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Abstract—In this paper, we investigate the challenging prob-
lem of joint source and relay optimization for two-way linear
non-regenerative multiple-input multiple-output (MIMO) relay
communication systems. First, a novel relay amplifying matrix is
proposed which significantly reduces the computational complex-
ity of the optimal relay design with only a marginal performance
degradation. Interestingly, we show that the proposed relay
matrix is indeed optimal for some special cases. Second, a semi-
definite programming (SDP)-based source matrices optimization
algorithm is developed. Then the source and relay optimization
algorithms are carried out iteratively to minimized the sum mean-
squared error of the signal waveform estimation in a two-way
MIMO relay system. The performance of the proposed algorithm
is demonstrated by numerical simulations.

I. INTRODUCTION

In a two-way relay communication system, two source

nodes exchange their information through an assisting relay

node. By resorting to the idea of analog network coding

[1], the information exchange can be completed in two time

slots with a half-duplex relay. This leads to a high spectral

efficiency.

When nodes in the relay network are equipped with multiple

antennas, we have a two-way multiple-input multiple-output

(MIMO) relay system [2]-[4]. Distributed space-time coding

has been designed in [5] for two-way relay communication

with multiple single-antenna relay nodes. For a two-way (and

in general N -way) relay system with a multi-antenna relay

node and single-antenna source nodes, the relay beamforming

issue has been investigated in [6] and [7]. For two-way MIMO

relay systems, the optimal relay and source matrices have

been developed in [2] and [8] to maximize the two-way sum

mutual information (SMI). A minimal sum mean-squared error

(MSMSE) based two-way MIMO relay system was proposed

in [4]. An algebraic norm-maximization relaying algorithm has

been developed in [9]. Two-way relay communication in a

multiuser scenario was recently studied in [10].

In this paper, we first propose a new simplified relay

amplifying matrix design which significantly reduces the

computational complexity of the optimal relay design in [2],

[4] with only a marginal performance degradation. This is

important for practical relay systems. Interestingly, we show

that the proposed relay matrix is indeed optimal for some

special cases. Second, a semi-definite programming (SDP)-

based source matrices optimization algorithm is developed in

this paper. Then the source and relay optimization algorithms

are carried out iteratively to minimized the SMSE of the signal

waveform estimation in a two-way MIMO relay system.

Numerical simulations are carried out to study the perfor-

mance of the proposed source and relay matrices design algo-

rithm. It is shown that the proposed iterative algorithm con-

verges in only a few iterations, which is important for practical

two-way relay systems. We also show that the MSMSE-based

relay algorithm has a better bit-error-rate (BER) performance

compared with the algorithm using the maximal SMI (MSMI)

criterion [2].

The rest of this paper is organized as follows. In Section II,

we introduce the model of a two-way linear non-regenerative

MIMO relay communication system. The source and relay

matrices design algorithms are developed in Section III. In

Section IV, we show some numerical examples. Conclusions

are drawn in Section V.

II. SYSTEM MODEL

We consider a three-node MIMO communication system

where nodes 1 and 2 exchange information with the aid of one

relay node. We assume that both nodes 1 and 2 are equipped

with N antennas, and the relay node has M antennas. The

information exchange between nodes 1 and 2 is completed in

two time slots. In the first time slot, nodes 1 and 2 concurrently

transmit, and the signal vector from node i is xi = Bisi,

i = 1, 2, where si is the N × 1 source signal vector, and Bi

is the N × N source precoding matrix at node i. The signal

vector yr received at the relay node can be written as

yr = Hr,1B1s1 +Hr,2B2s2 + vr (1)

where Hr,i, i = 1, 2, is the M × N channel matrix between

the relay node and node i, and vr is the M × 1 noise vector

at the relay node.

