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Abstract—Optimal source precoding matrix and relay ampli-
fying matrices have been developed in recent works for linear
non-regenerative multiple-input multiple-output (MIMO) relay
communication systems. All these works require the channel state
information (CSI) knowledge in order to perform the optimiza-
tion. However, in practical relay systems, the CSI is unknown and
has to be estimated. There is always mismatch between the true
and the estimated CSI. In this paper, the true CSI is modelled
as a Gaussian random matrix with the estimated CSI as the
mean value. First, by using the averaged mean-squared error
(MSE) matrix of the signal waveform estimation, we develop the
source and relay matrices which optimize most commonly used
objective functions subjecting to the averaged transmission power
constraints. Second, we consider the quality-of-service (QoS) issue
by minimizing the averaged total transmission power subjecting
to the averaged MSE constraints at each data stream. Simulation
results demonstrate the improved robustness of the proposed
algorithms against CSI errors.

I. INTRODUCTION

It is well-known that wireless relays are useful in increasing
the coverage of wireless communications under power and
spectral constraints. Wireless relays can be regenerative or
non-regenerative. For the non-regenerative relay strategy, the
relay node only amplifies and retransmits its received signals.
Thus, the complexity of the nonregenerative strategy is much
lower than that of the regenerative strategy.

Recently, there have been many research efforts on non-
regenerative multiple-input multiple-output (MIMO) relay sys-
tems where the relay nodes have multiple antennas [1]-[6]. For
a three-node two-hop MIMO relay system where the direct-
link is omitted, a unified framework is established for linear
non-regenerative MIMO relay systems with a broad class of
objective functions [3]. The framework in [3] has been further
extended to multi-hop non-regenerative MIMO relay systems
with arbitrary number of hops [4]. Both [3] and [4] consider
a linear minimal mean-squared error (MMSE) receiver at the
destination node. Recently, it has been shown in [5] that by
using a nonlinear decision feedback equalizer (DFE) based on
the MMSE criterion at the destination node, the system bit-
error-rate (BER) performance can be significantly improved.
The optimal source and relay matrices of a multi-hop MIMO
relay system which guarantee that the predetermined quality-
of-service (QoS) criteria be attained with the minimal total
transmission power have been derived in [6].

In order to optimize the source and relay matrices, the
channel state information (CSI) knowledge of all hops is
required at the scheduler in [1]-[6]. However, in practical
relay communication systems, the exact CSI is unknown and

has to be estimated. There is always mismatch between the
true and the estimated CSI. Obviously, the performance of the
algorithms in [1]-[6] will degrade due to such CSI mismatch.
In this paper, we develop the optimal source and relay matrices
which are robust against CSI errors. In particular, the true CSI
is modelled as a Gaussian random matrix with the estimated
CSI as the mean value, and the well-known Kronecker model
is adopted for the correlation of the CSI mismatch [7]-[9].
First, by using the averaged MSE matrix of the signal wave-
form estimation, we develop the source and relay matrices
which optimize most commonly used objective functions when
the objective is Schur-concave or Schur-convex [10]. It is
shown that the structure of the optimal source and relay
matrices includes the CSI mismatch information. Moreover,
the available power at the source and the relay nodes is
optimally distributed among all data stream in a robust fashion
against the CSI mismatch. Second, we consider the QoS issue
by minimizing the averaged transmission power subjecting to
the averaged MSE constraints at each data stream. Simulation
results demonstrate the improved robustness of the proposed
approaches against the CSI mismatch.

II. SYSTEM MODEL

We consider a three-node MIMO communication system
where the source node (node 1) transmits information to the
destination node (node 3) with the aid of one relay node (node
2). The ith node is equipped with Ni, i = 1, 2, 3 antennas. The
communication process between the source and destination
nodes is completed in two time slots. In the first time slot, the
Nb × 1 signal vector s is linearly precoded as

x1 = F1s (1)

where F1 is the N1 ×Nb precoding matrix. We assume that
E[ssH ] = INb

, where E[·] stands for the statistical expectation,
(·)H denotes the Hermitian transpose, and In is an n × n
identity matrix. The precoded signal vector x1 is transmitted
to the relay node, and the received signal vector is given by

y2 = H1x1 + v2 (2)

where H1 is the N2 × N1 MIMO fading channel matrix
between the source and relay nodes, and v2 is an N2 × 1
noise vector at the relay node.

