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Projection-Pursuit-Based Method for Blind
Separation of Nonnegative Sources
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Abstract— This paper presents a projection pursuit (PP) based
method for blind separation of nonnegative sources. First, the
available observation matrix is mapped to construct a new mixing
model, in which the inaccessible source matrix is normalized
to be column-sum-to-1. Then, the PP method is proposed to
solve this new model, where the mixing matrix is estimated
column by column through tracing the projections to the mapped
observations in specified directions, which leads to the recovery
of the sources. The proposed method is much faster than
Chan’s method, which has similar assumptions to ours, due to
the usage of optimal projection. It is also more advantageous
in separating cross-correlated sources than the independence-
and uncorrelation-based methods, as it does not employ any
statistical information of the sources. Furthermore, the new
method does not require the mixing matrix to be nonnegative.
Simulation results demonstrate the superior performance of our
method.

Index Terms— Blind source separation, linear programming
(LP), nonnegative sources, projection pursuit (PP).

NOTATIONS

x, xi Column vector, the i th element of x.
X, x j , xi j Matrix, the j th column of X, the (i, j)th

entry of X.
Xt Matrix with t columns.
X(i : j, b : t) A submatrix of X with rows from i to j

and columns from b to t .
X� A submatrix of X with column index set �.
X⊥ The basis of a subspace orthogonal to X.
� Real number set.
0 All-zero column vector.
1 All-1 column vector.
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I. INTRODUCTION

BLIND source separation (BSS) has attracted much
attention for over a decade due to its great potential in

a wide range of applications such as digital communication,
speech identification, biological data analysis, remote sensing,
and human image processing [1]–[5]. Since BSS requires no
or minimum prior knowledge of the sources and the mixing
matrix, a statistical approach is usually required to perform
BSS. Based on the concept of independent component analysis
(ICA), various ICA methods have been proposed to separate
independent sources from their measured mixtures, such as
the quaternion ICA [6], fast ICA [7], ICA by kurtosis contrast
maximization [8], ICA based on entropy-bound minimization
(ICA-EBM) [9], and nonnegative ICA (NICA) [10], [11].
Since the ICA-based methods employ the higher order
statistics of the measured data, a large number of data samples
are needed to obtain satisfactory BSS performance [12].
In applications where fewer data samples are available, the
second-order statistics (SOS) methods are preferable [13].
The SOS-based BSS methods often require the source signals
to be mutually uncorrelated and have different frequency
spectra [14], [15].

Although independent or mutually uncorrelated sources are
often encountered in practice, spatially correlated sources also
occur in many applications [3], [16]–[21]. For these applica-
tions, the BSS methods exploiting the statistical properties of
the sources will fail. The existing works for cross-correlated
sources are far from mature. Some methods tend to achieve
BSS through enhancing the spatial diversity of the sources
using certain preprocessing techniques. For example, a pre-
coding scheme is used in [16] to reduce the cross-correlation
of the sources, and a prefiltering approach is employed in [17]
to enhance source independence. Other methods achieve BSS
by analyzing the time-frequency (TF) points. They can be
extended to the underdetermined cases but the computational
cost is usually very high [18]–[21].

A different approach to BSS is to exploit the nonnegative
signal characteristic. Nonnegative signals exist in various
applications such as biomedical data analysis and image
processing [2], [22], [23]. Since this approach does not utilize
the statistical information of the sources, it can deal with both
independent (or mutually uncorrelated) sources and spatially
correlated sources. A typical approach to processing nonneg-
ative signals is the nonnegative matrix factorization [24]–[29].
However, it assumes that all entries of the mixing matrix
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are nonnegative. This assumption is also required by other
nonnegativity-based methods [4], [5], [30].

In [31], Chan et al. present a BSS method known as
convex analysis of mixtures of nonnegative sources by linear
programming (CAMNS-LP), which relaxes the constraint on
the mixing matrix to allow it to have negative entries. This
method exploits the nonnegativity of sources and adopts
a special deterministic assumption called local dominance.
The local dominance assumption is a good assumption or
approximation for source signals exhibiting sparsity or high
contrast such as human portraits and some biomedical images
[31], [32]. To estimate all source signals, this method needs
to solve up to 2(n − 1) LP problems, where n is the num-
ber of sources. It is known that solving an LP problem is
time consuming if the data sample size is large [31], [33].
Therefore, the CAMNS-LP method becomes inefficient in
computation with the increase of the source signals.

In this paper, we propose a more efficient method in
the computation for blind separation of nonnegative sources.
In our method, the observation matrix is first mapped into
a superplane such that one of the rows of the mapped
observation matrix has equal elements with value 1. The
mapping process ensures that the unaccessible source matrix
is normalized to be column-sum-to-1. Consequently, those
columns of the normalized source matrix that satisfy the local
dominance condition are unit vectors. For a unit vector, one
element is 1 and all other elements are zero. Then, based on
the property of the normalized source matrix, one column of
the mixing matrix can be estimated by searching an optimal
projection vector for the mapped observation matrix. After
that, another column of the mixing matrix can be obtained by
searching another optimal vector in the subspace orthogonal
to the already estimated column. This process is repeated
until all columns of the mixing matrix are obtained. After
the estimation of the mixing matrix, the sources can be easily
recovered. Since the new method estimates the mixing matrix
by tracing the projection of the mapped observation matrix, it
is called the projection pursuit (PP) method.