In the second time slot, the relay node linearly amplifies

yr with an M × M matrix F and broadcasts the amplified

signal vector xr = Fyr to nodes 1 and 2. The effective

received signal vectors at two nodes after the removal of the

self-interference is given by

y1 = H1,rFHr,2B2s2 +H1,rFvr + v1 , H̃1s2 + ṽ1 (2)

y2 = H2,rFHr,1B1s1 +H2,rFvr + v2 , H̃2s1 + ṽ2 (3)

where Hi,r, i = 1, 2, is the N ×M channel matrix between

node i and the relay, vi, i = 1, 2, is the N × 1 noise vector

at node i, H̃i is the equivalent MIMO channel seen at node

i, and ṽi is the equivalent noise vector at node i with

H̃1 , H1,rFHr,2B2 ṽ1 , H1,rFvr + v1

H̃2 , H2,rFHr,1B1 ṽ2 , H2,rFvr + v2 .
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We assume that the source signal vectors satisfy E[sis
H
i ] =

IN , i = 1, 2, and all noises are independent and identically

distributed (i.i.d.) additive white Gaussian noise (AWGN) with

zero mean and unit variance. Here E[·] stands for the statistical

expectation, IN is an N×N identity matrix, and (·)H denotes

matrix (vector) Hermitian transpose. We also assume that the

relay node knows the channel state information (CSI) of Hr,i

and Hi,r, i = 1, 2. The relay node performs the optimization

of F, B1, B2, and then transmits the information of matrices

Bi and Hi,rFHr,iBi to node i, i = 1, 2. In this paper, we do

not make any assumption on the reciprocity of Hi,r and Hr,i,

i = 1, 2, and the statistical property of channel matrices (e.g.

independency between H1,r and H2,r).

Due to their lower computational complexity, linear re-

ceivers are used at nodes 1 and 2 to retrieve the transmitted

signals sent from the other node. The estimated signal wave-

form vector is given by ŝ1 = WH
2 y2 and ŝ2 = WH

1 y1, where

W1 and W2 are N ×N weight matrices. From (2) and (3),

the MSE matrix of the signal waveform estimation, denoted as

E2 = E
[
(ŝ1−s1)(ŝ1−s1)

H
]

and E1 = E
[
(ŝ2−s2)(ŝ2−s2)

H
]
,

can be written as

Ei=(WH
i H̃i−INb

)(WH
i H̃i−INb

)H+WH
i CṽiWi, i = 1, 2

(4)

where Cṽi , E
[
ṽiṽ

H
i

]
= Hi,rFF

HHH
i,r + IN , i = 1, 2, is

the equivalent noise covariance matrix at node i.
The weight matrix of the optimal linear receiver which

minimizes tr(Ei) is the Wiener filter given by

W
opt
i = (H̃iH̃

H
i +Cṽi)

−1H̃i, i = 1, 2 (5)

where tr(·) and (·)−1 stands for matrix trace and matrix

inversion, respectively. The weight matrices in (5) are com-

puted at the relay node and forwarded to the corresponding

destination node after the optimal F, B1, B2 are calculated.

By substituting (5) back into (4), the MSE matrix of the signal

waveform estimation at two nodes can be written as

Ei =
[
IN + H̃H

i C−1
ṽi

H̃i

]
−1

, i = 1, 2. (6)

III. PROPOSED RELAY AND SOURCE MATRICES

The joint source and relay optimization problem for two-

way MIMO relay systems is written as

min
B1,B2,F

tr(E1 +E2) (7)

s.t. tr

(

F

(
2∑

i=1

Hr,iBiB
H
i HH

r,i + IM

)

FH

)

≤ Pr (8)

tr
(
BiB

H
i

)
≤ Pi, i = 1, 2 (9)

where (8) and (9) are the transmission power constraints at the

relay node and two source nodes, respectively, and Pr , P1, P2

are the corresponding power budget available at each node.

The problem (7)-(9) is nonconvex and a globally optimal

solution of F, B1, B2 is difficult to obtain with a reasonable

computational complexity (non-exhaustive searching). In this

paper, we develop an iterative algorithm to optimize (7).