In the second time slot, a linear non-regenerative relay
matrix F2 is used at the relay node to amplify the received
signal vector as in [1]-[6]. The input-output relationship at the
relay node can be written as

x2 = F2y2. (3)
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The amplified signal vector x2 is transmitted to the destination,
and the received signal vector is given by

y3 = H2x2 + v3 (4)

where H2 is the N3 × N2 MIMO fading channel matrix
between the source and relay nodes, v3 is an N3 × 1 noise
vector at the destination. We assume that vi, i = 2, 3 is
independent and identically distributed (i.i.d.) additive white
Gaussian noise (AWGN) with zero mean and unit variance.

Combining (1)-(4), the signal vector at the destination node
can be written as

y3 = H2F2H1F1s + H2F2v2 + v3 = Gs + v̄

where G � H2F2H1F1, v̄ � H2F2v2 + v3. Using a linear
receiver at the destination node, the estimated signal vector ŝ
can be written as

ŝ = WHy3

where W is the N3 ×Nb weight matrix. The MSE matrix of
the signal waveform estimation E � E[(ŝ − s)(ŝ − s)H ] can
be written as

E= (WHG− INb
)(WHG− INb

)H + WHCv̄W

=WH(H2F2H1F1FH
1 HH

1 FH
2 HH

2 + H2F2FH
2 HH

2

+IN3)W−WHH2F2H1F1−FH
1 HH

1 FH
2 HH

2 W+INb
(5)

where Cv̄ � E[v̄v̄H ] = H2F2FH
2 HH

2 + IN3 is the noise
covariance matrix.

III. ROBUST MIMO RELAY DESIGN

When there is mismatch between the true and the estimated
CSI, the true channel Hi can be represented by the well-
known Kronecker model [7]-[9], where Hi is a complex-
valued Gaussian random matrix with

Hi ∼ CN (H̄i,Θi ⊗Φi), i = 1, 2 (6)

where the mean value is the estimated channel matrix H̄i, ⊗
stands for the Kronecker product [11], Θi denotes the covari-
ance matrix at the receiver side, while Φi is the covariance
matrix seen from the transmitter side.

A. Robust MIMO Relay for Most Commonly Used Objectives

It has been shown in [3] that many commonly used MIMO
relay system design objectives can be written as a function of
the main diagonal elements of the MSE matrix E. It can be
seen from (5) that E is a function of channel matrices H1 and
H2, whose true value is unknown in practice. Therefore, it
is impossible to optimize q(d[E]), where as in [3], q denotes
a general objective function, and d[E] stands for the main
diagonal elements of E. If we design F1 and F2 based only
on H̄1 and H̄2, there can be a great performance degradation
due to the mismatch between Hi and H̄i, i = 1, 2.

In this subsection, instead of optimizing q(d[E]), we opti-
mize the objective function of q(d[E[E]]), where the statistical
expectation E[·] is carried out with respect to Hi, i = 1, 2 with
the distribution in (6).

THEOREM 1: The statistical expectation of E is given by

E[E]=WHAW−WHH̄2F2H̄1F1−FH
1 H̄H

1 FH
2 H̄H

2 W+INb

(7)
where

A� H̄2F2

(
H̄1F1FH

1 H̄H
1 + α1Φ1 + IN2

)
FH

2 H̄H
2

+α2Φ2 + IN3 (8)

α1 � tr(F1FH
1 ΘT

1 ) (9)

α2 � tr(F2(H̄1F1FH
1 H̄H

1 + α1Φ1 + IN2)F
H
2 ΘT

2 ). (10)

Here tr(·) denotes the matrix trace, and (·)T stands for the
matrix transpose.

