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Method for Separating Nonnegative Sources

Zuyuan Yang, Member, IEEE, Yong Xiang, Senior Member, IEEE,
Yue Rong, Senior Member, IEEE, and Kan Xie

Abstract— This paper presents a convex geometry (CG)-based
method for blind separation of nonnegative sources. First, the
unaccessible source matrix is normalized to be column-sum-
to-one by mapping the available observation matrix. Then, its
zero-samples are found by searching the facets of the convex hull
spanned by the mapped observations. Considering these zero-
samples, a quadratic cost function with respect to each row of
the unmixing matrix, together with a linear constraint in relation
to the involved variables, is proposed. Upon which, an algorithm
is presented to estimate the unmixing matrix by solving a classical
convex optimization problem. Unlike the traditional blind source
separation (BSS) methods, the CG-based method does not require
the independence assumption, nor the uncorrelation assumption.
Compared with the BSS methods that are specifically designed
to distinguish between nonnegative sources, the proposed method
requires a weaker sparsity condition. Provided simulation results
illustrate the performance of our method.

Index Terms— Blind source separation (BSS), convex geometry
(CG), correlated sources, nonnegative sources.

I. INTRODUCTION

BLIND source separation (BSS) aims to recover unknown
sources only from their measurable mixtures. It is

a fundamental signal-processing problem that arises from
various practical applications (e.g., digital communications,
speech enhancement, medical data analysis, and remote
sensing) [1]–[6]. Because BSS requires little-to-no a prior
information of the sources and the mixing matrix, it is
typically handled by exploiting the statistical properties of
the sources. Under the assumption that the source signals
are statistically independent [7], various higher order statis-
tics (HOS) methods have been proposed for BSS. Among these
methods, the independent component analysis (ICA)-based
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methods play an important role, which includes Fast
ICA [8], quaternion ICA [9], and entropy-bound mini-
mization ICA [10]. By employing the HOS of the mea-
sured data, the HOS-based methods demand lots of data
samples to reach competitive BSS performance. Different
from the HOS-based methods, BSS techniques using the
second-order statistics (SOS) can achieve satisfying perfor-
mance with the size of the sample set greatly reduced,
making it the preferred approach when data is limited [11].
SOS-based BSS methods often require the source signals to
be mutually uncorrelated, and to have different frequency
spectra [12]–[14]. In addition to the statistics-based methods,
some other methods were developed to separate independent
sources [15] and uncorrelated sources [16].

Although independent (or mutually uncorrelated) sources
are often encountered in practice, this is also the case with
spatially correlated. For example, in remote sensing image
processing, the source matrix corresponds to the abundances,
which should be column-sum-to-one. Thus, the sources are
dependent [17]. Besides, in densely deployed wireless sensor
networks, the density of sensors may be very high, and thus,
signals from adjacent sensors are unavoidably cross correlated
[18]–[20]. To separate mutually correlated sources, the sources
must have certain special properties.

One of the special properties that can be exploited for
BSS is sparsity [21]–[23]. It has been shown that BSS can
be achieved by using the sparsity of the sources in the
time-domain [24], the frequency-domain [25], or the time-
frequency (TF) domain [2], [26]. Georgiev et al. [24] reported
that at least one source is silent at each time step. The sparsity
condition required in [25] is that only one source is active at
each frequency point. Kim and Yoo [26] reportedes that for
each source there exist a set of TF points, where only that
source is active. Then clustering is applied to the eigenvectors
corresponding to the TF points to estimate the mixing matrix.
As for [2], it can recover exactly the sources at every auto-
term TF point no matter how many active sources there are,
if the number of the sources is less than twice of that of the
sensors. This is a remarkable improvement in TF analysis.
But it still relies on the source sparsity to cluster for the
estimate of the mixing matrix. It is clear that all of these
methods impose strong sparsity conditions on the sources,
that is, the sources must be very sparse in time, frequency,
or TF domain.

Another one of the special properties that can be
employed to perform BSS is the nonnegativity of sources.
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Nonnegative signals exist in various applications, such as
biomedical data analysis and image processing [27]–[29].
A typical approach in processing nonnegative signals is
nonnegative matrix factorization (NMF) [30]–[34], which aims
to decompose a known nonnegative matrix into the product of
two matrices, being both nonnegative. Because the NMF-based
methods only exploit the nonnegativity of the sources and
the mixing matrix, they can deal with sources that are either
independent (or mutually uncorrelated) or spatially correlated.
However, these methods have local minima problem that
results from using the alternative least-square iteration opti-
mization scheme, and thus, BSS is not a guarantee. Similarly,
by using the nonnegativity of sources, the method in [35] does
not depend on statistical features of the sources. Specifically,
it is shown [35] that one can obtain a finite set of candidate
source signals that contain the original source signals, and
the latter can be identified if they are the most linearly
independent (MLI) among the respective set of candidate
source signals. However, this MLI assumption does not hold
in many practical signals.