Unlike the traditional ICA-based BSS methods in [6]–[11],
and [17], the proposed PP method does not require the sources
to be independent or subband-independent. Moreover, different
from the sparsity based methods in [34]–[36], it does not need
the sources to be sparse in many time instants for efficient
source recovery. The PP method is also advantageous over the
existing BSS methods for nonnegative sources. Compared with
the methods in [5] and [24]–[29], it does not require the mixing
matrix to be nonnegative. In relation to the CAMNS-LP
method in [31], our method has much less computational
complexity, as it only needs to solve one LP problem. It is
also more efficient than the TF-based methods which need
to search the sparse TF points [18], [19]. In addition, if the
mixing matrix is nonnegative, the normalized model in this
paper is similar to those in the processing of spectral unmixing,
where the sources satisfy nonnegativity and column-sum-to-1
physically [37]–[40]. By using the high contrast of the sources,
the pure pixel index (PPI) method achieves a good result for
end-member extraction in spectral unmixing but it needs many
iterations [38]. To improve PPI, a fast iterative PPI (FIPPI)

algorithm is developed in [39]. However, the FIPPI algorithm
often requires an efficient initialization, such as the automatic
target generation process (ATGP) approach in [40], to speed
up its convergence.

The remainder of this paper is organized as follows.
Section II formulates the problem through examining the com-
putational cost of the CAMNS-LP method. The PP method is
presented in Section III, together with the analysis of its com-
putational complexity. Section IV provides simulation results
to compare the performances of the PP method and the existing
benchmark methods. Finally, Section V concludes this paper.

II. PROBLEM FORMULATION

The instantaneous mixing model under consideration is as
follows [9], [31], [41]:

X = AS (1)

where X ∈ �m×N is the observation matrix, A ∈ �m×n is the
mixing matrix, S ∈ �n×N is the source matrix, and m, n, and
N denote the numbers of the observations (or outputs), the
sources (or inputs), and the samples, respectively. The aim of
BSS is to recover S from X without the information of A. To
achieve BSS, some assumptions are made in [31].

A1) All sources are nonnegative, i.e., s j,t ≥ 0, where j =
1, 2, . . . , n and t = 1, 2, . . . , N .

A2) Each source signal is local dominant, i.e., for each j ∈
{1, 2, . . . , n}, there exists an unknown index l j such that
s j,l j > 0 and si,l j = 0 ∀i �= j .

A3) m ≥ n and A is of full column rank.

The rationality of the above assumptions is justified in [31],
where the CAMNS-LP method has estimated successfully the
source signals one by one.

The main ideas of the CAMNS-LP method are summarized
as follows, first of all, the affine hull spanned by the sources
and that by the mixtures are equivalent1:

aff{ST } = aff{XT } (2)

where the superscript T denotes transpose operation. Then it
is further shown that aff{ST } can be written as [31]

aff{ST } =
{

d + Cα | α ∈ �(n−1)×1
}

(3)

where α denotes the representative coefficient vector, d ∈
�N×1 denotes the mean of the columns of XT , C ∈ �N×(n−1)

is composed of the eigenvectors associated with the first
n − 1 principal eigenvalues of X̄T X̄, and X̄ = X − 1n×1dT .
Considering the nonnegativity assumption of the sources, it
is further shown that the intersection of aff{ST } with positive
quadrant is a convex hull. As a result, the sources can be found
by searching the extreme points of this convex hull.

To estimate one of the sources, the searching of extreme
points is cast into the following LP problems (with respect
to α):

min : rT (d + Cα)

s.t. d + Cα � 0 (4)

1This result is based on an additional assumption that A has unit row sum,
which can be ensured by transforming the available observations [31].
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max: rT (d + Cα)

s.t. d + Cα � 0 (5)

where r ∈ �N×1 denotes a vector which is chosen randomly
before beginning the optimization process and � denotes
componentwise inequality. Let α∗

1 and α∗
2 be the optimal

solutions of (4) and (5), respectively. Then either (d + Cα∗
1)

T

or (d+Cα∗
2)

T is the estimate of one of the sources, depending
on the calculated values of the cost functions in (4) and
(5). To estimate the other sources, new LP problems need
to be constructed through updating r by using the well-
known QR decomposition. In total, 2(n − 1) LP problems
need to be solved to recover all source signals [31]. The
computational complexity of solving 2(n − 1) LP problems
by using the typical primal-dual interior-point method is up to
O

(
2η(n − 1)2

(
N1.5 + (n − 1)2 N0.5

))
, where η is the number

of iterations. Clearly, with increase in the number of sources,
the computational efficiency of the CAMNS-LP method will
decrease dramatically.

In the next section, we shall propose the PP method, which
is more efficient in computation. For the sake of simplicity,
we only consider the case of m = n in the sequel. If m > n,
one can reduce the dimension m of the observations into n by
using the PCA method [5], [44]. We also assume that there is
no zero column in X (if any, they can be easily detected and
removed in advance).

III. PP METHOD

While the CAMNS-LP method directly estimates the
sources at the cost of high computational complexity, an
intuition is whether a more efficient method can be developed
by first estimating the mixing matrix and then recovering the
sources from (1). The vector form of (1) can be written as

xt = s1t a1 + s2t a2 + · · · + snt an (6)

where t = 1, 2, . . . , N . If the i th source signal dominates at
the time instant j , i.e., si j �= 0 and s1 j = · · · = si−1, j =
si+1, j = · · · = snj = 0, then, it follows from (6) that
x j = si j ai , i.e., x j = ai up to a scalar. Thus, based on the
source local dominance assumption A2, any column of A is
equal to at least one column of X up to a scalar. In other
words, the columns of A are hidden in the columns of X.
So one can estimate A by finding the columns of X that are
related to the columns of A, up to scalar and permutation
ambiguities. However, since the number of the columns of X
is often very large, how to find those special columns of X is
a big challenge. In the PP method, we first construct a new
mixing model by mapping X such that the corresponding new
source matrix is column-sum-to-1. Thus, any column of the
new source matrix satisfying the local dominance condition
will be a unit vector. The special property of the new source
matrix is beneficial for tracing the indices of those special
columns of X, and thus helpful for the estimation of the mixing
matrix A and the recovery of the sources.