PROOF: See Appendix A. �
The weight matrix W which minimizes (7) is the famous

Wiener filter [12] given by

W = A−1H̄2F2H̄1F1 (11)

where (·)−1 denotes the matrix inversion. Substituting (11)
back into (7), we have

E[E] = INb
− FH

1 H̄H
1 FH

2 H̄H
2 A−1H̄2F2H̄1F1. (12)

The transmission power consumed by the relay node can be
written as [3]

tr
(
F2

(
H1F1FH

1 HH
1 + IN2

)
FH

2

)
. (13)

However, since the true H1 is unknown, (13) is also unknown.
Thus, the power constraint can not be imposed for any fixed
H1. In this paper, we consider the averaged transmission
power at the relay node, which is given by

E[tr
(
F2

(
H1F1FH

1 HH
1 + IN2

)
FH

2

)
]

= tr
(
F2

(
E[H1F1FH

1 HH
1 ] + IN2

)
FH

2

)
= tr

(
F2

(
H̄1F1FH

1 H̄H
1 + α1Φ1 + IN2

)
FH

2

)
. (14)

Combining (12) and (14), the robust relay optimization prob-
lem can be written as

min
F1,F2

q
(
d
[
INb

− FH
1 H̄H

1 FH
2 H̄H

2 A−1H̄2F2H̄1F1

])
(15)

s.t. tr
(
F2

(
H̄1F1FH

1 H̄H
1 + α1Φ1 + IN2

)
FH

2

) ≤ P2 (16)

tr
(
F1FH

1

) ≤ P1 (17)

where Pi > 0, i = 1, 2, is the transmission power available at
the ith node. Here (16) and (17) are the transmission power
constraint at the relay and source node, respectively. The
problem (15)-(17) provides a statistically robust MIMO relay
system design.

Let us introduce the following matrix eigenvalue decom-
position (EVD) and singular value decomposition (SVD) for
i = 1, 2

Φi = UΦi
ΛΦi

UH
Φi

(18)

Λ̃Φi
� αiΛΦi

+ INi+1 (19)

H̃i � Λ̃− 1
2

Φi
UH

Φi
H̄i = ŨiΣ̃iṼH

i (20)

where UΦi
and Ũi are Ni+1×Ni+1 unitary matrices, ΛΦi

is
an Ni+1 × Ni+1 diagonal matrix, Ṽi is an Ni × Ni unitary
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matrix, and Σ̃i is an Ni+1 × Ni singularvalue matrix. The
following theorem establishes the structure of the optimal F1

and F2 which are robust against the CSI mismatch.
THEOREM 2: For the robust relay design problem (15)-(17),

if q is Schur-concave, the optimal F1 and F2 are given by

F1 = Ṽ1,1Λ1, F2 = Ṽ2,1Λ2ŨH
1,1Λ̃

− 1
2

Φ1
UH

Φ1
(21)

where for i = 1, 2, Ṽi,1 and Ũi,1 corresponds to Nb columns
in Ṽi and Ũi associated with the largest Nb singularvalues,
respectively, and Λi, i = 1, 2 are Nb ×Nb diagonal matrices.
If q is Schur-convex, the optimal F2 is given in (21), while
the optimal F1 is F1 = Ṽ1,1Λ1V0, where V0 is an Nb ×
Nb unitary matrix such that E[E] has identical main-diagonal
elements.

PROOF: See Appendix B. �
From (9) and (10) we find that α1 is a function of F1,

and α2 is a function of F1 and F2. Consequently, it can be
seen from (19) and (20) that Ṽ1 and Ũ1 depend on F1, and
Ṽ2 depends on F1 and F2. Thus, from (21) we find that the
explicit structure of the optimal F1 and F2 is very difficult to
find for general Θi and Φi. In the following, we show that
if Θi = Ii and/or Φi = Ii+1, i = 1, 2. The structure of the
optimal F1 and F2 can be obtained explicitly.

