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Abstract— The problem of nonnegative blind source separation
(NBSS) is addressed in this paper, where both the sources and
the mixing matrix are nonnegative. Because many real-world
signals are sparse, we deal with NBSS by sparse component
analysis. First, a determinant-based sparseness measure, named
D-measure, is introduced to gauge the temporal and spatial
sparseness of signals. Based on this measure, a new NBSS
model is derived, and an iterative sparseness maximization (ISM)
approach is proposed to solve this model. In the ISM approach,
the NBSS problem can be cast into row-to-row optimizations
with respect to the unmixing matrix, and then the quadratic
programming (QP) technique is used to optimize each row.
Furthermore, we analyze the source identifiability and the com-
putational complexity of the proposed ISM-QP method. The new
method requires relatively weak conditions on the sources and
the mixing matrix, has high computational efficiency, and is easy
to implement. Simulation results demonstrate the effectiveness of
our method.

Index Terms— Blind source separation (BSS), determinant-
based sparseness measure, nonnegative sources, sparse compo-
nent analysis.

I. INTRODUCTION

S INCE blind source separation (BSS) techniques can sep-
arate unknown sources only from the observed mixtures,

they can be used in a wide range of practical applications
[1]–[6]. Recently, nonnegative BSS (NBSS), in which both the
sources and the mixing matrix are nonnegative, has attracted
considerable attentions. So far, a number of methods have
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been developed for NBSS, such as nonnegative independent
component analysis (NICA) [7], nonnegative matrix factoriza-
tion (NMF) [8], convex analysis [9], and nonnegative least-
correlated component analysis (nLCA) [10]. NICA is built
upon the well-known ICA approach and it has several varia-
tions, such as nonlinear principal component analysis [7] and
geodesic search [11]. Similar to other ICA-based methods,
NICA requires that the sources are mutually independent.
Other aspects of ICA and NICA, including identifiability and
convergence are discussed in [12]–[14].

NMF aims to decompose a given nonnegative matrix into
two nonnegative factor matrices [15]. Since both the sources
and the mixing matrix are nonnegative in NBSS, NMF has
potential to be applied to NBSS [8], [16], [17]. By further
exploiting other properties of the nonnegative mixing system,
some constrained NMF methods have been developed to
perform NBSS, such as the flexible component analysis-based
NMF (FCA-NMF) [18] and the minimum volume constrained
NMF [19]–[22]. However, these methods rely on the correct
usage of the optimal balance parameter,1 which is difficult to
choose in practice.

Convex analysis uses the nonnegativity of the sources to
achieve NBSS [9], [23]. While the method in [9] directly
yields the recovered sources, the vertex component analysis
(VCA) method in [23] estimates the mixing matrix. VCA
is often combined with the nonnegative least-square (NLS)
method to retrieve the sources, which is called VCA-NLS.
The methods in [9] and [23] require the pure-source sample
assumption, which means that for each source, there exists
at least one time instant at which that source dominates [9].
Besides, these methods as well as the NICA- and NMF-based
methods are expensive in computation.

The nLCA-based methods utilize the least correlation
between the sources [10], [24], [25], where nLCA by iterative
volume maximization (nLCA-IVM) in [10] is a representative
method. Similar to the minimum volume constrained NMF
methods [19]–[22], which minimize the volume of the convex
hull spanned by the mixing matrix, nLCA-IVM aims to
maximize the volume of the convex hull spanned by the
sources. The maximization is implemented by an efficient
linear programming-based scheme. However, nLCA-IVM can
only deal with the case where the mixing matrix is square. In

1It is used to balance the decomposition error and the constraint [18].
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the over-determined scenario (i.e., there are more observations
than sources), it needs to use the principal component analysis
(PCA) method to preprocess the observations. This may lead
to loss of some useful information and thus affects source
separation performance [26].