For any feasible B1 and B2 satisfying (9), the relay ampli-

fying matrix optimization problem is given by

min
F

tr(E1 +E2) (10)

s.t. tr

(

F

(
2∑

i=1

Hr,iBiB
H
i HH

r,i + IM

)

FH

)

≤ Pr. (11)

First we consider the scenario where M ≥ 2N . The case

of M < 2N will be discussed later. Let us introduce the

following singular value decompositions (SVDs)

H1 , [Hr,2B2, Hr,1B1] = U1Σ1V
H
1 (12)

H2 ,
[
HT

1,r, H
T
2,r

]T
= U2Σ2V

H
2 (13)

where (·)T denotes matrix (vector) transpose, the dimensions

of U1, Σ1, V1 are M×2N , 2N×2N , 2N×2N , respectively,

and the dimensions of U2, Σ2, V2 are 2N × 2N , 2N × 2N ,

M × 2N , respectively. It has been proven in [4] that when

M ≥ 2N , the optimal F has the structure of

F = V2AUH
1 . (14)

Using (14), the optimization problem (10)-(11) becomes

min
A

2∑

i=1

tr
([

IN +V1,iΣ1A
HΣ2U

H
2,i

×
(
U2,iΣ2AAHΣ2U

H
2,i+IN

)
−1

U2,iΣ2AΣ1V
H
1,i

]
−1)

(15)

s.t. tr
(
A(Σ2

1 + I2N )AH
)
≤ Pr (16)

where U2 =
[
UT

2,1, UT
2,2

]T
, VH

1 =
[
VH

1,1,V
H
1,2

]
, and the

dimensions of U2,i and V1,i, i = 1, 2, are all N × 2N . In

general, the problem (15)-(16) is nonconvex and a globally

optimal solution is difficult to obtain with a reasonable compu-

tational complexity (non-exhaustive searching). We can resort

to numerical methods, such as the projected gradient algorithm

[11] to find (at least) a locally optimal solution of (15)-(16).

For systems with M ≥ 2N , since the dimension of A is

smaller than F, solving the problem (15)-(16) has a smaller

computational complexity than solving the problem (10)-(11).

For relay systems with M < 2N , we directly solve the

problem (10)-(11) using the projected gradient algorithm to

obtain (at least) a locally optimal solution of F.

A. Simplified Relay Matrix Design

In this section, we focus on relay systems with M ≥ 2N
and develop a relay amplifying matrix design algorithm which

is suboptimal for general cases, but has a much lower computa-

tional complexity than directly solving the problem (15)-(16).

Let us introduce

Σ2A =
[
UH

2,1, U
H
2,2

]
[
C1

C2

]

= UH
2,1C1 +UH

2,2C2 (17)

where C1 and C2 are N × 2N matrices. Note that (17)

does not lose any generality since
[
UH

2,1, UH
2,2

]
= UH

2 is
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a unitary matrix. Substituting (17) back into (15), we obtain

that U2,iΣ2A = Ci, i = 1, 2, and thus

Ei=
[
IN+V1,iΣ1C

H
i

(
CiC

H
i +IN

)
−1
CiΣ1V

H
1,i

]
−1

, i = 1, 2.

(18)

Interestingly, it can be seen from (18) that Ei is only a function

of Ci, i = 1, 2. In other words, the optimization variables are

decoupled for E1 and E2.

Let us introduce the SVDs of

Σ1V
H
1,i = PiΠiR

H
i , i = 1, 2 (19)

where Πi, Ri, i = 1, 2, are N×N matrices, and Pi, i = 1, 2,

are 2N ×N matrices. Based on (18) and (19), we chose Ci

to have the SVD of

Ci = Uci∆iP
H
i , i = 1, 2 (20)

where ∆i is an N×N diagonal eigenvalue matrix and Uci is

an N×N unitary matrix which is irrelevant to (18) and will be

determined in the constraint function (16) as explained later.

The reason of using (20) is that for any B1 and B2 in (12),

one can always have B̄1 = B1R2 and B̄2 = B2R1 such that

the objective function (15) with B̄1 and B̄2 (i.e., Ei becomes

RH
i EiRi, i = 1, 2) is equal to

2∑

i=1

tr
([

IN+ΠiP
H
i CH

i

(
CiC

H
i +IN

)
−1

CiPiΠi

]
−1)

. (21)

It can be shown similar to [12] that the optimal Ci for (21) are

given by (20). In this case, E1 and E2 in (21) are diagonalized

by C1 and C2 respectively as Ei =
[
IN + Πi∆i

(
∆2

i +

IN
)
−1

∆iΠi

]
−1

, i = 1, 2, and the objective function (15) can

be written as

2∑

i=1

tr
([
IN +Πi∆i

(
∆2

i + IN
)
−1

∆iΠi

]
−1)