First, for the case of Φi = INi+1 , i = 1, 2, the robust relay
optimization problem can be written as

min
F1,F2

q
(
d
[
INb

− FH
1 H̄H

1 FH
2 H̄H

2 B−1H̄2F2H̄1F1

])
(22)

s.t. tr
(
F2

(
H̄1F1FH

1 H̄H
1 + β1IN2

)
FH

2

) ≤ P2 (23)

tr
(
F1FH

1

) ≤ P1. (24)

where

B � H̄2F2

(
H̄1F1FH

1 H̄H
1 +β1IN2

)
FH

2 H̄H
2 +β2IN3 (25)

β1 � tr(F1FH
1 ΘT

1 ) + 1 (26)

β2 � tr(F2(H̄1F1FH
1 H̄H

1 + β1IN2)F
H
2 ΘT

2 ) + 1. (27)

Let us introduce the SVDs of H̄i = UiΣiVH
i . It can be easily

seen from (18)-(20) that for Φi = INi+1 , we have Ṽi = Vi

and Ũi = Ui. Consequently, for Schur-concave q, we have

F1 = V1,1Λ1, F2 = V2,1Λ2UH
1,1 (28)

where Vi,1 and Ui,1 corresponds to Nb columns in Vi and
Ui associated with the largest singularvalues, respectively. If
q is Schur-convex, F2 is given in (28), and the optimal F1 is
F1 = V1,1Λ1V0.

Now the task is to find the Nb×Nb diagonal power loading
matrices Λi, i = 1, 2. For Schur-concave q, substituting (28)
back into (22)-(24), we obtain the following problem

min
Λ1,Λ2

q
(
[INb

+Σ2
1,1Λ

2
1Σ

2
2,1Λ

2
2[β1Σ2

2,1Λ
2
2+β2INb

]−1]−1
)
(29)

s.t. tr(Λ2
2(Λ

2
1Σ

2
1,1 + β1INb

)) ≤ P2 (30)

tr(Λ2
1) ≤ P1 (31)

where Σi,1 is a diagonal matrix containing the largest Nb

singularvalues in Σi, i = 1, 2. Problem (29)-(31) can be

equivalently written as

min
λ1,λ2

q

⎛
⎝
⎧⎨
⎩
[
1 +

σ2
1,kλ2

1,kσ2
2,kλ2

2,k

β1σ2
2,kλ2

2,k + β2

]−1
⎫⎬
⎭
⎞
⎠ (32)

s.t.
Nb∑
k=1

λ2
2,k(λ2

1,kσ2
1,k + β1) ≤ P2 (33)

Nb∑
i=1

λ2
1,k ≤ P1 (34)

λ1,k ≥ 0, λ2,k ≥ 0, k = 1, · · · , Nb (35)

where β2 �
∑Nb

k=1 λ2
2,k(σ2

1,kλ2
1,k + β1)[Θ̃2]k,k + 1, β1 �∑Nb

k=1 λ2
1,k[Θ̃1]k,k + 1, Θ̃i � VH

i,1Θ
T
i Vi,1. Here λi,k, and

σi,k, i = 1, 2, k = 1, · · · , Nb, are the kth main diagonal
elements of Λi and Σi, respectively, λi � [λi,1, · · · , λi,Nb

]T ,
i = 1, 2, and for a scalar x, {xk} � [x1, · · · , xNb

]T . Let us
introduce

ak � σ2
1,k, xk � λ2

1,k (36)

bk � σ2
2,k, yk � λ2

2,k(λ2
1,kσ2

1,k + β1). (37)

The problem (32)-(35) can be simplified to

min
x,y

q

({
1− akxkbkyk

(akxk + β1)(bkyk + β2)

})
(38)

s.t.
Nb∑
k=1

xk ≤ P1, xk ≥ 0, k = 1, · · · , Nb (39)

Nb∑
k=1

yk ≤ P2, yk ≥ 0, k = 1, · · · , Nb (40)

where β1 =
∑Nb

k=1 xk[Θ̃1]k,k + 1, β2 =
∑Nb

k=1 yk[Θ̃2]k,k + 1,
x � [x1, · · · , xNb

]T , and y � [y1, · · · , yNb
]T .