It is known [27]– [30] that many real-world signals are
sparse. In this paper, we exploit the sparseness feature of
the sources, together with the nonnegativity of the sources
and the mixing matrix, to tackle NBSS. To achieve this, it is
important to find a proper mathematical measure to gauge the
sparseness of the sources. The sparseness of a single signal
can be gauged by some existing sparseness measures, such
as Donoho’s measure [31] which is based on the L0-norm of
the signal (i.e., the number of zero elements) and Hoyer’s
measure [32] which is based the normalized ratio of the
L1-norm and L2-norm of the signal (i.e., the ratio of
the absolute sum of the elements and the squared root of
the quadratic sum of the elements). However, these sparse-
ness measures do not reflect the joint sparseness of multiple
sources. In order to describe the joint sparseness of the non-
negative sources, we develop a determinant-based sparseness
measure, called D-measure. Based on the D-measure, we
propose an iterative sparseness maximization (ISM) approach
to perform NBSS, in which the NBSS problem can be cast
into row-by-row optimizations with respect to the unmixing
matrix, and the quadratic programming (QP) can be invoked
to optimize each row. For convenience, the proposed method
is called ISM-QP. We also analyze the identifiability of the
sources and show that our method is of high efficiency in
computation.

Unlike the NICA-based methods, the proposed ISM-QP
method does not restrict the sources to be mutually indepen-
dent. While the NMF-based methods suffer from the selection
of a proper balance parameter, this problem is avoided in the
proposed method. In relation to the methods based on convex
analysis, our method does not need the pure-source sample
assumption. Moreover, the new method is much more efficient
in computation than the NICA-based methods, the NMF-based
methods and the methods based on convex analysis. Further-
more, compared with nLCA-IVM, the proposed method can
be applied to the over-determined case; simulations also show
that it has better source separation performance.

The remainder of this paper is organized as follows. In
Section II, we first propose the determinant-based sparseness
measure, i.e., the D-measure. Based on this measure, a new
NBSS model and the corresponding ISM-QP method are
derived, together with analysis on source identifiability and
computational cost. Section III illustrates the performance of
the proposed ISM-QP method using both computer generated
data and real biomedical data. Finally, conclusions are drawn
in Section IV.

The following notations are used throughout this paper:

x, xi column vector, the i th element of x;
X, x j , xi j matrix, the j th row of X, the (i, j)th

entry of X;
XT , X−1 transpose of X, inverse of X;
X−T , det(X) transposed inverse of X, determinant of X.

II. NBSS BASED ON SPARSE COMPONENT ANALYSIS

We consider the following instantaneous BSS mixing model
with m observations and n sources:

X = AS (1)

where X ∈ �m×K is the observation matrix, A ∈ �m×n is the
mixing matrix, S ∈ �n×K is the source matrix, and K denotes
the number of samples. In practice, K is usually much greater
than m and n, i.e., K � m, n. The corresponding unmixing
model is

Y = WX = WAS (2)

where W ∈ �n×m is the unmixing matrix to be obtained and
Y ∈ �n×K denotes the estimate of the source matrix S. If
WA equals the multiplication of a permutation matrix and a
diagonal scaling matrix, then Y will be equal to S, neglecting
the permutation and scaling ambiguities.

In this paper, we make the following assumptions:
A1) ∀ j, t, s j t ≥ 0 and

∑K
t=1 s j t = 1;

A2) m ≥ n, ∀i, j, ai j ≥ 0, and A is of full column rank.
Assumption A1) is made by taking advantage of the scal-

ing ambiguity in NBSS and Assumption A2) is a common
assumption widely used in NBSS [10], [30]. Based on these
assumptions, we shall develop the ISM-QP method by exploit-
ing the sparseness feature of the sources. We start with the
proposition of a new sparseness measure.

A. Sparseness Measure

There are several existing measures which can assess the
sparseness of signals. The measure in [31] uses the L0-norm
of the signal and the one in [32] uses the normalized ratio of
the L1-norm and L2-norm of the signal. These measures can
reflect the temporal sparseness of a single signal [33] but rarely
refer to the spatial or cross sparseness of multiple signals,
which is more important for solving NBSS. On the other
hand, the widely used determinant constraint has shown some
implicit connections with sparseness. In spectral unmixing for
remote sensing image interpretation, the determinant-based
method [34] produces very similar results to those yielded
by the sparseness-based method [30]. So there is a possibility
that the sparseness of nonnegative signals can be measured by
a determinant associated with the signals.