. (22)

Now we consider the power constraint (16). From (17), A

is given by

A = Σ−1
2 UH

2

[
CT

1 , C
T
2

]T
. (23)

Substituting (20) into (23), which is then substituted back into

(16), the transmission power consumed by the relay node can

be written as

tr
(
A(Σ2

1 + I2N )AH
)
=

tr
(
Σ−1

2 UH
2 bd(Uc1∆1,Uc2∆2)Φ

×bd(∆1U
H
c1 ,∆2U

H
c2)U2Σ

−1
2

)
(24)

where bd(·) stands for a block diagonal matrix, and Φ ,
[
P1, P2

]H
(Σ2

1 + I2N )
[
P1, P2

]
. From (22) and (24), the

relay amplifying matrix optimization problem (15)-(16) is

converted to the following problem

min
∆1,∆2,Uc1

,Uc2

2∑

i=1

tr
([
IN +Π2

i∆
2
i

(
∆2

i + IN
)
−1]−1)

(25)

s.t. tr
(
Σ−1

2 UH
2 bd(Uc1∆1,Uc2∆2)Φ

×bd(∆1U
H
c1 ,∆2U

H
c2)U2Σ

−1
2

)
≤ Pr (26)

UH
ciUci = IN , i = 1, 2 (27)

δi,n ≥ 0, i = 1, 2, n = 1, · · · , N (28)

where δi,n, i = 1, · · · , N , denotes the nth main diagonal

element of ∆i, i = 1, 2.

Note that although the structure of Ci in (20) is optimal for

the objective function (15), we can not prove the optimality

of (20) for the constraint function (16). This is the reason

that this relay amplifying matrix design is suboptimal for

general cases. However, compared with the problem (15)-(16),

the dimension of optimization variables in the problem (25)-

(28) has reduced from 8N2 real numbers to 4N2 + 2N real

numbers, which is significant especially when N is large.

It will be shown in Section IV that the suboptimal design

by solving (25)-(28) has only a marginal increase of MSE

compared with the optimal algorithm through solving (15)-

(16). Such performance-complexity tradeoff is very important

for practical two-way MIMO relay systems.

The problem (25)-(28) is nonconvex due to the unitary

matrix constraints in (27). Before we develop a numerical

method to solve this problem, let us have some insights

into the structure of this suboptimal relay amplifying matrix.

Interestingly, we will show that for two special cases, the

suboptimal relay matrix is indeed optimal. By substituting (20)

into (23), which is then substituted back into (14), we obtain

F = V2Σ
−1
2 UH

2

[
Uc1∆1 0

0 Uc2∆2

][
PH

1

PH
2

]

UH
1 . (29)

We can also show from (19) that
[
PH

1

PH
2

]

UH
1 =

[
Π−1

1 RH
1 0

0 Π−1
2 RH

2

][
V1,1

V1,2

]

Σ1U
H
1 . (30)

Finally, by substituting (30) back into (29), we can equiva-

lently rewrite the relay amplifying matrix as

F=V2Σ
−1
2 UH

2

×
[
Uc1∆1Π

−1
1 RH

1 0

0 Uc2∆2Π
−1
2 RH

2

][
V1,1

V1,2

]

Σ1U
H
1

,F3F2F1 (31)

where

F3 = V2Σ
−1
2 UH

2

F2 =

[
Uc1∆1Π

−1
2 RH

2 0

0 Uc2∆2Π
−1
1 RH

1

]

F1 =

[
V1,1

V1,2

]

Σ1U
H
1 . (32)

Interestingly, it can be seen from (31) and (32) that the relay

amplifying matrix is composed of three linear filters. First, we

know from (12) that F1 = HH
1 , and hence F1 is a matched-

filter for the equivalent first-hop MIMO channel H1. Then the

signals are linearly filtered by F2. Finally, we can see from

(13) that F3 = H
†

2, where (·)† denotes matrix pseudo inverse.

