1)-(3) into (4), we have

yd =
K∑

i=1

(hrd,ifihsr,ibs+ hrd,ifivr,i) + vd

= HrdFHsrbs+HrdFvr + vd (5)

where we define

Hsr ,
[
hT
sr,1,h

T
sr,2, · · · ,hT

sr,K

]T

Hrd , [hrd,1,hrd,2, · · · ,hrd,K ]

F , diag
(
[f1, f2, · · · , fK ]T

)

vr ,
[
vr,1, vr,2, · · · , vr,K

]T
.

Here (·)T denotes the matrix (vector) transpose, diag(a) stands

for a diagonal matrix with the vector a as the main diagonal

and zero elsewhere, Hsr is a K×Ns channel matrix between

the source node and all relay nodes, Hrd is an Nd×K channel

matrix between all relay nodes and the destination node, and

vr is obtained by stacking the noise terms at all the relays.

We assume that all noises are independent and identically

distributed (i.i.d.) with zero mean and unit variance.

The diagram of the equivalent MIMO relay system de-

scribed by (5) is shown in Fig. 2. The received signal vector

at the destination node can be equivalently written as

yd = h̄s+ v̄

where we define h̄ , HrdFHsrb as the effective channel

vector of the source-relay-destination link, and v̄ , HrdFvr+
vd as the equivalent noise vector.
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Fig. 2. Block diagram of the equivalent MIMO relay system.

III. OPTIMAL SOURCE AND RELAY DESIGN

In this section we develop the optimal transmit beamforming

vector b and the relay amplifying matrix F to minimize the

MSE of the signal waveform estimation. Using a linear re-

ceiver, the estimated signal waveform vector at the destination

node is given by

ŝ = wHyd (6)

where w is an Nd × 1 weight vector, and (·)H denotes the

matrix (vector) Hermitian transpose.

The MMSE approach tries to find a weight vector w that

minimizes the statistical expectation of the signal waveform

estimation given by

MSE = E
[
|ŝ− s|2

]
(7)

where E[·] denotes statistical expectation. We assume that the

source signal satisfies E[|s|2] = 1. Substituting (6) into (7),

we find that the w which minimizes (7) can be written as

w = (h̄h̄H + C̄)−1h̄ (8)

where (·)−1 denotes the matrix inversion, and C̄ is the

equivalent noise covariance matrix given by

C̄ = HrdFF
HHH

rd + INd
. (9)

Here In is an n× n identity matrix.

Substituting (8) back into (7), we obtain the minimal MSE

as a function of b and F, given by

MSE = 1− h̄H(h̄h̄H + C̄)−1h̄. (10)

Applying the matrix inversion lemma (A + BCD)−1 =
A−1−A−1B(DA−1B+C−1)−1DA−1, (10) can be written

as

MSE =
(
1 + h̄HC̄−1h̄

)−1

. (11)

From (3), the total transmission power consumed by all relay

nodes can be expressed as

tr
(
E[xrx

H
r ]

)
= tr

(
F

[
Hsrbb

HHH
sr + IK

]
FH

)
(12)

where tr(·) stands for matrix trace.

Using (12), the joint source and relay optimization problem

can be formulated as

min
F,b

MSE (13)

s.t. bHb ≤ Ps (14)

tr
(
F

[
Hsrbb

HHH
sr+IK

]
FH

)
≤ Pr (15)

where (14) is the transmit power constraint at the source node,

and (15) is the sum transmit power constraint throughout all

relay nodes. Here Pr > 0 and Ps > 0 are the corresponding
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power budget. The problem (13)-(15) is highly nonconvex and

a closed-form expression of the optimal F and b is intractable.

In this paper, we develop an iterative algorithm to optimize F

and b.