A. Constructing a New Mixing Model

From Assumptions A1 and A3, there must exist a nonzero
vector u �= 0 such that uT X is a positive vector, e.g., uT can

be the product of a random positive row vector and the
inverse of A. This u can be calculated by solving the following
LP problem which is often used to get an initial value in the
feasible region [42]:

Min : γ

s.t.

⎧
⎨
⎩

γ −
n∑

i=1
ui xi j < 0 ∀ j

γ > δ

(7)

where xi j is the (i, j)th entry of X and δ is a small positive
constant (typically, δ = 1e − 6). Let D be a diagonal matrix
whose diagonal entries consist of the reciprocal of the elements
in uT X

D = diag(1T 
 (uT X)) (8)

where 
 denotes the componentwise division. Then, all
elements of uT XD are equal to 1

uT XD = (1N×1)
T. (9)

Also, since uT X = uT AS is a positive vector and S is
nonnegative satisfying local dominance condition, uT A is a
positive vector. Thus, there exists a positive-definite diagonal
matrix L such that all elements of uT AL equal 1

uT AL = (1n×1)
T. (10)

Let
S̃ = L−1SD. (11)

Clearly, S̃ is nonnegative because L−1, S, and D are
nonnegative. From (1), and (9)–(11), it holds that for any
t ∈ {1, 2, . . . , N}

∑n

j=1
s̃ j t = uT ALs̃t

= uT ALL
−1

st dt t

= uT Ast dt t

= uT xt dt t

= 1. (12)

Equation (12) means that each column of S̃ is sum-to-1, i.e.,
S can be normalized to be column-sum-to-1 by (12). Note that,
if the mixing matrix is nonnegative, the simple normalization
method in [43] can also be used. However, if there exist some
negative entries in the mixing matrix, this simple method
cannot ensure the nonnegativity of S̃. Now, we are in the
position to construct a new mixing model with respect to S̃.

Since u �= 0, suppose, without loss of generality, that the
qth element of u is nonzero. Let U be the n×n identity matrix
with the qth row replaced by uT . Clearly, U is full rank. Let
X̃ be the map of X given by

X̃ = UXD. (13)

Then the new mixing model about S̃ results from (11) and
(13) as follows:

X̃ = ÃS̃ (14)

where
Ã = UAL. (15)
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Here, Ã is full rank because U, A, and L are full rank. Also,
since the qth row of U is uT , it follows from (9), (10), (13),
and (15) that all of the elements in the qth row of Ã and X̃
are equal to 1. Furthermore, as we previously mentioned, S̃ is
nonnegative and its columns are sum-to-1. This implies that
any column of S̃ satisfying the local dominance condition is
a unit vector. As a result, those columns of X̃ that correspond
to these unit vectors of S̃, or equivalently the columns of
Ã, will be highlighted and thus facilitate the estimation of
the mixing matrix A. A geometric illustration of the map to
the observations in the case of n = 3 is given in Fig. 1,
where the nonzero elements of the source columns at the local
dominant instants are assumed to be 1 for better visualization.
We can see from Fig. 1(a) that the columns of the mixing
matrix A (denoted by circles) are included but hidden in
the columns of the observation matrix X (denoted by dots).
However, it can be seen from Fig. 1(b) that, after mapping,
the columns of the new mixing matrix Ã are highlighted as
they locate at the vertices of the triangle region formed by all
columns of the mapped observation matrix X̃.

Next, we shall employ the new mixing model (14) to
estimate the mixing matrix A.

B. Estimating One Column of A

First of all, let us analyze the relationship between the
columns of A and the column index of S̃. It is easy to see
from (11) that for any index j , if s̃ j is a unit vector, then
s j is a vector with only one nonzero element. Consequently,
x j is the estimate of a column of A, neglecting possible
scaling and permutation. Therefore, one can estimate a column
of A through finding the index j such that s̃ j is a unit
vector. Furthermore, this index j corresponds to the index
of the maximum of the scalar projections of all column
vectors s̃1, s̃2, . . . , s̃N on [0, 0, . . . , 0, 1]T (or the minimum
on [1, 1, . . . , 1, 0]T ), due to the nonnegativity and column-
sum-to-1 features of S̃. However, since S̃ is unknown, it is
impossible to calculate any scalar projections of its columns.

Let ṽ be a nonzero vector (i.e., ṽ �= 0) and v = (ṽT Ã−1)T .
For any i , we have

ṽT s̃i/‖ṽ‖ = ṽT Ã−1Ãs̃i/‖ṽ‖
= ṽT Ã−1x̃i/‖ṽ‖
= (vT x̃i/‖v‖)(‖v‖/‖ṽ‖). (16)

Equation (16) shows that the scalar projections of
x̃1, x̃2, . . . , x̃N on v are proportional to that of s̃1, s̃2, . . . , s̃N

on ṽ. Motivated by (16), the task here is to find a nonzero
vector v such that the index j of the extreme of the scalar
projections of x̃1, x̃2, . . . , x̃N on v is the desired index, i.e.,
it satisfies the condition that s̃ j is a unit vector. To proceed,
for v �= 0, we first define two index sets as follows:

{
�(v, X̃) = {t | vT x̃t = max(vT X̃)}
�(v, X̃) = {t | vT x̃t = min(vT X̃)}. (17)

Clearly, in the case of v �= 0, �(v, X̃) and �(v, X̃)
are equivalent to {t | vT x̃t/‖v‖ = max(vT X̃/‖v‖)} and
{t | vT x̃t/‖v‖ = min(vT X̃/‖v‖)}, respectively. Hence, for the
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Fig. 1. Geometric illustration of the map to the observations in the case of
n = 3, where dots and circles denote the columns of the observation matrix
and the mixing matrix, respectively. (a) Before mapping. (b) After mapping.

convenience of description, we call v the projection vector
and vT x̃t the projection of x̃t on v. Based on (17), we propose
the following theorem.