Thus, F3 performs zero-forcing of the equivalent second-hop
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MIMO channel H2. We also find from (31) and (32) that

for the case of N = 1 (i.e. both source nodes have only one

antenna), the optimal relay amplifying matrix has the structure

of

F = H
†

2

[
af 0
0 bf

]

HH
1 . (33)

THEOREM 1: For two-way relay systems with N = 1, the

structure of F given by (33) is optimal for the cases of1 (1)

hr,1 ⊥ hr,2, h1,r ⊥ h2,r; (2) hr,1 ‖ hr,2, h1,r ⊥ h2,r.

PROOF: See journal version of this paper [13]. �
It has been shown in [6] that for two-way relay systems

with reciprocal first and second hop channels (i.e. hr,1 =

hT
1,r = h1, hr,2 = hT

2,r = h2), both F = H
†

2

[
aZF 0
0 bZF

]

H
†

1

and F = HH
2

[
aMF 0
0 bMF

]

HH
1 are optimal when h1 ⊥ h2,

and the latter F is also optimal when h1 ‖ h2. Interestingly,

Theorem 1 extends the result in [6] to two-way relay systems

without any channel reciprocity and shows that (33) is optimal

for the two special cases given above.

Now we show how to solve the problem (25)-(28) numer-

ically using the projected gradient algorithm. Since Uc1 and

Uc2 only appear in the constraint functions, we can optimize

Uci and ∆i in an alternating fashion. In each iteration, we

first optimize ∆1 and ∆2 by solving a problem consisting of

(25), (26), (28) with fixed Uc1 and Uc2 . This problem can be

equivalently rewritten as

min
δ

2∑

i=1

N∑

n=1

δ2i,n + 1

(π2
i,n + 1)δ2i,n + 1

(34)

s.t. δ
T
[
(L1⊙ L2)

H(L1⊙ L2)
]
δ ≤ Pr (35)

δi,n ≥ 0, i = 1, 2, n = 1, · · · , N (36)

where δ , [δ1,1, · · · , δ1,N , δ2,1, · · · , δ2,N ]T , ⊙ denotes matrix

Khatri-Rao product, πi,n, n = 1, · · · , N , is the nth main diag-

onal element of Πi, i = 1, 2, L1 ,
[
bd(UH

c1 ,U
H
c2)U2Σ

−1
2

]T
,

and L2 , (Σ2
1 + I2N )

1

2

[
P1, P2

]
. The subproblem (34)-(36)

can be solved by the projected gradient algorithm [11].

With fixed ∆1 and ∆2, we update Uc1 and Uc2 by solving

the following problem

min
Uc1

,Uc2

tr
(
NH

1 bd(Uc1 ,Uc2)N2bd(U
H
c1 ,U

H
c2)N1

)
(37)

s.t. UH
ciUci = IN , i = 1, 2 (38)

where N1 , U2Σ
−1
2 , N2 , bd(∆1,∆2)Φ bd(∆1,∆2),

and the objective function (37) is obtained by rewriting the

left-hand side of (26). The subproblem (37)-(38) can also be

solved by the projected gradient algorithm. The gradient of

(37) with respect to Uci can be calculated using the results

on derivatives of matrices in [14]. The projection of an N×N

1For the consistency of notations, here we use vector notations for channels
due to N = 1.

matrix Ũci onto the feasible set of Ūci given by (38) is

performed by solving the following problem for i = 1, 2

min
Ūci

tr
(
(Ūci − Ũci)(Ūci − Ũci)

H
)

(39)

s.t. ŪH
ciŪci = IN . (40)

Let Ũci = ΥiΓiΘ
H
i be the SVD of Ũci . It can be easily

shown using the Lagrange multiplier method that the solution

to the problem (39)-(40) is given by Ūci = ΥiΘ
H
i . The pro-

cedure of solving the problem (25)-(28) using the alternating

projected gradient algorithm is summarized in Table I. Here

maxabs(·) denotes the maximum among the absolute value

of all elements in a matrix, and ε is a positive constant close

to 0.

TABLE I
PROCEDURE OF APPLYING THE ALTERNATING PROJECTED GRADIENT

ALGORITHM TO SOLVE THE PROBLEM (25)-(28).

1) Initialize the algorithm at a feasible U
(0)
c1

, U
(0)
c2

, and δ
(0); Set n = 0.