Recently, Chan et al. [36] have developed a BSS method
by using both the nonnegativity and the spatial feature of the
sources [36]. With regard to this feature, it requires the pure
source sampling (PSS) (or local dominance) condition, that
is, there exists one time instant at which only its sample is
nonzero for each source. This condition is also employed by
other methods [29], [37], [38] as well, and the PSS-based
methods can achieve BSS perfectly without knowing any prior
statistical information of the sources, that is, these methods
need neither large samples nor different spectra of the sources.
However, they are restricted by the PSS condition, which
requires that all sources are zero besides just one. To cope
with a wider range of applications, it is important to relax this
condition.

In this paper, under weaker condition, we propose a novel
convex geometry (CG)-based method for blind separation
of nonnegative sources. In the CG-based BSS method, the
accessible observation matrix is first mapped to be column-
sum-to-one, such that the unaccessible source matrix is also
mapped to be column-sum-to-one. As a result, the columns
of the mapped observation matrix span a convex hull that
is covered by the convex hull spanned by the columns of
the mixing matrix. Then, the zero-sample positions of the
sources can be found by searching the facets of this observed
hull with existing algorithms. A quadratic cost function, with
respect to the rows of the unmixing matrix, is proposed and
the corresponding linear constraints to these rows are derived.
Finally, the unmixing matrix is estimated by minimizing the
proposed cost function under given linear constraints, which
is a typical convex optimization problem. To achieve BSS,
the proposed CG-based method only requires a mild sparsity
assumption on the sources, which is called sufficient boundary
sampling (SBS) assumption. As will be shown in Section III,
the SBS assumption only requires sources to have a small
number of zero-samples, that is, the sources do not need to
be very sparse. Also, the SBS assumption is weaker than the
PSS condition used in [36] and [37]. Besides, compared with
the traditional SOS- or HOS-based BSS methods, our method

does not require the sources to be independent nor require
them to be uncorrelated.

The remainder of this paper is organized as follows.
Section II formulates the problem of BSS and gives rel-
evant hypotheses. The CG-based BSS method is proposed
in Section III, which also provides an analysis on source iden-
tifiability. Section IV provides simulation results to compare
the performance of the proposed method with that of some
benchmark methods. Section V concludes this paper.

The following notations are used throughout this paper.
x, xi Column vector, the i th element of x.
X, x j , xi j Matrix, the j th column of X, the (i, j)th.

Entry of X.
XT , X−1 Transpose of X, inverse of X.
� Convex hull.
�i The i th facet of a convex hull.
�i Index set of the points covered by �i .
ℵ(�i) Number of the elements in �i .
� Real number set.
0 All zero-column vector.
1 All one-column vector.

II. PROBLEM FORMULATION

The instantaneous mixing model under consideration is as
follows [10], [15], [36]:

X = AS (1)

where X ∈ �m×N is the observation matrix, A ∈ �m×n is the
mixing matrix, S ∈ �n×N is the source matrix, and m, n, N
are the numbers of the observations (or outputs), the sources
(or inputs) and the samples, respectively. The objective of BSS
is to find a matrix W ∈ �m×n such that the matrix Y ∈ �n×N

given by

Y = WT X (2)

is an estimate of S, up to row permutation and scaling.
Equivalently, this means that

WT A = P� (3)

where P is the permutation matrix and � is the diagonal
scaling matrix. Here, WT is called the unmixing matrix.
To achieve BSS, some assumptions must be made on the
sources and the mixing matrix. In this paper, we assume the
following.

A-1) All sources are nonnegative, that is, s j,t ≥ 0, where
j = 1, 2, . . . , n and t = 1, 2, . . . , N .

A-2) The sources satisfy the SBS condition, which will be
defined later.

A-3) m ≥ n and A is nonnegative with full column rank.