We first recall the well-known Fischer inequality [35].
Lemma 1 Fischer Inequality: For the matrices U11 ∈ �I×I ,

U12 ∈ �I×J and U22 ∈ �J×J , if the matrix U=
(

U11 U12
UT

12 U22

)
is

positive definite, it holds that

det(U) ≤ det(U11) det(U22) (3)

where the equation holds if and only if all of the entries of
U12 are zero.

Let V ∈ �I×K , K > I > 1 be a nonnegative matrix
whose rows satisfy sum-to-one. We define the determinant-
based sparseness measure, or the D-measure as follows:

D(V) = det
(

VVT
)
. (4)

Based on Lemma 1, we have the following proposition for
the D-measure.
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Proposition 1: It holds that 0 ≤ D(V) ≤ 1, where D(V) = 0
if all entries of V are equal, and D(V) = 1 if and only if the
following two conditions satisfy at the same time.

c1) For ∀i∈ {1, 2, . . . , m}, there is only one nonzero
element in vi .

c2) For ∀i, j ∈ {1, 2, . . . , m} and i �= j , it holds that vi

and v j are orthogonal.

Proof: See Appendix IV.
Proposition 1 shows that the proposed D-measure is well

bounded and its value interpolates smoothly between the two
extremes 0 and 1. If the sources are nonsparse, then D(V) is
close to 0. In contrast, D(V) approaches to 1 if and only if
the sources are of sufficient temporal sparseness and spatial
sparseness. Fig. 1 illustrates the sparseness degrees of three
different matrices gauged by the D-measure. It can be seen
that the sparser the matrix is, the larger value the D-measure
gives.

B. NBSS Model

From Assumptions A1) and A2), the signal matrix S and the
mixing matrix A in (1) are nonnegative. Hence, the observation
matrix X is constructed only by additive mixing operations.
Consequently, X is less sparse than S, and then the sparseness
feature of the sources can be utilized in NBSS. On the other
hand, since the sources are nonnegative, the recovered sources
should also be nonnegative, or the matrix Y in (2) should
be nonnegative. Furthermore, due to the inherent scaling
ambiguity in NBSS, the sources are assumed to be sum-to-one.
It is expected that the sum-to-one property is also remained in
the recovered signals, i.e., Y is row-sum-to-one. This can be
achieved if the observation matrix X is normalized to be row-
sum-to-one in advance and later the unmixing matrix W is
constrained to be row-sum-to-one. For the sake of simplicity,
we assume that X has been normalized to be row-sum-to-one
in the sequel. Therefore, based on the D-measure defined in
(4), we propose a new NBSS model as follows:

Maximize : det
(

YYT
)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

yit =
m∑

j=1
wi j x j t ≥ 0 ∀i, t

m∑

j=1
wi j = 1 ∀i .

(5)

Substituting (2) into (5), it follows:
Maximize : det

(
WXXT WT

)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

m∑

j=1
wi j x j t ≥ 0 ∀i, t

m∑

j=1
wi j = 1 ∀i .

(6)

We would like to note that maximizing the determinant in
(6) with respect to the unmixing matrix W under the given
conditions could be equivalent to minimizing the determinant
of the mixing matrix under some other conditions. The latter
approach is used in the minimum volume constrained NMF
[19]–[22]. However, in the minimum volume constrained NMF,

Fig. 1. Illustration of various degrees of sparseness. The D-measure values
corresponding to the three matrices (from left to right) are 0.1, 0.5, and 0.9,
respectively.

one needs to optimize both a decomposition error and a
determinant. Thus, one obstacle is how to choose an optimal
parameter to balance the two terms. This problem is avoided in
our method as the cost function in (6) has only a determinant
term. Moreover, this simpler cost function will result in a more
efficient BSS algorithm.

It can be seen that the constraints to the cost function (6) are
related to the rows of W, denoted by w1, w2, . . . , wn . Also,
since the determinant in the cost function can be expanded
with respect to wi , i = 1, 2, . . . , n, the optimization for (6)
may become easier by splitting it into several sub-optimization
problems, each of which is related to a row of W. As will be
shown later, these sub-optimization problems can be solved by
a typical QP method. The detailed algorithm derivation will
be shown next.