Theorem 1: If the mixing matrix is full rank and the sources
are nonnegative satisfying the local dominance condition, then
for any v �= 0, there exists a j ∈ �(v, X̃) or �(v, X̃) such
that s̃ j is a unit vector.

Proof: See Appendix A.
From Theorem 1 and its proof, we have the following
corollary.

Corollary 1: For any v �= 0, if max(vT X̃) > 0, then ∃ j ∈
�(v, X̃) such that s̃ j is a unit vector. If min(vT X̃) < 0, then
∃ j ∈ �(v, X̃) such that s̃ j is a unit vector.

Theorem 1 and Corollary 1 show that the desired index
that corresponds to a unit vector in S̃ is indeed included in
the index set corresponding to the maximum or minimum
of the projections of x̃1, x̃2, . . . , x̃N on v. Specifically, if
max(vT X̃) > 0, the desired index must be in �(v, X̃). If one
can find a proper vector v such that

s̃ j = s̃k for all j, k ∈ �(v, X̃) (18)

then the desired index can be any element of �(v, X̃). On the
other hand, if min(vT X̃) < 0, then the desired index can be
any element of �(v, X̃) if

s̃ j = s̃k for all j, k ∈ �(v, X̃). (19)

Therefore, in order to obtain the desired index to estimate a
column of A, we need to find an optimal projection vector
v for X̃ such that (18) holds in the case of max(vT X̃) > 0
or (19) holds in the case of min(vT X̃) < 0. This falls into
the PP problem which involves finding the most “interesting”
possible projections in multidimensional data [45], [46].
PP-based methods have been widely used for data analysis
such as PCA [7], [44], [47]. And the exact PP algorithms are
often developed based on the chosen projections which are
related to the practical applications.

In the present scenario, the most “interesting” possible
projection vector v is the one satisfying (18) or (19). In order
to obtain such projection vector v, we first randomly generate
a full-rank square matrix W. Then, we construct v by using the
columns of W iteratively according to the projections of the
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columns of X̃ on the columns of W. Since W and Ã are full
rank, (18) and (19) are equivalent to the equation Wx̃ j = Wx̃k .
Therefore, (18) and (19) can be replaced by

Wx̃ j = Wx̃k for all j, k ∈ �(v, X̃) (20)

and
Wx̃ j = Wx̃k for all j, k ∈ �(v, X̃) (21)

respectively. Now, the PP problem becomes how to find a
projection vector v satisfying (20) or (21).

Let us start with defining the following index set for a
given W:

�i =

⎧
⎪⎪⎨
⎪⎪⎩

{t | wT
i x̃t = max(wT

i X̃�i−1), t ∈ �i−1},
if max(wT

1 X̃) > 0
{t | wT

i x̃t = min(wT
i X̃�i−1), t ∈ �i−1},

if max(wT
1 X̃) ≤ 0

(22)

where �0 = {1, 2, . . . , N} and 1 ≤ i ≤ n. Then we propose a
lemma as follows.

Lemma 1: If W is a full-rank square matrix, there exists
l ≤ n such that Wx̃ j = Wx̃k for all j, k ∈ �l .

Proof: See Appendix B.
From Lemma 1 and (22), it follows that the projection vector
v satisfying (20) or (21) can be obtained in l(l ≤ n) iterations
if v is updated in such a way that

{
�(v, X̃) = �i ∀i ≤ l, if max(wT

1 X̃) > 0
�(v, X̃) = �i ∀i ≤ l, if max(wT

1 X̃) ≤ 0.
(23)

We propose the following scheme to calculate v:

1) initialize v to be a zero vector;
2) update v by

v := v + λi wi , for any i ≤ l (24)

where λi is a positive constant that ensures (23).

Clearly, selecting λi such that (23) holds is critical in this
scheme. We first consider the case of max(wT

1 X̃) > 0, which
can be further divided into two subcases: i = 1 and i > 1.

1) Subcase 1 (i = 1): Since the initial value of v is 0, it
results from (24) that the updated v = λ1w1. Based on (17)
and (22), it holds that

�1 = {t | wT
1 x̃t = max(wT

1 X̃�0)}
= {t | wT

1 x̃t = max(wT
1 X̃)}

= �(w1, X̃). (25)

Besides, if λ1 is a positive constant, we have

�(w1, X̃) = �(λ1w1, X̃) = �(v, X̃). (26)

It follows from (25) and (26) that the first equation in (23)
holds for i = 1. Therefore, any positive constant can be chosen
as λ1.

2) Subcase 2 (i > 1): We use a recurrence approach to ana-
lyze the choice of λi . As shown in Subcase 1, �(v, X̃) = �1
is guaranteed after the first iteration. Suppose that �(v, X̃) =
�i−1 after the (i −1)th iteration. Then, based on (17), vT x̃ j =
vT x̃k for any j, k ∈ �i−1. In the i th iteration, since �i ⊆ �i−1,
then vT x̃ j is equal to vT x̃k for any j, k ∈ �i . Also, it follows

from (22) that for any j, k ∈ �i , wT
i x̃ j = wT

i x̃k . Therefore,
for any λi > 0, it holds that

(v + λi wi )
T x̃ j = (v + λi wi )

T x̃k ∀ j, k ∈ �i . (27)

Denote � j − �k = {t | t ∈ � j , t /∈ �k} and choose the
positive λi such that

max
(
(v + λi wi )

T X̃�i−1

)
> max

(
(v + λi wi )

T X̃�0−�i−1

)

(28)

that is ⎧⎪⎪⎨
⎪⎪⎩

λi > 0, and

λi

(
max(wT

i X̃�i−1) − max(wT
i X̃�0−�i−1)

)

> max(vT X̃�0−�i−1) − max(vT X̃�i−1).