A-1) holds in various applications (e.g., image process-
ing, as image intensities are often represented by numbers
having either positive or zero values [39]). A-2) is a mild
sparsity condition on the sources. We shall show in the
following section that it is weaker than the PSS or local
dominance condition used in [36] and [37]. A-3) originates
from some practical applications, such as optical spectroscopy
analysis and remote sensing image interpretation, as the
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observations are nonnegative combinations of nonnegative
signals [37], [40], [41].

For simplicity, we only consider the case of m = n in
the sequel. If m > n, one can reduce the dimension m
of the observations into n by using the existed nonnegative
rank reduction method. We also assume that there is no zero
columns in X. If this is not the case, zero-valued columns can
be easily detected and removed in advance.

III. CG-BASED METHOD

Under A-3), it follows from (3) that any row of WT

should be orthogonal to some n − 1 columns of A. Thus,
it is orthogonal to the hyperplane spanned by these column
vectors. If one can find enough useful points in each of the n
hyperplanes spanned by n − 1 column vectors of A, then all
rows of WT can be estimated. Because only the observation
matrix X is known in the context of BSS, we shall search these
useful points by analyzing X. To proceed, we first introduce
the related convex hulls and facets.

A. Convex Hulls and Facets

From (1), the t th column of X can be written as

xt = Ast =
n∑

j=1

a j s j t ∀t . (4)

Also, based on A-1) and A-3), it holds that 1T a j > 0,∀ j and
1T xt > 0,∀t , where 1 denotes a vector whose elements are
all one. Now we map xt as follows:

x̃t = xt

1T xt
= Ast

1T xt
=

n∑

j=1

a j

1T a j

1T a j s j t

1T xt
=

n∑

j=1

ã j s̃ j t (5)

where

ã j = a j

1T a j
and s̃ j t = 1T a j

1T xt
s j t .

Clearly, 1T ã j = 1, ãi j ≥ 0, 1T x̃t = 1, x̃it ≥ 0 and s̃ j t ≥
0,∀i, j, t . Moreover, similar to (4), one can write (5) to be

x̃t = Ãs̃t (6)

where Ã is a matrix whose j th column is ã j and s̃t is a column
vector whose j th element is s̃ j t . Similar to (1), the matrix form
of (6) can be expressed as

X̃ = ÃS̃. (7)

It is easy to verify that

1T s̃t = s̃1t + s̃2t + · · · + s̃nt

= 1T (a1s1t + a2s2t + · · · + ansnt )

1T xt
= 1T (Ast )

1T xt
=1. (8)

On the basis of (4), (6), and (8), we can see that by mapping
xt , the unaccessible source vector st has been converted to s̃t

whose elements are sum-to-one, where t = 1, 2, . . . , N .
Denote the convex hulls spanned by points x̃1, x̃2, . . . , x̃N

and ã1, ã2, . . . , ãn by � and �∗, respectively. We have the
following lemma.

Lemma 1: � is covered by �∗, that is, � ⊆ �∗.
Proof: As � is a convex hull, for any point y ∈ �, it can

be represented as

y =
N∑

t=1

x̃tαt

where
∑N

t=1 αt = 1, αt ≥ 0, ∀t . Substituting (5) into the
preceding equation yields

y =
N∑

t=1

n∑

i=1

ãi s̃it αt =
n∑

i=1

ãi

N∑

t=1

s̃it αt =
n∑

i=1

ãiβi

where βi = ∑N
t=1 s̃it αt ,∀i . As s̃it ≥ 0,∀i, t , it is in accor-

dance with βi ≥ 0,∀i . Furthermore, with (8), we have
n∑

i=1

βi =
n∑

i=1

N∑

t=1

s̃itαt =
N∑

t=1

n∑

i=1

s̃it αt =
N∑

t=1

αt = 1.

Therefore, y ∈ �∗, which leads to � ⊆ �∗. This completes
the proof.

Lemma 1 shows that any point in � is covered by �∗,
which implies {x̃1, x̃2, . . . , x̃N } ∈ �∗. Note that in the case
m = n, the hyperplanes spanned by n−1 column vectors of A
correspond to those spanned by n − 1 column vectors of Ã
one-by-one, and the hyperplanes associated with Ã correspond
to the facets of �∗ one-by-one. Hence, in estimating the
unmixing matrix WT , searching the useful points from X is
equivalent to searching the special points lying in the facets
of �∗ from the mapped observation matrix X̃, that is, the
locations of the useful points in X are the same as the locations
of the special points in X̃. As for these special points, we have
another lemma.

Lemma 2: For any point from x̃1, x̃2, . . . , x̃N , if it lies in a
facet of �∗, it must lie in one facet of �.