C. Algorithm Derivation

Let Ỹ = WXXT WT and X̃ = XXT . It holds that

Ỹ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1X̃wT
1 · · · w1X̃wT

i · · · w1X̃wT
n

...
. . .

...
. . .

...

wiX̃wT
1 · · · wiX̃wT

i · · · wiX̃wT
n

...
. . .

...
. . .

...

wnX̃wT
1 · · · wnX̃wT

i · · · wnX̃wT
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

From (7), one can see that wi only appears in the i th row
and the i th column of Ỹ. Using the cofactor expansion with
respect to the i th row of Ỹ, it gives

det
(

Ỹ
)

=
n∑

j=1

(−1)i+ j det
(

Ỹi j

)
wi X̃wT

j (8)

where Ỹi j denotes a (n − 1) × (n − 1) sub-matrix of Ỹ with
the i th row and the j th column removed.

Note that Ỹi j does not contain wi if j = i . However, it still
contains wi or wT

i if j �= i . In order to extract wi completely,
the scenario of j �= i is further analyzed under the following
two cases.

1) If j < i , Ỹi j contains wi in its (i − 1)th column,
which corresponds to the i th column of Ỹ, i.e., the
column [w1X̃wT

i , . . ., wi−1X̃wT
i , wi+1X̃wT

i , . . ., wnX̃wT
i ]T .
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Expanding det(Ỹi j ) with respect to this column, we obtain

det
(

Ỹi j

)
=

i−1∑

t=1

(−1)t+i−1 det
(

Ỹi j,t (i−1)

)
wt X̃wT

i

+
n−1∑

t=i

(−1)t+i−1 det
(

Ỹi j,t (i−1)

)
wt+1X̃wT

i (9)

where Ỹi j,t (i−1) denotes a (n − 2)× (n − 2) sub-matrix of Ỹi j

with the t th row and the (i − 1)th column removed. Ỹi j,t (i−1)

does not contain wi .
2) If j > i , Ỹi j contains wi in its i th column, which is also

[w1X̃wT
i , . . ., wi−1X̃wT

i , wi+1X̃wT
i , . . ., wnX̃wT

i ]T . Then, by
expanding det(Ỹi j ) with respect to this column, it yields

det
(

Ỹi j

)
=

i−1∑

t=1

(−1)t+i det
(

Ỹi j,t i

)
wt X̃wT

i

+
n−1∑

t=i

(−1)t+i det
(

Ỹi j,t i

)
wt+1X̃wT

i (10)

where Ỹi j,t i denotes a (n − 2) × (n − 2) sub-matrix of Ỹi j

with the t th row and the i th column removed, and it does not
contain wi .

From (9) and (10), we can rewrite (8) as

det
(

Ỹ
)

=
i−1∑

j=1

(−1)i+ j wi X̃wT
j

×
[

i−1∑

t=1

(−1)t+i−1 det
(

Ỹi j,t (i−1)

)
wt X̃wT

i

+
n−1∑

t=i

(−1)t+i−1 det
(

Ỹi j,t (i−1)

)
wt+1X̃wT

i

]

+ (−1)i+i det
(

Ỹii

)
wi X̃wT

i

+
n∑

j=i+1

(−1)i+ j wi X̃wT
j

[
i−1∑

t=1

(−1)t+i det
(

Ỹi j,t i

)
wt X̃wT

i

+
n−1∑

t=i

(−1)t+i det
(

Ỹi j,t i

)
wt+1X̃wT

i

]

= wi X̃
i−1∑

j=1

(−1)i+ j wT
j

[
i−1∑

t=1

(−1)t+i−1 det
(

Ỹi j,t (i−1)

)
wt

+
n−1∑

t=i

(−1)t+i−1 det
(

Ỹi j,t (i−1)

)
wt+1

]

X̃wT
i

+ wi (−1)i+i det
(

Ỹii

)
X̃wT

i

+ wi X̃
n∑

j=i+1

(−1)i+ j wT
j

[
i−1∑

t=1

(−1)t+i det
(

Ỹi j,t i

)
wt

+
n−1∑

t=i

(−1)t+i det
(

Ỹi j,t i

)
wt+1

]