A. Optimal Relay Factors

For given beamforming vector b satisfying (14), we opti-

mize the relay matrix F by solving the following optimization

problem

min
F

MSE (16)

s.t. tr
(
F

[
Hsrbb

HHH
sr+IK

]
FH

)
≤ Pr. (17)

Let us introduce

h̄s , Hsrb. (18)

Substituting (18) back into (16)-(17), we can rewrite the

optimization problem as

min
F

[
1+h̄H

s FHHH
rd(HrdFF

HHH
rd +INd

)−1HrdFh̄s

]−1

(19)

s.t.

K∑

i=1

|fi|2
(
|h̄s,i|2 + 1

)
≤ Pr (20)

where h̄s,i stands for the ith element of h̄s. Problem (19)-(20)

is equivalent to

max
F

h̄H
s FHHH

rd(HrdFF
HHH

rd + INd
)−1HrdFh̄s (21)

s.t.

K∑

i=1

|fi|2
(
|h̄s,i|2 + 1

)
≤ Pr. (22)

Since the objective function (21) is still a complicated

function of F, in the following, we optimize an upper-bound

of (21). The problem can be rewritten as

max
F

h̄H
s FHHH

rdHrdFh̄s (23)

s.t.

K∑

i=1

|fi|2
(
|h̄s,i|2 + 1

)
≤ Pr. (24)

Let f , [f1, f2, · · · , fK ]T denote the diagonal elements of F

and define Ds , diag(h̄s), so that

Fh̄s = Dsf . (25)

Now by substituting (25) in (23)-(24), we can express the

maximization problem as follows

max
f

fHDH
s HH

rdHrdDsf (26)

s.t. fHAf ≤ Pr (27)

where A , DsD
H
s + IK . Defining f̄ , A

1
2 f , problem (26)-

(27) can be equivalently written as

max
f̄

f̄HA−H

2 DH
s HH

rdHrdDsA
− 1

2 f̄

s.t. f̄H f̄ ≤ Pr.

Introducing Z , A−H

2 DH
s HH

rdHrdDsA
− 1

2 , we obtain

max
f̄

f̄HZf̄ (28)

s.t. f̄H f̄ ≤ Pr. (29)

The Lagrangian of the optimization problem (28)-(29) can

be written as

L = −f̄HZf̄ + µ1(f̄
H f̄ − Pr) (30)

where µ1 ≥ 0 is the Lagrangian multiplier associated with the

constraint (29). Taking the derivative of L with respect to f̄H

and letting the result be 0, it can be shown that the optimal f̄

satisfies the following equation

Zf̄ = µ1f̄ .

Thus f̄ =
√
Preig(Z), where eig(Z) stands for the principal

eigenvector of Z.

B. Joint Source and Relay Optimization

For a fixed F, problem (13) - (15) can be expressed as below

to optimize the beamforming vector b

min
b

(
1 + bHΨ1b

)−1

(31)

s.t. bHb ≤ Ps (32)

bHΨ2b ≤ P̄r (33)

where we define

Ψ1 , HH
srF

HHH
rdHrdFHsr

Ψ2 , HH
srF

HFHsr

P̄r , Pr − tr(FFH).

The problem (31)-(33) is equivalent to

max
b

bHΨ1b (34)

s.t. bHb ≤ Ps (35)

bHΨ2b ≤ P̄r. (36)

The Lagrangian function associated with the problem (34)-

(36) can be written as

L = −bHΨ1b+ µ2(b
Hb− Ps) + µ3(b

HΨ2b− P̄r). (37)

Here µ2 ≥ 0 and µ3 ≥ 0 are the Lagrangian multipliers

associated with the constraints (35) and (36), respectively. The

problem (34)-(36)can be solved by using KKT conditions [17]

that can be expressed as

∂L
∂bH

= 0 (38)

µ2(b
Hb− Ps) = 0 (39)

µ3(b
HΨ2b− P̄r) = 0 (40)

bHb ≤ Ps (41)

bHΨ2b ≤ P̄r (42)

µ2 ≥ 0, µ3 ≥ 0. (43)
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Now we set out to solve (38)-(43). If µ2 > 0 and µ3 = 0,

then the optimization problem (34)-(36) can be rewritten as

max
b

bHΨ1b (44)

s.t. bHb = Ps. (45)