2) With given U
(n)
c1

and U
(n)
c2

, obtain δ
(n+1) by solving the subproblem

(34)-(36) using the projected gradient algorithm;

Obtain U
(n+1)
c1

and U
(n+1)
c2

through solving the subproblem (37)-(38)

with known δ
(n+1) using the projected gradient algorithm.

3) If max abs
(
δ
(n+1)

− δ
(n)

)
≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2).

B. Optimal Source Precoding Matrices

With fixed F, the problem of updating B1 and B2 can be

written as

min
B1,B2

2∑

i=1

tr
(
[IN +BH

i ΨiBi]
−1
)

(41)

s.t. tr

(
2∑

i=1

FHr,iBiB
H
i HH

r,iF
H

)

≤ P̆r (42)

tr
(
BiB

H
i

)
≤ Pi, i = 1, 2 (43)

where P̆r , Pr − tr(FFH). Let us introduce Ωi , BiB
H
i ,

i = 1, 2, and positive semi-definite (PSD) matrices Xi with

Xi �
(
IN + Ψ

1

2

i ΩiΨ
1

2

i

)
−1

, i = 1, 2. Here A � B means

that B−A is a PSD matrix. By using the Schur complement

[15], the problem (41)-(43) can be equivalently converted to

the following problem

min
X1,X2,Ω1,Ω2

tr(X1 +X2) (44)

s.t.

(
Xi IN

IN IN +Ψ
1

2

i ΩiΨ
1

2

i

)

� 0, i = 1, 2 (45)

tr

(
2∑

i=1

FHr,iΩiH
H
r,iF

H

)

≤ P̆r (46)

tr
(
Ωi

)
≤ Pi, Ωi � 0, i = 1, 2. (47)

The problem (44)-(47) is a convex SDP problem which can

be efficiently solved by the interior-point method [15].

Now the original joint source and relay optimization prob-

lem (7)-(9) can be solved by an iterative algorithm. This

algorithm is first initialized at random feasible B1 and B2

satisfying (9). At each iteration, when M ≥ 2N , F is updated
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according to (31) by solving the problem (25)-(28) following

the steps in Table I. When M < 2N , F is updated by solving

the problem (10)-(11) with fixed B1 and B2. Then B1 and B2

are updated by solving the SDP problem (44)-(47). Note that

the conditional updates of each matrix may either decrease

or maintain but cannot increase the objective function (7).

Monotonic convergence of F, B1, and B2 towards (at least) a

locally optimal solution follows directly from this observation.

The procedure of this iterative algorithm is summarized in

Table II.

TABLE II
PROCEDURE OF SOLVING THE PROBLEM (7)-(9).

1) Initialize the algorithm at a feasible B
(0)
1 and B

(0)
2 ; Set n = 0.

2) For fixed B
(n)
1 and B

(n)
2 , obtain F(n+1) by solving the problem (25)-

(28) using the steps in Table I;

Update B
(n+1)
1 and B

(n+1)
2 by solving the problem (44)-(47) with

known F
(n+1).

3) If max abs
(
F

(n+1)
−F

(n)
)
≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2).

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

algorithms for two-way MIMO relay systems. All channel

matrices have complex Gaussian entries with zero-mean and

variances of 1/N , 1/M for Hr,i and Hi,r, i = 1, 2, re-

spectively, and all simulation results are averaged over 1000

independent channel realizations. In the simulations, we set

P1 = P2 = Ps = 20dB above the noise level and vary the

value of Pr.

In the first example, we check the performance of the

proposed relay amplifying matrix (31) and the algorithm in

Table I by testing it for the case of N = 1. It is proven in

Theorem 1 that (31) (or equivalently (33)) is optimal for this

case, and we only need to find the optimal af and bf in (33).

By substituting (33) back into (10)-(11), we have the following

problem to solve

min
af ,bf

1 + c1|af |2
1 + c1d2|af |2

+
1 + c2|bf |2
1 + c2d1|bf |2

(48)

s.t. d2|af |2 + d1|bf |2 ≤ Pr (49)

where ci , ‖hi,r‖2 and di , 1 + Pi‖hr,i‖2, i = 1, 2. The

problem (48)-(49) has a water-filling solution given by

|af |2 =
1

c1d2

[√
c1
κ

(
1− 1

d2

)
− 1

]+

(50)

|bf |2 =
1

c2d1

[√
c2
κ

(
1− 1

d1

)
− 1

]+

(51)

where [x]+ , max(x, 0), and κ > 0 is the solution of the

nonlinear equation by substituting (50) and (51) back into (49),

which can be efficiently solved by the bisection method [11].