X̃wT
i

= wi CwT
i (11)

where
C = C1 + C2 + C3 (12)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 = X̃
i−1∑

j=1
(−1)i+ j wT

j

[
i−1∑

t=1
(−1)t+i−1 det

(
Ỹi j,t (i−1)

)
wt

+
n−1∑

t=i
(−1)t+i−1 det

(
Ỹi j,t (i−1)

)
wt+1

]

X̃

C2 = (−1)i+i det
(

Ỹii

)
X̃

C3 = X̃
n∑

j=i+1
(−1)i+ j wT

j

[
i−1∑

t=1
(−1)t+i det

(
Ỹi j,t i

)
wt

+
n−1∑

t=i
(−1)t+i det

(
Ỹi j,t i

)
wt+1

]

X̃.

If ∀ j �= i, w j is known, which results in that ∀t, Ỹi j,t (i−1) and
Ỹi j,t i are known. On the other hand, Ỹii does not contain wi

and X̃ can be calculated from the observation X. Thus, C1, C2,
and C3 are independent of wi . Therefore, det(Ỹ), i.e., the cost
function in (5) or (6), is a quadratic function with respect to
wi . To utilize this property, we optimize (5) or (6) by using an
alternative iteration updating scheme, i.e., optimizing one row
of W while fixing the rest rows, which has been verified to be
an efficient scheme [10], [36], [37]. With regard to optimizing
the i th row wi of W, (6) is simplified as follows:

Maximize : wi CwT
i

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

m∑

j=1
wi j x j t ≥ 0 ∀t ∈ {1, 2, . . . , K }

m∑

j=1
wi j = 1

(13)

where C is a matrix given in (12), which is independent of
wi , and i = 1, 2, . . . , n.

Based on the above analysis, the initial optimization in (6)
is broken into a series of QP problems, which can be solved
easily by using MATLAB function quadprog(). However, if
the sample number K is very large, the optimization may be
time-consuming. To improve computational efficiency, one can
find in prior the extreme points of the convex hull spanned
by the observations and then replace the initial inequality
constraints by the constraints only with respect to these points
[10]. Consequently, (13) can be simplified to

Maximize : wi CwT
i

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

m∑

j=1
wi j v j l ≥ 0 ∀l ∈ {1, 2, . . . , L}

m∑

j=1
wi j = 1

(14)

where L denotes the number of the extreme points of the
convex hull spanned by the observations and i = 1, 2, . . . , n.
Since L is often much smaller than K , the problem dimension
can be reduced significantly. Also, the existing quickhull
algorithm in [38] can be used to find these extreme points.

Finally, we formulate the proposed ISM-QP algorithm as
follows.

1) Preprocessing: Normalize the sum of each row of X
to one. Use the quickhull algorithm in [38] to find the



YANG et al.: NBSS BY SPARSE COMPONENT ANALYSIS 1605

extreme points v1, v2, . . . , vL of the convex hull spanned
by X.

2) Initialization: Set a random initial matrix for W and then
normalize the sum of each of its rows to one. Let i = 1.

3) Updating: Compute the matrix C by (12), obtain the
optimal solution w∗

i of (14) by using MATLAB function
quadprog(), update wi by w∗

i , and set i = i +1. If i > n,
reset i = mod(i, n).

4) Stop: If a given stop criterion is satisfied, the algorithm
stops; otherwise, go to Step 3).

Remark 1: For the proposed algorithm, the stop criterion in
Step 4) is not necessarily fixed. One can use the maximum
iteration number [39] or the convergence tolerance [10]. In
this paper, the first criterion is utilized.

Remark 2: With respect to solving the involved QP problem,
we use the MATLAB function quadprog() with the variable
x = wT

i and the coefficients f, A, b, H, Aeq, Beq given below

f =
⎡

⎢
⎣

0
...
0

⎤

⎥
⎦

m×1

, A = −
⎡

⎢
⎣

v11 · · · v1L
...