(29)

If �i = �i−1, it yields from (28) that

max
(
(v + λi wi )

T X̃�i

)
> max

(
(v + λi wi )

T X̃�0−�i

)
.

(30)

From (27) and (30), one can see that for the updated v using
v + λi wi where λi satisfies (29), �(v, X̃) is equal to �i , i.e.,
the first equation in (23) holds.

If �i �= �i−1, we have �i ⊂ �i−1 as �i ⊆ �i−1. According
to (22), max(wT

i X̃�i ) > max(wT
i X̃�i−1−�i ), which leads to

max(λi wT
i X̃�i ) > max(λi wT

i X̃�i−1−�i ) (31)

for any λi > 0. It can be deduced from (31) that

max(λi wT
i X̃�i ) = max(λi wT

i X̃�i−1). (32)

Since �i ⊂ �i−1 and vT x̃ j = vT x̃k for any j, k ∈ �i−1, it
follows from (31) and (32), respectively, that

max
(
(v + λi wi )

T X̃�i

)
> max

(
(v + λi wi )

T X̃�i−1−�i

)
(33)

and

max
(
(v + λi wi )

T X̃�i

)
= max

(
(v + λi wi )

T X̃�i−1

)
. (34)

Furthermore, since �0 − �i = (�0 − �i−1) + (�i−1 − �i ), one
can see from (28), (33), and (34) that (30) also holds when
�i �= �i−1. This implies that the first equation in (23) holds
for �i �= �i−1.

Based on the above analysis, in the case of max(wT
1 X̃) > 0,

the optimal projection vector v can be found by using (24)
where λ1 can be any positive constant and λi (i > 1) is chosen
according to (29). Finally, one column of A can be estimated
as follows:

â1 = x j , j = arg max
(

vT X̃
)

(35)

where arg max(vT X̃) denotes the index corresponding to the
maximum of vT X̃.

In the case of max(wT
1 X̃) ≤ 0, it must hold that

min(wT
1 X̃) < 0 as w1 �= 0 and X̃ is of full row rank. Then,

similarly, one column of A can be estimated by

â1 = x j , j = arg min
(

vT X̃
)

(36)
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where arg min(vT X̃) denotes the index corresponding to the
minimum of vT X̃, and v is also calculated using (24).
However, in this case, λ1 is any positive constant but λi (i > 1)
should be chosen according to the following criterion:

⎧
⎪⎨
⎪⎩

λi > 0, and

λi

(
min(wT

i X̃�i−1) − min(wT
i X̃�0−�i−1)

)

< min(vT X̃�0−�i−1 ) − min(vT X̃�i−1).

(37)

As for the existence of λi in (29) and (37), we have the
following proposition.

Proposition 1: For a full-rank square matrix W, 1) if
max(wT

1 X̃) > 0, then for any i > 1, there exists λi such
that (29) holds; 2) if max(wT

1 X̃) ≤ 0, then for any i > 1,
there exists λi such that (37) holds.

Proof: See Appendix C.

C. Estimating the Other Columns of A

According to the PP scheme, after a projection vector is
obtained, the data are reduced by removing the component
along that vector direction such that a new vector can be
found [45], [46]. This process will be repeated until all desired
projection vectors are acquired. Thus, once r(1 ≤ r ≤ n − 1)
columns of A are estimated, the next column of A can be
estimated by finding the most “interesting” projection vector
in the subspace orthogonal to Âr defined as

Âr = [â1, . . . , âr ] (38)

where âi denotes the i th estimated column. Based on the gen-
eralized inverse of matrix, the basis of the subspace orthogonal
to Âr can be computed by [48]

Â⊥
r =

(
I − Âr (ÂT

r Âr )
−1ÂT

r

)
H (39)

where H ∈ �n×(n−r) is a matrix of full column rank.
Therefore, one can use the scheme shown in Section III-B
to estimate the next column of A but the auxiliary matrix W
should be constructed as follows:{

W(1 : n, 1 : n − r) = Â⊥
r

W(1 : n, n − r + 1 : n) = Âr .
(40)

From (40), we can see that for any r(1 ≤ r ≤ n − 1),
the updated W is always square and full rank. As a result,
the conclusions in Lemma 1 and Proposition 1 hold for
all r . This guarantees that all other columns of A can be
obtained by using the scheme in Section III-B together with
constructing W by (40).

D. Summary and Analysis

Based on the discussions in the Sections III-B and III-C,
the proposed PP method is formulated as follows.

1) Step 1: Calculate u by (7) and suppose uq �= 0. Let U
be the n × n identity matrix with the qth row replaced
by uT and compute D by (8).

2) Step 2: Map X into X̃ by (13) and randomly generate a
full-rank square matrix W.

3) Step 3: Set v = 0. If max(wT
1 X̃) > 0, select λi by

(29), update v by (24) until (20) holds and then estimate

â1 by (35). Otherwise, select λi by (37), update v by (24)
until (21) holds, and then estimate â1 by (36).

4) Step 4: Estimate the other columns of A in the following
way:

for r = 1, 2, . . . , n − 1;
update Âr by (38);
update Â⊥

r by (39);
update W by (40);
estimate âr+1 by (35) [or (36)] using the
method in Step 3;

end for

5) Step 5: Let Ân = [â1, â2, . . . , ân]. Estimate the source
matrix by Ŝ = Â−1

n X.