The problem (38)-(40) can be solved by an iterative method.
To update x, we solve the following problem with μk �

bkyk

bkyk+β2
, k = 1, · · · , Nb

min
x

q

({
1− μkakxk

akxk + β1

})
(41)

s.t.
Nb∑
k=1

xk ≤ P1, xk ≥ 0, k = 1, · · · , Nb. (42)

The solution to the problem (41)-(42) follows the water-
filling principle. Similarly, to update y, we solve the following
problem with νk � akxk

akxk+β1
, k = 1, · · · , Nb

min
y

q

({
1− νkbkyk

bkyk + β2

})

s.t.
Nb∑
k=1

yk ≤ P2, yk ≥ 0, k = 1, · · · , Nb.

For Schur-convex q, it can be shown similar to [3] that the
optimal power loading is obtained by solving (38)-(40) with
q =

∑Nb

k=1

[
1− akxkbkyk

(akxk+β1)(bkyk+β2)

]
.

For the case of Θ1 = IN1 and Θ2 = IN2 , we have α1 =
tr(F1FH

1 ), and α2 = tr(F2(H̄1F1FH
1 H̄H

1 +α1Φ1+IN2)F
H
2 ).
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Now we show that (12) is decreasing w.r.t. tr(F1FH
1 ). By

introducing F̃1 = F1/
√

tr(F1FH
1 ), (12) can be written as

E[E] = INb
− F̃H

1 H̄H
1 FH

2 H̄H
2 Ā−1H̄2F2H̄1F̃1 (43)

where

Ā= H̄2F2

(
H̄1F̃1F̃H

1 H̄H
1 + Φ1 +

1
tr(F1FH

1 )
IN2

)
FH

2 H̄H
2

+α̃2Φ2 +
1

tr(F1FH
1 )

IN3 (44)

α̃2 � tr
(
F2

(
H̄1F̃1F̃H

1 H̄H
1 + Φ1 +

1
tr(F1FH

1 )
IN2

)
FH

2

)
.(45)

It can be clearly seen from (43)-(45) that for a given F̃1,
E[E] is a decreasing function of tr(F1FH

1 ). It can be shown
in a similar way that E[E] also decreases with respect to
tr
(
F2

(
H̄1F1FH

1 H̄H
1 + α1Φ1 + IN2

)
FH

2

)
. Thus, the optimal

solution of F1 and F2 occurs at α1 = P1 and α2 = P2. From
(19) and (20), we find that in this case Ũi. and Ṽi do not
depend on F1 and F2.

Now the task is to find the Nb ×Nb diagonal matrices Λi,
i = 1, 2. Substituting (21) back into (15)-(17), we have

min
Λ1,Λ2

q
(
[INb

+Σ̃2
1,1Λ

2
1Σ̃

2
2,1Λ

2
2[Σ̃

2
2,1Λ

2
2+INb

]−1]−1
)

(46)

s.t. tr(Λ2
2(Λ

2
1Σ̃

2
1,1 + INb

)) ≤ P2 (47)

tr(Λ2
1) ≤ P1 (48)

where Σ̃i,1 is a diagonal matrix containing the largest Nb

singularvalues in Σ̃i, i = 1, 2. The problem (46)-(48) can be
solved by the iterative method we just developed.

B. Robust MIMO Relay With QoS Constraints

The optimal robust relay scheme developed in the previous
subsection does not consider any QoS constraints for each
data stream. In practical communication systems, QoS criteria
are very important. When the CSI is exactly known, the
optimal source and relay matrices which minimize the total
transmission power subjecting to MSE constraints at each
data stream have been developed in [6]. However, due to
the mismatch between the true and the estimated CSI, the
algorithms in [6] can not guarantee the satisfaction of the QoS
criteria. In this subsection, we develop robust source and relay
matrices which guarantee that the predetermined QoS criteria
be attained by the averaged MSE at each data stream with the
minimal averaged total transmission power.