. . .
...

vm1 · · · vmL

⎤

⎥
⎦

T

b =
⎡

⎢
⎣

0
...
0

⎤

⎥
⎦

L×1

, H = −C, Aeq =
⎡

⎢
⎣

1
...
1

⎤

⎥
⎦

T

m×1

, Beq = 1.

D. Computational Complexity and Source Identifiability

As far as the computational complexity of the algorithm
is concerned, by using a reflective Newton method in [40],
each QP problem in (14) can be solved with an approximate
computational complexity of O(mL) in the best case and
O(m2 L) in the worst case. Practically, by using the subrou-
tine improve method, the complexity of the QP problem is
approximately O(kmL), where 1 ≤ k < m is often small
[40]. Therefore, the computational complexity of the proposed
ISM-QP is approximately O(kmnL) in each iteration. For the
sake of comparison, the computational complexities of some
benchmark BSS algorithms are also shown here, including
NICA [7], FCA-NMF [18], nLCA-IVM [10], and VCA-NLS
[23]. In each iteration, their approximate complexities are (for
the case of m = n) O(m2 K ), O(m2 K ), O(m2 L), O(m2 K ),
respectively. Note that in the over-determined scenario, addi-
tional computation cost is needed by nLCA-IVM to reduce
the dimension of the observations from m to n.

Furthermore, taking the optimization result into account,
one can see that (14) is a typical QP problem and the result
can be obtained by invoking the existing software package.
Since this result corresponds to only one row of the unmixing
matrix, the original optimization problem in (6) with respect
to the whole unmixing matrix is considered directly for the
source identifiability analysis. Like most existing methods,
it needs some conditions so that the optimal solution of (6)
corresponds to the actual unmixing matrix, which implies the
perfect recovery of the sources. One basic condition is that
the permutation indeterminacy of the sources can be ignored.
Based on this common condition in BSS problem, we have
the following theorems.

Theorem 1 Source Identifiability: If there exists a n × n
submatrix Ŝ satisfying D (Ŝ) = 1, where Ŝ is normalized to
be row-sum-to-one, then it holds that

W∗A = P (15)

where W∗ is the optimal solution of (6), P is a permutation
matrix.

Proof: See Appendix IV.

III. EXPERIMENTAL RESULTS

In this section, both computer generated data and real bio-
medical data are used to test the proposed ISM-QP algorithm,
and the results are compared with some existing benchmark
methods, including NICA, FCA-NMF, nLCA-IVM, and VCA-
NLS. For NICA and nLCA-IVM, the so-called nonnegative
principal component analysis is used to preprocess the obser-
vations in the over-determined case.

Let Š denote the recovered source matrix. The cross-
correlation coefficient (C-Coef) ρ between S and Š, defined
as [10]

ρ = 1

n
max

πi∈�n ,ci∈{1,−1}

n∑

i=1

(si − q(si ))(ci šπi − ci q(šπi ))
T

‖si − q(si )‖ · ∥
∥ci šπi − ci q(šπi )

∥
∥

is utilized to evaluate the source separation performance of the
tested algorithms, where si denotes the i th source, q(si ) is a
K-dimension vector comprised of the mean of si , �n = {π =
(π1, π2, . . . , πn) |πi ∈ {1, 2, . . . , n} , πi �= π j ,∀i �= j} is the
set of all the permutations of {1, 2, . . . , n}, and ci is the sign
(or the polarity) ambiguity between the recovered source šπi

and the true source si . Clearly, ρ ∈ [0, 1] and the larger the
value, the better the source separation performance.

A. Human Fingerprint Image Separation

Fingerprints are the special features of individuals, often
used as evidence in judicial cases. However, they may be
touched by other people. As a result, only some mixed
fingerprints can be collected directly. It is appealing to recover
the source fingerprints by a BSS method. In the simulation,
we consider the case of m = 5 and n = 4. The algorithms
are tested using four fingerprint images [640 × 480, see
Fig. 2(a)] from DB1 dataset of fingerprint verification compe-
tition 2004.2 For each algorithm, we carry out 50 independent
runs to compute the average C-Coef (ρave) index and the
average CPU-time (Tave). In each run, a mixing matrix with
uniform distribution on [0, 1] is randomly generated to mix
the fingerprint images.