In the PP method, since the vector u can be accurately
calculated by solving an LP problem in Step 1, the matrix X̃
can be precisely obtained in Step 2. Moreover, the vector â1
estimated in Step 3 is a global optimum. Similarly, the vectors
â2, â3, . . . , ân are perfectly estimated in Step 4. Thus, the
estimated mixing matrix Ân is a global optimum, which
ensures the perfect recovery of the sources if the model
assumptions are perfectly fulfilled.

As far as the computational complexity is concerned, the
computational cost in Step 1 is dominated by the calculation
of u through solving the LP problem in (7), which has a
complexity up to O(η(n − 1)(N1.5 + (n − 1)2 N0.5)) by using
the primal-dual interior-point method, where η is the number
of iterations [31], [33]. In Step 2, the computation of X̃
using (13) requires O(n2 N) multiplications. In the Step 3,
the complexity of updating the projection vector v in (24)
is O(lnN), where l ≤ n denotes the number of iterations
involved. The computational costs in Steps 4 and 5 are
O(l(n − 1)nN) and O(n2 N + n3), respectively. Hence, the
total computational complexity of our method is no more than
O(η(n − 1)(N1.5 + (n − 1)2 N0.5) + ln2 N + 2n2 N + n3). As
we mentioned in Section II, the complexity of the CAMNS-
LP method is up to O(2η(n − 1)2(N1.5 + (n − 1)2 N0.5)). In
practice, it often holds that N > n2 > n > 1 and η > n ≥ l.
Thus, the approximate computational costs of the PP and
CAMNS-LP methods can be written as O(η(n − 1)N1.5) and
O(2η(n −1)2 N1.5), respectively. Clearly, our method is much
more efficient in computation than the CAMNS-LP method.

IV. SIMULATION RESULTS

In this section, we provide three simulation examples to
illustrate the computational complexity and source separation
performance of the PP method, in comparison with the WPS-
DICA algorithm based on subband independence [17], the TF
method using sparsity [18], the ATGP-FIPPI approach using
high contrast [39], and the CAMNS-LP method [31] which
requires similar assumptions as those in our method. Each
method is implemented using MATLAB R2009 a installed in
a personal computer with Intel(R) Celeron(R) 2.4 GHz CPU,
2 GB memory and Microsoft Windows 7 operational system.
The elapsed CPU time is used to measure the computing
speed. The source separation performance is measured by
the mean of the sum square error (M-SSE) index defined as
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TABLE I

eave VERSUS NUMBER OF SOURCES GENERATED

BY COMPUTER SOFTWARE

n
eave (dB)

PP WPSDICA TF ATGP-FIPPI CAMNS-LP

4 −293.3578 6.4710 7.3711 −152.1610 −289.0798

8 −292.9375 10.1570 11.1690 140.0098 −280.2750

12 −290.9316 12.2901 13.3695 −127.1011 −269.0701

16 −284.5937 13.6598 14.2018 −120.0984 −256.3028

20 −283.9879 14.6601 15.3491 −107.2290 −247.3905

follows [31]:

e(S, Ŝ) = 1

n
min
π∈	n

n∑
i=1

‖si − ŝπi ‖2 (41)

where si is the i th row of the source matrix S, ŝi is the i th
row of the estimated source matrix Ŝ, π = (π1, . . . , πn)T , and
	n = {π ∈ �n×1 | πi ∈ {1, 2, . . . , n}, πi �= π j ,∀i �= j} is the
set of all permutations of {1, 2, . . . , n}. Here, the L2-norms of
si and ŝi , ∀i are normalized to be 1. The optimization in (41)
aims to find the best match between the original sources and
the estimated sources, which can be solved by the Hungarian
algorithm in [49].

A. Separation of Computer-Generated Signals

In the first simulation, computer-generated signals are used
as source signals, which are mutually correlated but satisfy the
local dominance condition. Specifically, they are generated by
using the rand() function of MATLAB, followed by zeroing
some nonzero samples such that the local dominant condition
is satisfied. Each signal is with a uniform distribution on [0 1]
and contains 30 000 samples. Five scenarios corresponding to
4, 8, 12, 16, and 20 sources are considered. For each scenario,
1000 independent runs are carried out to compute the average
M-SSE index eave (in dB) and the average CPU-time Tave
(in seconds). In each run, a different mixing matrix is used,
which is randomly generated. Table I shows the eave values
obtained by PP, WPSDICA, TF, ATGP-FIPPI, and CAMNS-
LP under different numbers of sources. One can see that the
PP, ATGP-FIPPI, and CAMNS-LP methods achieve excellent
source separation performance whilst the PP method performs
the best. This result is not surprising, as the sources satisfy the
local dominance condition required by these three methods.
Besides, our method is almost immune to the number of
sources, making it suitable for dealing with a large number
of sources. In contrast, WPSDICA and TF fail to separate the
sources.

The computational efficiency of the compared five methods
is shown in Fig. 2. Since the Tave values of these methods have
large variance, they are scaled using log10(1 + Tave) for better
visual comparison. Clearly, the PP method is computationally
much more efficient than the CAMNS-LP method. This is
because only one LP problem is encountered in the PP method,
while the latter needs to solve up to 2(n − 1) LP problems,
which is very time consuming. Our method is also more

4 8 12 16 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Source number

lo
g 10

(1
+ 

T av
e)

PP
WPSDICA
TF
CAMNS−LP
ATGP−FIPPI

Fig. 2. Scaled average CPU time versus number of sources.