Proof: We use apagoge to prove this lemma. Let x be a
point from {x̃1, . . . , x̃N } lying in a facet of �∗. Then x can be
represented as

x =
n∑

i=1

ãiβi (9)

where
∑n

i=1 βi = 1, βi ≥ 0,∀i and ∃k, βk = 0.
Because x lies in �, if x does not lie in any facet of �,
then there exist n linear independent vectors or points in
�, denoted by ỹ1, ỹ2, . . . , ỹn , without loss of generality,
such that

x =
n∑

j=1

ỹ jγ j

where
∑n

j=1 γ j = 1 and γ j is strictly greater than 0 for all j .

As ỹ j ∈ �,∀ j , it can be represented as ỹ j = ∑N
t=1 x̃tλt j ,

where
∑N

t=1 λt j = 1, λt j ≥ 0, ∀t, j . Moreover, it follows
from (5) that x̃t = ∑n

i=1 ãi s̃it , which leads to:

x =
n∑

j=1

N∑

t=1

x̃tλt jγ j =
n∑

j=1

N∑

t=1

n∑

i=1

ãi s̃it λt j γ j

=
n∑

i=1

ãi

n∑

j=1

N∑

t=1

s̃it λt j γ j . (10)
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Recall that ∃k, βk = 0. Then, by comparing (9)
and (10), one can conclude that there exists k, such that∑n

j=1
∑N

t=1 s̃kt λt jγ j = 0. Because S̃ and λt j ,∀t, j are non-
negative and γ j > 0,∀ j , there must exists k such that∑N

t=1 s̃ktλt j = 0,∀ j , that is, all elements in the kth row
of the matrix [∑N

t=1 s̃tλt1,
∑N

t=1 s̃tλt2, . . . ,
∑N

t=1 s̃tλtn] are
zeros. Therefore

det([ỹ1, ỹ2, . . . , ỹn])

= det(Ã) det

([
N∑

t=1

s̃tλt1, . . . ,

N∑

t=1

s̃tλtn

])
= 0. (11)

On the other hand, ỹ1, ỹ2, . . . , ỹn are linear independent.
Therefore, it must hold that det([ỹ1, ỹ2, . . . , ỹn]) 
= 0, which
contradicts (11). This completes the proof.

Lemma 2 shows that the implicit special points of X̃ can
be found through searching the facets of � which is known.
In general, the number of the facets of � is more than n.
To estimate the unmixing matrix which has n rows, one needs
to select n proper facets. The determination of these facets
often depends on the conditions on the sources. The SBS
condition mentioned in A-2) will be presented in the next
section.

B. SBS Condition

We start with the following definition.
Definition 1: For the nonnegative source matrix S ∈ �n×N ,

if each source has at least n−1 zero-samples and the submatrix
composed of the samples of all other sources corresponding
to those zero-sample instants is full row rank, then S is said
to satisfy the divergent boundary sampling condition.

This definition describes a class of sources which have both
zero-samples and some kind of nonzero-samples. Because of
the divergent boundary sampling condition of the sources, the
available convex hull � has a special relationship with the
unknown convex hull �∗.

Proposition 1: If the nonnegative source matrix S ∈ �n×N

satisfies the divergent boundary sampling condition, then �
contains n special facets such that in each facet, all points
from X̃ lie in a facet of �∗.

Proof: As S satisfies the divergent boundary sampling
condition, then S̃ satisfies this condition. Thus, for ∀i ∈
{1, 2, . . . , n}, there exists an n × (n − 1) submatrix in S̃, such
that the i th row consists of zero-elements and the remaining
rows form a full rank (n − 1)× (n − 1) square matrix. Denote
the facet spanned by the columns of X̃ corresponding to this
submatrix by �̃i . Because both X̃ and S̃ are column-sum-
to-one, one can see that for X̃, any point covered by �̃i ,∀i
corresponds to a boundary sample column of S̃ and the i th
element of this column equals zero. Thus, these points lie in a
facet of �∗, and �̃1, �̃2, . . . , �̃n are the eligible facets. This
completes the proof.

Without loss of generality, throughout this paper, we denote
the n special facets of � by �1,�2, . . . ,�n and the other
facets of � by �n+1,�n+2, . . .. Let �i ,∀i be the index set
of the columns in X̃ which are covered by �i . To find these
special facets, we present the SBS condition as follows.