Table I shows ρave and Tave resulted from ISM-QP, NICA,
FCA-NMF, nLCA-IVM, and VCA-NLS. As far as the ρave
index is concerned, nLCA-IVM and VCA-NLS perform the
same as the proposed ISM-QP. The reasons are that there exist
pure-source samples in the source images and the identifi-
ability condition in Theorem 1 is satisfied. The ρave index
of NICA is small, because the sources are highly correlated.
Regarding computational costs, the Tave index of ISM-QP
is the smallest and is much smaller than those of NICA,

2For reference, see http://biometrics.cse.msu.edu/fvc04db/index.html.
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TABLE I

ρave AND Tave OF DIFFERENT ALGORITHMS, WHERE SOURCES ARE

FINGERPRINT IMAGES

ISM-QP NICA FCA-NMF nLCA-IVM VCA-NLS

ρave 1.0000 0.7875 0.9180 1.0000 1.0000

Tave 7.6734 311.7219 331.5047 8.3484 248.4125

Fig. 2. Performance comparison in separating human fingerprint images.
(a) Source images. (b) Mixed images. (c) Recovered images by ISM-
QP. (d) Recovered images by NICA. (e) Recovered images by FCA-NMF.
(f) Recovered images by nLCA-IVM. (g) Recovered images by VCA-NLS.

FCA-NMF, and VCA-NLS. Fig. 2(b) shows the mixtures in
one random experiment for reference (for the convenience
of presentation, only four mixtures are displayed here), and
Fig. 2(c)–(g) shows the corresponding recovered sources by
the compared algorithms. From Fig. 2(d), one can see that
the results of NICA are seriously affected by the dependence
among the sources.

B. Recovery of Natural Images Under Noise

In this simulation, we consider a mixing system with m = 5
and n = 3 in the presence of additive Gaussian noise. Three
128×128 natural images are used as sources.3 First, the results
of 50 random runs are presented, where the signal to noise
ratio (SNR)4 is kept at 25 dB. In each run, a mixing matrix

3Images can be downloaded from http://www.bsp.brain.riken.jp/ICALAB.
4SNR is defined as 10log10(‖x‖/‖x − y‖), where x and y denote the

original signal and the signal polluted by noise, respectively.

with uniform distribution on [0, 1] is randomly generated. It
can be seen from Table II that the ρave value of ISM-QP is the
best. In contrast, the ρave value of FCA-NMF is quite low as
FCA-NMF does not necessarily generate the desired solution.
Moreover, ISM-QP is also the most efficient as its Tave value
is the smallest.

Second, in real-world scenarios, some pixels of images may
be corrupted locally by noise. So the performance of the algo-
rithms is assessed versus different percentages of corrupted
pixels. For each percentage, we carry out 50 independent runs
using different randomly selected corrupted pixels. In all 50
runs, the same mixing matrix is used, which is randomly
generated with uniform distribution on [0, 1]. Fig. 3 shows
the ρave values corresponding to 20%, 40%, 60%, and 80%
corrupted pixels, where SNR = 25 dB. Since the ρave values of
FCA-NMF are quite small, we only show the results obtained
by ISM-QP, NICA, nLCA-IVM, and VCA-NLS for better
visual comparisons. One can see from Fig. 3 that the proposed
ISM-QP algorithm performs the best. The reason of ISM-QP
outperforming nLCA-IVM is that the latter employs PCA to
preprocess data, resulting in loss of some useful information.
For VCA-NLS, the results change significantly versus the
percentages of corrupted pixels because the vertex search
algorithm is sensitive to the number of corrupted pixels.

Furthermore, we compare the algorithms against different
SNRs when the percentage of the corrupted pixels is fixed at
25%. For each SNR level, 50 independent runs with different
mixing matrices, which are distributed uniformly on [0, 1] are
performed. Fig. 4 shows the ρave values of ISM-QP, NICA,
nLCA-IVM, and VCA-NLS but those of FCA-NMF are not
shown here due to the same reason mentioned above. We can
see that if noise is weak, ISM-QP, and nLCA-IVM performs
similarly but they outperform the other compared algorithms.
However, when noise becomes stronger, the performance of
nLCA-IVM deteriorates more significantly. The reason is that
more useful information is lost in this case due to the usage
of PCA in preprocessing data. In addition, NICA seems to
perform well in low SNR situations. This is because NICA
mainly exploits the nonGaussianity of the sources [7], [11]
and thus it is robust to Gaussian noise. However, it performs
much worse than ISM-QP at high SNRs.