Thus we solve b as

b =
√
Ps eig(Ψ1). (46)

If b in (46) satisfies the constraint (36), then (46) is the optimal

solution to the problem (34)-(36). Otherwise, if µ3 > 0 and

µ2 = 0, then the optimization problem (34)-(36) can be

rewritten as

max
b

bHΨ1b (47)

s.t. bHΨ2b = P̄r. (48)

Then we solve b as

b = α eig(Ψ−1

2
Ψ1) (49)

where α =
√
P̄r/(eig

H(Ψ−1

2
Ψ1)Ψ2eig(Ψ

−1

2
Ψ1)). If b in

(49) satisfies the constraint (35), then (49) is the optimal

solution to the problem (34)-(36).

Finally, if µ2 > 0 and µ3 > 0, then we have from (38) that

Ψ1b = µ2b+ µ3Ψ2b

which can be equivalently written as

(

INs
+

µ3

µ2

Ψ2

)−1

Ψ1b = µ2b. (50)

Thus the optimal b can be obtained as

b =
√
Ps eig((INs

+ λΨ2)
−1Ψ1) (51)

where λ > 0 can be found by substituting (51) back into (48)

and solving the obtained nonlinear equation.

Now the original problem (13)-(15) can be solved in an

iterative fashion. In each iteration, we first fix b and update

f by solving the problem (26)-(27). Then we update b with

fixed F through solving the problem (34)-(36). The procedure

of the proposed iterative algorithm is listed in Table I, where

ε is a small positive number close to zero. Since each update

may only reduce or maintain, but can not increase the MSE,

a monotonic convergence of this iterative algorithm follows

directly from this observation.

TABLE I
PROCEDURE OF SOLVING THE PROBLEM (13)-(15) BY THE PROPOSED

ITERATIVE ALGORITHM

1) Initialize the algorithm with random b
(0); Set n = 0.

2) Solve the subproblem (26)-(27) using given b(n) to obtain f (n).
3) Solve the subproblem (34)-(36) using F(n) to obtain b(n).
4) if ‖b(n+1)

− b(n)
‖ ≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2.
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Fig. 3. Example 1. BER versus SNRs with varying K . Ns = N
d
= 3,

SNRr = 20dB.

IV. SIMULATIONS

In this section, we study the performance of the proposed

optimal joint source and relay beamforming algorithm for dis-

tributed MIMO relay systems. All simulations are conducted in

a flat Rayleigh fading environment using BPSK constellations,

and the noises are i.i.d. Gaussian random variables with zero

mean and unit variance. The channel matrices have zero-mean

entries with variances σ2

s/Ns and σ2

r/K for Hsr and Hrd,

respectively. We vary the signal-to-noise ratio (SNR) in the

source-to-relay link SNRs while fixing the SNR in the relay-

to-destination link SNRr to 20dB. We transmit 1000 randomly

generated bits in each channel realization, and the bit-error-

rate (BER) results are averaged through 200 random channel

realizations.

In the first example, we study the effect of the number of

relays to the system BER performance using the proposed

algorithm. We choose Ns = Nd = 3. Fig. 3 shows the BER

performance with K = 2, 3, and 5. It can be seen that at BER

= 10−3, we achieve a 2.5-dB gain by increasing from K = 2
to K = 5.

In the second example, we simulate a distributed MIMO

relay system with Ns = Nd = 5. Fig. 4 shows the BER

performance with K = 2, 3, and 5. It can be seen that at BER

= 10−3, we achieve a 2-dB gain by increasing from K = 2
to K = 5.

V. CONCLUSIONS

In this paper, we have developed the optimal source and

relay beamforming vectors for MIMO relay communication

systems with distributed relay nodes. The proposed algorithm

minimizes the MSE of the signal waveform estimation. Sim-

ulation results demonstrate the performance of the algorithm.
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