Fig. 1. Illustration of X̃ in the case of n = 3, which shows that S satisfies
the SBS condition but violates the PSS condition. ∗: columns of X̃. Triangle
bounded by the dashed lines: �∗. Hull bounded by the solid lines: �. x, y,
and z: three row variables of X̃, respectively.

Definition 2: For the source matrix S ∈ �n×N satisfying the
divergent boundary sampling condition, if ∀i � n, j > n and
ℵ(�i) > ℵ(� j ), then S is said to satisfy the SBS condition.

The following proposition shows that the SBS condition is
less restrictive on the sources than the PSS condition used
in [36] and [37].

Proposition 2: The SBS condition is equivalent to the PSS
condition in the case of n = 2, but weaker than the latter for
n > 2.

Proof: If n = 2, that is, there are only two sources, the
SBS condition means that for each source, there exists one
time instant at which only its sample value is zero. This is the
same as PSS condition which requires that for each source,
there exists one time instant at which only its sample value is
nonzero.

For n > 2, if S satisfies the PSS condition, there exists the
identity matrix in S̃. Thus, S must satisfy divergent boundary
sampling condition and � has only n facets where each facet
covers at least n−1 points in X̃, that is, ℵ(�i) ≥ n−1,∀i ≤ n
and ℵ(�i) = 0,∀i > n, that is, S must also satisfy the SBS
condition. On the other hand, the SBS condition does not have
restriction on the exact locations of the points in the facets, that
is, none of the points needs to be at a vertex of �∗. In contrast,
the PSS condition requires that some points1 must appear at
all the vertices of �∗, that is, S satisfying the SBS condition
is not guaranteed to satisfy the PSS condition. Therefore, the
SBS condition is less restrictive than the PSS condition. This
completes the proof.

Fig. 1 shows X̃ in the case of n = 3. It can be seen
that S satisfies the divergent boundary sampling condition,
as in �1,�2, and �3, the number of the covered different
points are all more than n − 1. Moreover, it satisfies the SBS
condition, as �1,�2, and �3 all cover at least four points
in X̃, more than the number of points covered by any other
facet. However, because no point in X̃ appears at any vertex
of �∗, S does not satisfy the PSS condition.

In the next section, we shall derive the CG-based BSS
algorithm and analyze the identifiability of the sources.

1Actually, these points correspond to the pure source sample columns in
the source matrix S.
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C. CG-Based Algorithm and Source Identifiability Analysis

Given the observation matrix X, the mapped observation
matrix X̃ and the convex hull � spanned by all columns of X̃
are fixed. The facets of � can be obtained using the convex
hull-based MATLAB toolbox, where the invoked function is
convhulln() and the parameters depend only on the columns
of X̃ [42]. Besides, it is known [43] that if a facet is spanned
by n-dimensional linear independent vectors v1, v2, . . . , vn−1,
then any point v∗ lies in this facet if and only if

det([v1, v2, . . . , vn−1, v∗]) = 0. (12)

Therefore, for each facet of �, one can use the classical
determinant-based method in (12) to find all the points in X̃
which are covered by this facet.

As we previously mentioned, � usually has more than
n facets and the n special facets of �, denoted by
�1,�2, . . . ,�n , need to be identified. On the basis of A-2)
together with the definition of the SBS condition, the special
facets �1,�2, . . . ,�n are the facets that cover a larger number
of points in X̃, that is, the first n facets with the largest
number of points. Hence, by counting the number of points
in each facet, we can find �1,�2, . . . ,�n and thus find the
corresponding �1,�2, . . . , �n , where �i , i = 1, 2, . . . , n are
the index set of the columns in X̃ which are covered by �i .
It is known from Section III-B, the columns of X̃ which are
indicated by �1,�2, . . . , �n are those special points lying in
the facets of �∗. In other words, the special points in X̃ are
x̃t , t ∈ �1 ∪ �2 ∪ · · · ∪ �n . As a result, the useful points in X
which can be used to estimate the unmixing matrix WT are
identified as xt , t ∈ �1 ∪ �2 ∪ · · · ∪ �n .