TABLE II

eave AND Tave WHERE FINGERPRINT IMAGES ARE USED AS SOURCES

PP WPSDICA TF ATGP-FIPPI CAMNS-LP

eave (dB) −295.8921 4.1789 3.0012 −93.0231 −289.8763

Tave (s) 6.3305 201.7410 698.2931 63.7009 105.1912

efficient than the other three schemes, and the reasons are
that WPSDICA needs a complex operation to extract the
independent subband, TF spends much time on sparse time-
frequency points searching, and ATGP-FIPPI uses additional
initialization.

B. Separation of Human Fingerprint Images

In this simulation, three fingerprint images (640 × 480) are
utilized as sources, which are from the DB1 dataset of the
Fingerprint Verification Competition 2004.2 Their correlation
matrix is computed as follows:

R =
⎡
⎣

1.0000 0.7910 0.5949
0.7910 1.0000 0.6549
0.5949 0.6549 1.0000

⎤
⎦.

Obviously, these fingerprint images are mutually correlated.
It is also found that the local dominance condition holds for
these images. Similar to the first simulation, 1000 independent
runs are carried out to compute the indices eave and Tave, where
a different random mixing matrix is used in each run.

Table II shows the eave and Tave values of the compared
five methods. Since the fingerprint images satisfy the local
dominance condition, the PP, ATGP-FIPPI, and CAMNS-LP
methods perform very well in separating these images, much
better than the TF and WPSDICA methods. Furthermore, the
PP method uses much less time to separate the images than
all other methods do.

2Available at http://biometrics.cse.msu.edu/fvc04db/index.html.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 3. (a) Original face images. (b) Mixed images. (c) Images recovered
by the PP method. (d) Images recovered by the WPSDICA method.
(e) Images recovered by the TF method. (f) Images recovered by the ATGP-
FIPPI method. (g) Images recovered by the CAMNS-LP method.

C. Separation of Face Images

In the third simulation, we use four face images (275×350)
as sources,3 which are shown in Fig. 3(a). These images do
not satisfy the local dominance condition and are also cross-
correlated, having the following correlation matrix:

R ≈

⎡
⎢⎢⎣

1.00 0.88 0.84 0.84
0.88 1.00 0.81 0.80
0.84 0.81 1.00 0.93
0.84 0.80 0.93 1.00

⎤
⎥⎥⎦.

For visual comparison, we first mix the face images by using
the following randomly generated mixing matrix:

A =

⎡
⎢⎢⎣

1.85 −0.48 −1.09 0.81
−1.48 −0.14 2.28 0.27
2.06 0.31 0.23 1.67

−0.28 0.41 1.11 −1.47

⎤
⎥⎥⎦

and the mixed images are shown in Fig. 3(b). The PP,
WPSDICA, TF, ATGP-FIPPI, and CAMNS-LP methods are
employed to recover the source images. Figs. 3(c)–(g) shows
the recovered images by these methods, respectively. We can
see that, although the local dominance assumption is violated
in this simulation, the PP, ATGP-FIPPI, and CAMNS-LP
methods achieve satisfactory separation performance. How-
ever, while the ATGP-FIPPI and CAMNS-LP methods take
50.0451 and 84.0469 s to perform source separation, respec-
tively, the CPU time spent by the PP method is only 4.0616 s.

3Available at http://www.bsp.brain.riken.jp/ICALAB.

TABLE III

eave AND Tave WHERE FACE IMAGES ARE USED AS SOURCES

PP WPSDICA TF ATGP-FIPPI CAMNS-LP

eave (dB) −30.0010 4.8050 4.4556 −29.9909 −29.9089

Tave (s) 4.0598 98.6250 122.3579 50.1297 84.1026
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Fig. 4. eave indices of the different methods versus noise levels.

Then, in order to give a numerical comparison of the
concerned methods, we carry out 1000 independent runs to
compute the eave and Tave indices. Here, different random mix-
ing matrices are used in the simulation runs. From Table III,
one can see that the numerical result is consistent with that of
the visual comparison.

In addition, we test the sensitivity of the proposed PP
method to noise using the above four face images, where
the noise is with Gaussian distribution. The signal-to-noise
ratio (SNR) is defined as 10 log10‖x‖/‖x − y‖, where x and
y denote the original signal and the signal polluted by noise,
respectively. Since the TF and ATGP-FIPPI methods cannot
recover all the source images even in the noiseless case (Fig. 3
and Table III for reference), we mainly compare the recovery
precision of the PP, ATGP-FIPPI, and CAMNS-LP methods
in the noisy case. Fig. 4 gives the eave indices of these three
methods against noise with SNR levels of 20, 25, 30, 35, 40,
45, and 50 dB, respectively. It shows that these three methods
have similar performance against noise, due to their common
assumption on the sources.

V. CONCLUSION

In this paper, a PP-based BSS method was proposed to
separate nonnegative sources. By exploiting the nonnegativity
and local dominance of the sources, the BSS problem was cast
into finding the most interesting projections of the mapped
observations. As a result, the proposed PP method gives a
globally optimal solution, and has a lower computational
complexity than the well-known CAMNS-LP method does.
Also, our method does not require the mixing matrix to be
nonnegative. Furthermore, since the PP method does not rely
on any statistical information of the sources, it separates
the cross-correlated sources with higher precision than the
subband independence based WPSDICA method. In addition,
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unlike traditional sparse component analysis method, the
proposed PP does not require the sources to be sparse in
many time instants any more. However, similar to other local
dominance based methods, it may degenerate if the noise is
strong, especially if the local dominant samples happen to be
polluted seriously. Our future work will aim to improve these
kinds of methods in noisy scenarios.