Using (15)-(17), the QoS-constrained robust relay design
problem can be written as

min
F1,F2

tr
(
F2

(
H̄1F1FH

1 H̄H
1 +α1Φ1+IN2

)
FH

2 +F1FH
1

)
(49)

s.t. d
[
INb
−FH

1 H̄H
1 FH

2 H̄H
2 A−1H̄2F2H̄1F1

] ≤ g (50)

where g = [g1, g2, · · · , gNb
]T is the QoS vector measured in

terms of the averaged MSE of each data stream that must be
satisfied, and A and α1 are given in (8) and (9), respectively.

THEOREM 3: The optimal F1 and F2 as the solution to the
problem (49)-(50) are given by

F1 = Ṽ1,1Λ1U0, F2 = Ṽ2,1Λ2ŨH
1,1Λ̃

− 1
2

Φ1
UH

Φ1
(51)

where U0 is an Nb×Nb unitary matrix such that [E[E]]k,k =
gk, k = 1, · · · , Nb.

PROOF: See Appendix C. �
For the case of Φi = INi+1 , i = 1, 2, using (22)-(24), the

QoS-constrained relay design problem can be written as

min
F1,F2

tr
(
F2

(
H̄1F1FH

1 H̄H
1 + β1IN2

)
FH

2

)
+ tr

(
F1FH

1

)
(52)

s.t. d
[
INb

− FH
1 H̄H

1 FH
2 H̄H

2 B−1H̄2F2H̄1F1

] ≤ g (53)

where B and β1 are given in (25) and (26), respectively. In
this case, we have

F1 = V1,1Λ1U0, F2 = V2,1Λ2UH
1,1.

Using the proof of Theorem 1 in [6], it can be shown that
the optimal power loading matrices Λ1 and Λ2 are the solution
to the following problem

min
λ1,λ2

Nb∑
k=1

(λ2
2,k(λ2

1,kσ2
1,k + β1) + λ2

1,k) (54)

s.t. g ≺w

⎧⎨
⎩
(

1 +
σ2

1,kλ2
1,kσ2

2,kλ2
2,k

β1σ2
2,kλ2

2,k + β2

)−1
⎫⎬
⎭ (55)

λ1,k > 0, λ2,k > 0, k = 1, · · · , Nb (56)

where ≺w denotes weakly super-majorization [10]. Utilizing
the variable substitution in (36)-(37) and the definition of ≺w,
the problem (54)-(56) can be equivalently written as

min
x,y

Nb∑
k=1

(xk + yk) (57)

s.t.
j∑

k=1

(
1− akxkbkyk

(akxk + β1)(bkyk + β2)

)
≤

j∑
k=1

gk,

j = 1, · · · , Nb (58)

xk > 0, yk > 0, k = 1, · · · , Nb (59)

Let us introduce zk ≤ akxkbkyk

(akxk+β1)(bkyk+β2)
, k = 1, · · · , Nb.

The problem (57)-(59) can be written as

min
x,y,z

Nb∑
k=1

(xk + yk) (60)

s.t.
j∑

k=1

zk ≥
j∑

k=1

(1− gk), j = 1, · · · , Nb (61)

zk
(akxk + β1)(bkyk + β2)

akxkbkyk
≤ 1, k = 1, · · · , Nb (62)

xk > 0, yk > 0, k = 1, · · · , Nb (63)

where z � [z1, · · · , zNb
]T . If the constraints in (61) can be

converted to posynomial upper-bound constraints, then the
problem (60)-(63) becomes a geometric programming (GP)
problem. Towards this end, we apply the geometric inequality
to the left-hand side of (61) such that

j∑
k=1

zk ≥
j∏

k=1

(
zk

δj,k

)δj,k

(64)
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where
∑j

k=1 δj,k = 1, j = 1, · · · , Nb, and δj,k > 0, k =
1, · · · , j, j = 1, · · · , Nb. Substituting (61) with the inequalities∏j

k=1

(
zk

δj,k

)δj,k ≥∑j
k=1(1− gk), we have

min
x,y,z

Nb∑
k=1

(xk + yk) (65)

s.t. γj

j∏
k=1

z
−δj,k

k ≤ 1, j = 1, · · · , Nb (66)

zk(1 + β1a
−1
k x−1

k )(1 + β2b
−1
k y−1

k ) ≤ 1,

k = 1, · · · , Nb (67)

xk > 0, yk > 0, k = 1, · · · , Nb (68)

where

γj �
j∑

k=1

(1− gk)
j∏

k=1

δ
δj,k

j,k . (69)

The problem (65)-(68) is a GP problem in standard form,
which can be converted to a convex optimization problem
and efficiently solved by interior-point method-based convex
optimization toolbox such as MOSEK [13].