For each i ∈ {1, 2, . . . , n}, the i th row of WT should be
as orthogonal to all the points of X, whose indices belong to
�i , as possible. Thus, it is logical to estimate the i th row of
WT by minimizing the quadratic function

∑
t∈�i

wT
i xt xt

T wi .
To avoid trivial solution, we constrain wi to be nonzero by a
linear constraint wT

i X1 = 1, meaning that the i th estimated
source is normalized to be sum-to-one. With these discussions,
we propose to estimate the i th row of WT through the
following constrained optimization:

⎧
⎨

⎩
min

∑
t∈�i

wT
i xt xT

t wi

s.t. wT
i X1 = 1

(13)

where i = 1, 2, . . . , n.
Clearly, the preceding constrained optimization is a typical

convex quadratic programming problem. The following theo-
rem shows that the optimal solutions of (13) with respect to
all i lead to perfect source separation.

Theorem 1: Under A-1) to A-3), it holds that

ŴT A = P� (14)

where ŴT is a matrix which is formed by using the n optimal
solutions of (13) as its rows.

Proof: See Appendix A.
It is worth mentioning that on the basis of A-3), it holds

that �i � � j ,∀i 
= j , resulting in �i � � j ,∀i 
= j . Thus,
estimating any row of WT from the optimization in (13) is

irrelevant to the estimation of the other rows of WT , which
avoids the accumulation of estimation errors. The optimization
in (13) can be implemented by using existing softwares and
the optimization toolbox in MATLAB is used in this paper.

In summary, the proposed CG-based algorithm is formulated
as follows.

1) Step 1: Map X into X̃ by using (5).
2) Step 2: Calculate2 the facets of the convex hull �

spanned by the columns of X̃.
3) Step 3: For each facet of �, use (12) to find all the

points in X̃ which are covered by this facet.
4) Step 4: Obtain the index set �1,�2, . . . , �n , which

corresponds to the first n facets with the largest number
of points.

5) Step 5: Obtain ŵi , i = 1, 2, . . . , n by optimizing (13).
Then the unmixing matrix and the sources are estimated
as ŴT = [ŵ1, ŵ2, . . . , ŵn]T and Ŝ = ŴT X.

IV. SIMULATION RESULTS

In this section, we provide simulation examples to illus-
trate the performance of the proposed CG-based algorithm,
in comparison with the NICA algorithm [7], the DIEM
algorithm [12], the DEDS algorithm [35], the CAMNS-LP
algorithm [36], and the VCA algorithm [37]. With [36], the
source separation performance is measured by the sum square
error (M-SSE) index defined as follows:

e(S, Ŝ) = 1

n
min
π∈
n

n∑

i=1

‖si − ŝπi ‖2 (15)

where si is the i th row of the source matrix S, ŝi is the i th row
of the estimated source matrix Ŝ, π = [π1, π2, . . . , πn]T , and

n = {π ∈ �n×1 | πi ∈ {1, 2, . . . , n}, πi 
= π j ,∀i 
= j} is the
set of all permutations of {1, 2, . . . , n}. Here, the L2-norms of
si and ŝi , ∀i are normalized to be one. The optimization in (15)
aims to find the best match between the original sources and
the estimated sources, which can be solved by the Hungarian
algorithm in [44]. In addition, the classical BSS performance
index (PI) for the global matrix G = ŴT A is also used
to measure the source separation performance. This index is
defined as [12]

PI(G) = 1

n(n − 1)

⎡

⎣
∑

i∈In

⎛

⎝
∑

j∈In

|gi j |2
maxl |gil |2 − 1

⎞

⎠

+
∑

j∈In

⎛

⎝
∑

i∈In

|gi j |2
maxl |gl j |2 − 1

⎞

⎠

⎤

⎦

where In is the index set {1, 2, . . . , n}. Clearly, for the
M-SSE index e and the PI, the smaller they are, the better
the algorithm performs.

Example 1: Computer generated nonnegative signals with
5000 samples are first used as source signals. These sources
satisfy the SBS condition but violate the PSS condition.
Besides, the sources are mutually correlated and higher order
dependent. For each compared algorithm, 1000 independent

2One can invoke the function convhulln() in MATLAB toolbox.
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Fig. 2. eave versus the number of sources, where noise is absent.

Fig. 3. PI versus the number of sources, where noise is absent.

runs are carried out to compute the average M-SSE index eave
and the PI. In each run, the sources are mixed by a randomly
generated mixing matrix.