Fig. 1 shows the normalized SMSE of the relay amplifying

matrix designed by the alternating projected gradient algorithm

in Table I and that of the optimal solution given by (33), (50),

(51). It can be seen that for both M = 4 and M = 6, two algo-

rithms have identical SMSE performance. This demonstrates

that the algorithm in Table I achieves the global optimum for

N = 1, and verifies the effectiveness of the projected gradient

algorithm. We also observe from Fig. 1 that as expected, the

SMSE decreases with increasing M .
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Fig. 1. Example 1: Normalized SMSE versus Pr . N = 1.

In the second example, we simulate a two-way MIMO relay

system with N = 2, M = 8, and compare the normalized

SMSE of the optimal relay matrix in [4] and the suboptimal

relay design in (31) from the procedure listed in Table I.

In order to study the “pure” effect of relay matrix design,

we set B1 = B2 =
√
Ps/2 I2 for both algorithms. It

can be seen from Fig. 2 that the proposed relay amplifying

matrix yields only a slightly higher MSE than the optimal

relay matrix. Since the proposed relay matrix design has

a substantially reduced computational complexity (20 real-

valued optimization variables) than the optimal design (32

real-valued optimization variables), it is very useful in practical

relay systems.
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Fig. 2. Example 2: Normalized SMSE versus Pr . N = 2, M = 8.

In our third example, We set N = 2, M = 4 and investigate

the performance of the joint source and relay optimization

algorithm in Table II at different iterations. We observed in

simulations that for most channel realizations, the algorithm

converges within 10 iterations. The normalized SMSE of this
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algorithm after the first, second, and fifth iteration versus Pr

is listed in Table III. It can be seen that the difference between

iterations is very small. Thus, in practice, only a small number

of iterations are required to achieve a good performance.

TABLE III
NORMALIZED SMSE OF JOINT SOURCE AND RELAY OPTIMIZATION

ALGORITHM (TABLE II) AT DIFFERENT ITERATIONS.

Pr (dB) 0 5 10 15 20

NSMSE (It. 1) 0.8233 0.6248 0.3641 0.1723 0.0695

NSMSE (It. 2) 0.8232 0.6247 0.3640 0.1712 0.0689

NSMSE (It. 5) 0.8228 0.6241 0.3638 0.1698 0.0685

In our fourth example, we study the performance of two-

way MIMO relay systems based on the MSMI objective [2]

and the MSMSE objective, respectively. We chose N = 2,

M = 6, and for both objectives, we use the procedure listed

in Table II. Fig. 3 shows the SMI of both systems versus Pr.

It can be seen from Fig. 3 that as expected, the MSMI-based

relay design leads to a larger MI than the relay design using the

MSMSE criterion. The uncoded BER of both systems versus

Pr is demonstrated in Fig. 4, where the QPSK constellations

are used. It can be seen from Fig. 4 that the relay system

designed under the MSMSE criterion outperforms the MSMI-

based system in terms of BER. In fact, the former algorithm

achieves a higher diversity order than the latter one. This is

because MSMI is a good criterion only for coded systems in

which the number of symbols for each coding block is very

large. However, in practical communication systems, due to the

delay constraint, codewords always have a finite length. Thus,

MSMSE is a better criterion for practical two-way MIMO

relay systems.
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Fig. 3. Example 4: SMI versus Pr . N = 2, M = 6.

V. CONCLUSIONS

We have proposed a simplified relay amplifying matrix

design for a two-way linear non-regenerative MIMO relay

system. The proposed algorithm significantly reduces the

computational complexity of the optimal design with only a

marginal performance degradation. An iterative algorithm is

developed to jointly optimize the relay and source matrices.
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Fig. 4. Example 4: BER versus Pr . N = 2, M = 6.
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