IV. SIMULATIONS

In this section, we study the performance of the proposed
robust source and relay matrices. In the simulations, the
estimated channel matrices H̄1 and H̄2 have i.i.d. complex
Gaussian entries with zero-mean and variances σ2

i /Ni for H̄i,
i = 1, 2. The true channel matrices are modelled as (6) with
Θi =

√
εiINi

and Φi =
√

εiINi+1 , i = 1, 2. We choose
ε1 = ε2 = 0.2, which correspond to a severe CSI mismatch.
All simulation results are averaged over 1000 independent
realizations of the truce channel matrices H1 and H2. We
set N1 = N2 = N3 = 4, and define SNRi = σ2

i PiNi+1/Ni

as the signal-to-noise ratio (SNR) for the ith (i = 1, 2) hop.
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Fig. 1. Example 1: AMSE versus SNR1; Nb = 3, SNR2 = 20dB.

In the first example, we study the performance of the robust
relay algorithm developed in Section III-A. In particular, we
choose q as the averaged MSE (AMSE) of all data streams,
which is given as tr(E[E])/Nb. It has been shown in [3] that
tr(E[E]) is a Schur-concave function of d[E[E]]. Fig. 1 shows
the AMSE performance of both the robust and non-robust relay

algorithms versus SNR1 for SNR2 = 20dB and Nb = 3.
It can be seen that the proposed algorithm has an improved
robustness against the CSI mismatch.

Fig. 2 shows the BER performance of both algorithms
versus SNR1 for Nb = 3 and SNR2 = 20dB. The QPSK
constellations are used in the simulation. We can clearly see
that the robust relay algorithm has a better BER performance
than the non-robust algorithm. In Figs. 1 and 2, the non-robust
algorithm refers to the relay algorithm developed in [3].
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Fig. 2. Example 1: BER versus SNR1; Nb = 2, SNR2 = 20dB.

In the second example, we simulate the robust relay algo-
rithm with QoS constraints developed in Section III-B. We
set Nb = 3 and choose the same QoS criteria for all 3 data
streams, i.e., q1 = q2 = q3 = q. Fig. 3 shows the total
transmission power required versus MSE (q). It can be seen
that the robust relay algorithm requires much less power than
the non-robust algorithm developed in [6].
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Fig. 3. Example 2: Total power versus MSE (q); Nb = 3.

V. CONCLUSIONS

We have derived the optimal source and relay matrices for
linear non-regenerative MIMO relay systems. The proposed
source and relay matrices are robust against the CSI mismatch.
We have considered most commonly used MIMO system
design criteria and addressed the QoS issues. Simulation re-
sults show an improved robustness of the proposed algorithms
against CSI errors.
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APPENDIX A
PROOF OF THEOREM 1

LEMMA 1 [14]: The statistical expectation for the product
of four Gaussian matrices AbcT D is given by E[AbcT D] =
E[Ab]E[cT D] + E[cT ⊗ A]E[D ⊗ b] + E[AE[bcT ]D] −
2E[A]E[b]E[cT ]E[D].

LEMMA 2 [15]: For H ∼ CN (H̄,Θ ⊗ Φ), there is
E[HAHH ] = H̄AH̄H + tr(AΘT )Φ.