First, we assume that noise is absent. Fig. 2 shows the eave
values obtained by the CG, NICA, VCA, CAMNS-LP, DIEM,
and DEDS algorithms under different number of sources. One
can see that the proposed CG-based algorithm yields perfect
source separation regardless of the source number, thanks to
the fact that the required SBS condition is satisfied. The DEDS
and CAMNS-LP algorithms are the second and third best per-
formers, respectively, among all algorithms compared herein
and they do not achieve perfect source separation, because
the MLI (resp. PSS) condition required by the DEDS (resp.
CAMNS-LP) algorithm does not hold. Because of the violation
of the PSS condition, the performance of the VCA algorithm is
not satisfactory. As for the NICA and DIEM algorithms, they
fail as the source signals are neither independent nor mutually
uncorrelated. Fig. 3 shows the PI values of these algorithms
versus the number of sources. Similarly, our algorithm results
in perfect source separation and significantly outperforms the
other algorithms.

Second, we consider the noisy case and assume that
the number of sources is n = 3. The noise measured

Fig. 4. eave versus SNRs, where the number of sources is three.

by the signal-to-noise ratio (SNR) is defined as SNR =
10log10(‖x‖2/‖�x‖2), where x and �x are the signal and
the noise, respectively. Fig. 4 shows the eave values of the
compared algorithms versus different SNR levels ranging from
10 to 25 dB. As expected, with the rise of SNR, the eave
values of these algorithms decrease. One can also see that the
proposed CG algorithm performs much better than the other
algorithms at all of the SNR levels considered.

Example 2: The second simulation tests the ability of the
concerned algorithms in reducing image ghosting. Fig. 5(a)
shows the three source images, where the second and the third
images are the shifted versions of the first image. Clearly,
these images are dependent (or correlated) and they do not
satisfy the PSS and MLI conditions. The ghosting images are
created by merging these source images by using the following
randomly generated mixing matrix:

A =
⎡

⎣
0.8518 0.6499 0.5666
0.3342 0.6843 0.1629
0.8413 0.5801 0.2190

⎤

⎦.

Fig. 5(b) shows the three ghosting images, and Fig. 5(c)–(h)
shows the ghosting-reduced images by the CG, NICA,
VCA, CAMNS-LP, DIEM, and DEDS algorithms, respec-
tively. By visual comparison, it can be seen that the
CG-based algorithm almost perfectly recovers the source
images. However, on the other hand, the NICA, VCA,
CAMNS-LP, and DIEM algorithms fail to reduce the ghosting
effects. Although the DEDS algorithm successfully extracts
the second source image, it fails to recover the other two
source images.

Example 3: In this example, different natural images shown
in Fig. 6(a) are used as sources to assess the performance
of the CG, NICA, VCA, CAMNS-LP, DIEM, and DEDS
algorithms. We compute the average M-SSE index eave with
1000 independent runs and in each run, a random mixing
matrix is used to mix up the source images. The eave values of
the compared algorithms are 0.0002, 1.2309, 1.8275, 1.4018,
1.4686, and 1.3868, respectively. It can be seen that the
CG-based algorithm yields very high separation accuracy.
In contrast, because the source images are neither independent
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Fig. 5. (a) Original images. (b) Ghosting images. (c) Images recovered by the
CG-based algorithm. (d) Images recovered by NICA. (e) Images recovered by
VCA. (f) Images recovered by CAMNS-LP. (g) Images recovered by DIEM.
(h) Images recovered by DEDS.

(or uncorrelated) nor satisfy the PSS and MLI conditions, the
other algorithms fail to achieve blind source separation.

Example 4: We compare the performance of the CG, NICA,
VCA, CAMNS-LP, DIEM, and DEDS algorithms in separating
mixed images polluted by additive noise. In this simulation,
the source images are the same as those used in Example 3,
which are shown in Fig. 6(a). The same mixing matrix A
used in Example 2 is employed to mix the sources in the
presence of noise, where SNR = 25 dB. Fig. 6(b) shows the
three mixtures of the sources, and Fig. 6(c)–(h) shows the
recoveries obtained by the CG, NICA, VCA, CAMNS-LP,

Fig. 6. (a) Original natural images. (b) Noisy mixtures of images, where
SNR = 25 dB. (c) Images recovered by the proposed algorithm. (d) Images
recovered by NICA. (e) Images recovered by VCA. (f) Images recovered by
CAMNS-LP. (g) Images recovered by DIEM. (h) Images recovered by DEDS.

DIEM, and DEDS algorithms, respectively. Clearly, the
CG-based algorithm achieves satisfactory source separation
performance, whereas the other algorithms are unsuccessful
in separating the source images from their mixtures.