APPENDIX A

PROOF OF THEOREM 1

Denote g = (vT Ã)T , and let gb and gt be the maximum and
minimum of g with indices b and t , respectively. For v �= 0,
if it is a scaled unit vector with only vq �= 0, then � =
� = {1, 2, . . . , N}. Thus all elements of the qth row of X̃
equal to 1. In this case, Theorem 1 holds because of the local
dominance assumption of the sources.

Next, we shall complete the proof by considering the case
that v is neither a zero vector nor a scaled unit vector. Since
Ã is full rank and its qth row consists of elements equal to 1,
the elements of g are not the same, i.e., there must exist i, j
such that gi �= g j , which leads to gb �= gt . Let f = (vT X̃)T

be the projection of X̃. Then the j th element of f is f j =
vT x̃ j = vT Ãs̃ j = gT s̃ j = ∑n

k=1 gks̃kj . The remainder of the
proof is divided into the following two parts.

1) gb > 0: Since S satisfies the local dominance condition,
there exists an identity submatrix in S̃. Thus, for the set
{k | gk = gb}, there always exists a unit vector in S̃
whose τ th element is equal to 1, where τ ∈ {k | gk =
gb}. Denoting this vector by s̃p with index p, it follows
s̃τp = 1 and s̃kp = 0 for all k �= τ . Therefore, we have

∀i /∈ {k | gk = gb}, s̃ip = 0. (42)

Furthermore, since
∑n

k=1 s̃k j = 1 and s̃k j ≥ 0 for any
j , it holds that

f j =
n∑

k=1

gk s̃kj

=
t−1∑
k=1

gk s̃kj +
n∑

k=t+1

gks̃kj

+gt

(
1 −

(
t−1∑
k=1

s̃k j +
n∑

k=t+1

s̃k j

))

=
t−1∑
k=1

(gk − gt )s̃k j +
n∑

k=t+1

(gk − gt )s̃k j + gt

≤
t−1∑
k=1

(gb − gt )s̃k j +
n∑

k=t+1

(gb − gt )s̃k j + gt

= (gb − gt)

(
t−1∑
k=1

s̃k j +
n∑

k=t+1

s̃k j

)
+ gt

= (gb − gt)(1 − s̃t j ) + gt

≤ gb − gt + gt

= gb. (43)

If s̃k j = 0 for all k /∈ {k | gk = gb}, then s̃t j = 0
due to gt �= gb and thus the two inequalities in (43)
become equations. Combined with (42), one can see
that f p = gb. Note that for any j , if f j = gb,
then f j is the maximum of the projection f , i.e., j
belongs to �. Therefore, in the case of gb > 0, there
exists j ∈ � such that s̃ j is a unit vector, e.g., when
j = p.

2) gb ≤ 0: From gb ≤ 0, it follows gt < 0. Similar to (42),
there exists an index q such that

∀i /∈ {k | gk = gt }, s̃iq = 0. (44)

Also, similar to (43), we have

f j =
n∑

k=1

gks̃kj

=
b−1∑
k=1

(gk − gb)s̃k j +
n∑

k=b+1

(gk − gb)s̃k j + gb

≥
b−1∑
k=1

(gt − gb)s̃k j +
n∑

k=b+1

(gt − gb)s̃k j + gb

= (gt − gb)

(
b−1∑
k=1

s̃k j +
n∑

k=b+1

s̃k j

)
+ gb

≥ gt − gb + gb

= gt . (45)

If s̃k j = 0 for all k /∈ {k | gk = gt}, then s̃bj = 0 as gb �= gt

and the inequalities in (45) turn into equations. Combined with
(44), it follows that fq = gt . For any j , if f j = gt , then f j is
the minimum of the projection f , i.e., j is in � . Therefore, in
the case of gb ≤ 0, there exists j ∈ � such that s̃ j is a unit
vector, e.g., when j = q .

The proof is completed by combining 1) and 2).

APPENDIX B

PROOF OF LEMMA 1

We prove Lemma 1 by using apagoge. Let us first consider
the case of max(wT

1 X̃) > 0. Denote G = WÃ. According
to the analysis shown in the proof of Theorem 1, for any i ,
if

Wx̃ j �= Wx̃k, ∃ j, k ∈ �i , j �= k (46)

then the i th row of G must have two elements whose values
are equal to the maximum of that row. From the definition of
�i in (22), it is clear that �i ⊆ �i−1. Thus, if (46) holds for
all i ≤ n, there must exist two identical columns in G, which
means that G is rank-deficient. However, on the other hand, G
should be full rank because both W and Ã are full rank. This
results in contradiction. Therefore, there exists l ≤ n such that
Wx̃ j = Wx̃k∀ j, k ∈ �l .

The proof for the case of max(wT
1 X̃) ≤ 0 can be conducted

similarly. This completes the proof.
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APPENDIX C

PROOF OF PROPOSITION 1

We first prove the statement 1). Since W is full rank, wi �=
0,∀i . Then, based on the definition of �i in (22), one can
conclude that �i ⊆ �i−1, and

∀i > 1,

{
�i−1 �= ∅
�0 − �i−1 �= ∅ (47)

where ∅ denotes the empty set. Also, since �(v, X̃) = �i−1,
it holds that

max(vT X̃�0−�i−1) − max(vT X̃�i−1) < 0. (48)

Thus, if max(wT
i X̃�i−1) − max(wT

i X̃�0−�i−1) ≥ 0, λi can be
any positive number; otherwise, λi can be a positive number
smaller than

max(vT X̃�0−�i−1) − max(vT X̃�i−1)

max(wT
i X̃�i−1) − max(wT

i X̃�0−�i−1)
.

The proof of the statement 2) can be arrived at in a similar
manner and is omitted here. This completes the proof.
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