Using Lemma 1, we have

E[H2F2H1F1FH
1 HH

1 FH
2 HH

2 ]

=
N1∑
i=1

(
E[H2F2H1f1,i]E[fH

1,iH
H
1 FH

2 HH
2 ]

+E[(fH
1,iH

H
1 )⊗ (H2F2)]E[(FH

2 HH
2 )⊗ (H1f1,i)]

+E[H2F2E[H1f1,ifH
1,iH

H
1 ]FH

2 HH
2 ]
)

−2H̄2F2H̄1F1FH
1 H̄H

1 FH
2 H̄H

2 (70)

Applying Lemma 2, the third term in (70) can be written as

E[H2F2E[H1f1,ifH
1,iH

H
1 ]FH

2 HH
2 ]

= E[H2F2(H̄1f1,ifH
1,iH̄

H
1 + tr(f1,ifH

1,iΘ
T
1 )Φ1)FH

2 HH
2 ]

= H̄2F2H̄1f1,ifH
1,iH̄

H
1 FH

2 H̄H
2

+tr(F2H̄1f1,ifH
1,iH̄

H
1 FH

2 ΘT
2 )Φ2 + tr(f1,ifH

1,iΘ
T
1 )

×[H̄2F2Φ1FH
2 H̄H

2 + tr(F2Φ1FH
2 ΘT

2 )Φ2]. (71)

By substituting (71) back into (70) we obtain

E[H2F2H1F1FH
1 HH

1 FH
2 HH

2 ]
= H̄2F2H̄1F1FH

1 H̄H
1 FH

2 H̄H
2

+tr(F2H̄1F1FH
1 H̄H

1 FH
2 ΘT

2 )Φ2 + tr(F1FH
1 ΘT

1 )
×[H̄2F2Φ1FH

2 H̄H
2 + tr(F2Φ1FH

2 ΘT
2 )Φ2]. (72)

From Lemma 2, we know that

E[H2F2FH
2 HH

2 ] = H̄2F2FH
2 H̄H

2 + tr(F2FH
2 ΘT

2 )Φ2. (73)

Now using (72), (73), and E[H2F2H1F1] = H̄2F2H̄1F1, we
can write the expectation of E in (5) as (7).

APPENDIX B
PROOF OF THEOREM 2

From (18), we can write

αiΦi + INi+1 =UΦi
(αiΛΦi

+ INi+1)U
H
Φi

�UΦiΛ̃Φi
UH

Φi
, i = 1, 2.

By using (20) and introducing

F̃2 � F2UΦ1Λ̃
1
2
Φ1

, (74)

the problem (15)-(17) can be equivalently written as

min
F1,F̃2

q
(
d
[
INb

− FH
1 H̃H

1 F̃H
2 H̃H

2 Ã−1H̃2F̃2H̃1F1

])
(75)

s.t. tr
(
F̃2

(
H̃1F1FH

1 H̃H
1 + IN2

)
F̃H

2

) ≤ P2 (76)

tr
(
F1FH

1

) ≤ P1 (77)

where

Ã = H̃2F̃2

(
H̃1F1FH

1 H̃H
1 + IN2

)
F̃H

2 H̃H
2 + IN3 . (78)

It can be shown using Theorem 1 in [3] that the solution to
the problem (75)-(77) for Schur-concave q is

F1 = Ṽ1,1Λ1, F̃2 = Ṽ2,1Λ2ŨH
1,1. (79)

While for Schur-convex q, the optimal F̃2 is given in (79),
while the optimal F1 is F1 = Ṽ1,1Λ1V0. Substituting (79)
back into (74), we obtain (21).

APPENDIX C
PROOF OF THEOREM 3

Using (18)-(20) and (74), the problem (49)-(50) can be
equivalently written as

min
F1,F̃2

tr
(
F̃2

(
H̃1F1FH

1 H̃H
1 + IN2

)
F̃H

2 +F1FH
1

)
(80)

s.t. d
[
INb
−FH

1 H̃H
1 FH

2 H̃H
2 Ã−1H̃2F2H̃1F1

] ≤ g (81)

where Ã is given in (78). It can be shown using Theorem 1
in [6] that the solution to the problem (80)-(81) is given by

F1 = Ṽ1,1Λ1U0, F̃2 = Ṽ2,1Λ2ŨH
1,1. (82)

By substituting (82) back into (74) we obtain (51).
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