V. CONCLUSION

In this paper, a CG-based BSS method is proposed to
separate nonnegative sources. This method first maps the
observation matrix, such that the source matrix is normalized
to be column-sum-to-one. Subsequently, the zero-samples of
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the sources are uncovered by searching the facets of the convex
hull comprising the mapped observations. With these zero-
samples, a quadratic cost function with linear constraint is pro-
posed. The estimate of the unmixing matrix can be obtained by
solving this convex optimization problem. Compared with the
BSS methods specifically developed for nonnegative sources,
the CG-based method needs a weaker sparsity condition.
In relation to conventional BSS methods, the proposed method
does not rely on the independence or uncorrelation assumption.
The superior performance of our method is demonstrated by
simulation examples.

APPENDIX A
PROOF OF THEOREM 1

First, we consider the cost function in (13) and denote its
value by Fi . Let

qik =
m∑

j=1

w j i a jk (16)

and

dkk =
N∑

t=1

skt (17)

where i, k ∈ {1, 2, . . . , n}.
Thus, from the cost function in (13) and the (16), it follows:

Fi =
∑

t∈�i

⎛

⎝
m∑

j=1

w j i x j t

⎞

⎠
2

=
∑

t∈�i

⎛

⎝
m∑

j=1

w j i

n∑

k=1

a jkskt

⎞

⎠
2

=
∑

t∈�i

⎛

⎝
n∑

k=1

m∑

j=1

w j i a jkskt

⎞

⎠
2

=
∑

t∈�i

(
n∑

k=1

qikskt

)2

=
∑

t∈�i

(qi1s1t + qi2s2t + · · · + qinsnt )
2.

Clearly, the global minimum of this cost function is zero, and
Fi = 0 is equivalent to

qi1s1t + qi2s2t + · · · + qinsnt = 0 ∀t ∈ �i . (18)

On the basis of the analysis about �i in Section III, one can
see that ∃ j, s j t = 0, ∀t ∈ �i . Hence, (18) can be replaced by

⎧
⎪⎨

⎪⎩

j−1∑
k=1

qikskt +
n∑

k= j+1
qikskt = 0 ∀t ∈ �i

qi j = ci

(19)

where ci ∈ � is a constant.
Suppose that V̄i is the ℵ(�i )-column submatrix of S, where

the column indices are from �i . Denote Vi to be V̄i with the
j th row removed, and let

hi = [qi1, . . . , qi( j−1), qi( j+1), . . . , qin]T . (20)

Then the first equation in (19) can be written as

hT
i Vi = 0T . (21)

According to A-2), Vi is full row rank. Thus, it results from
(21) that

hT
i = 0T VT

i

(
Vi VT

i

)−1

yielding hi = 0. Further considering (20) gives qik = 0,
∀k 
= j . Therefore, the solution of (18) is

qik =
{

ci , k = j
0, k 
= j

(22)

where j ∈ {1, 2, . . . , n}.
Second, it is easy to see from (1) that

x j t =
n∑

k=1

a jkskt ∀ j, t . (23)

Then, with the (16), (17) and (23), the equation constraint in
(13) results in

n∑

k=1

qikdkk =
n∑

k=1

m∑

j=1

w j i a jk

N∑

t=1

skt =
m∑

j=1

w j i

n∑

k=1

a jk

N∑

t=1

skt

=
m∑

j=1

w j i

N∑

t=1

x j t = 1. (24)

Considering A-1), it is obvious that dkk > 0, ∀k. Conse-
quently, it follows from (22) and (24) that the global optimal
solution of (13) satisfies:

qik =
{ 1

dkk
, k = j

0, k 
= j
(25)

where j ∈ {1, 2, . . . , n}. From (25), it is clear that the column
vector qi = [qi1, qi2, . . . , qin ]T has only one nonzero-element.

Furthermore, with A-3), it holds that �i � �k,∀i 
= k.
Hence, for different i ∈ {1, 2, . . . , n}, the optima of (13) are
different from each other, that is, for different i , the corre-
sponding j in (25) is different. As a result, for all i, k satisfying
i 
= k, we have qi 
= 0 and qi is orthogonal to qk . Thus, QT D
is a permutation matrix, where Q = [q1, q2, . . . , qn] and D is
a diagonal matrix whose diagonal entries are d11, d22, . . . , dnn .
Hence, ŴT AD = QT D is a permutation matrix. Consequently,
ŴT A can be expressed as

ŴT A = ŴT ADD−1 = P�

where P = ŴAD is a permutation matrix and � = D−1 is a
diagonal scaling matrix. This completes the proof.
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