C. Real-World Fluorescence Microscopy Image Analysis

In this experiment, the proposed ISM-QP algorithm is used
to analyze the real-world fluorescence microscopy images,
which are often collected by using an optical sensor array [41].
Due to the limitation of sensor resolution, the collected images
often suffer from the spectral-overlap problem, which leads to
information leak-through from one spectral channel to another.
NBSS has the potential to find individual maps associated with
specific biomarkers from such images. Specifically, three newt
lung cell images (200×191)5 are analyzed in this experiment,
which are shown in Fig. 5(a).

Fig. 5(b) shows the unmixed images by using ISM-QP.
By visually comparing the images in Fig. 5(b) with those in

5Images obtained from http://publications.nigms.nih.gov/insidethecell/
chapter1.html.
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TABLE II

ρave AND Tave OF DIFFERENT ALGORITHMS, WHERE SOURCES ARE

NATURAL IMAGES (SNR = 25 dB)

ISM-QP NICA FCA-NMF nLCA-IVM VCA-NLS

ρave 0.9810 0.9585 0.7644 0.9661 0.9521

Tave 1.0641 12.3672 15.0563 1.1969 7.2203
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Fig. 3. ρave of different algorithms versus the percentages of corrupted pixels
(SNR = 25 dB).
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Fig. 4. ρave of different algorithms versus SNRs, where the percentage of
corrupted pixels is 25%.

Fig. 5(a), it can be seen that the shape of the unmixed rope
chromosomes by ISM-QP is much clearer than that in the
original collected images, and similar result can also be found
from the separation of the spindle fibers. Since the source
images are unknown, it is difficult to use a numerical index to
measure the separation precision of ISM-QP. Instead, we give
the unmixed images by the NICA, FCA-NMF, nLCA-IVM,
and VCA-NLS algorithms for reference, which are shown in
Fig. 5(c)–(f), respectively. We can see that the result from
our algorithm is comparable to those results obtained by the
other algorithms. In addition, the corresponding CPU-times of
ISM-QP, NICA, FCA-NMF, nLCA-IVM, and VCA-NLS are
0.4188, 33.4500, 22.8234, 1.1094, and 17.9219, respectively.
This confirms again that ISM-QP is more efficient than the
other competing algorithms.

Fig. 5. Analysis of real-world newt lung cell images using NBSS technique.
(a) Collected images. (b) Unmixed images by ISM-QP. (c) Unmixed images
by NICA. (d) Unmixed images by FCA-NMF. (e) Unmixed images by nLCA-
IVM. (f) Unmixed images by VCA-NLS.

IV. CONCLUSION

In this paper, a determinant-based sparseness measure
called D-measure was proposed, and the sparseness of the
sources was exploited for NBSS. In contrast to the traditional
single-signal-based measure, the proposed signal-matrix-based
D-measure can reflect both the temporal and spatial sparseness
of signals. This joint sparseness is beneficial for solving the
BSS problem, which has been analyzed in [27] and further
verified in this paper. Based on the D-measure, a new NBSS
model was derived and the corresponding source identifiability
was also analyzed. A remarkable advantage of the new NBSS
model is that the optimization can be cast into a series
of QP problems, which can be easily solved. Finally, an
efficient ISM-QP algorithm was developed to perform NBSS.
When the identifiability condition was satisfied, the estimation
precisions of ISM-QP are extremely high (see the results in
Section III-A). Even if the identifiability condition is violated,
the results are still robust (see Section III-B). The experimental
results also showed the advantages of the proposed ISM-QP
algorithm over the benchmark algorithms NICA, FCA-NMF,
nLCA-IVM, and VCA-NLS.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof: As we all know, VVT is a positive semi-definite
matrix. This means det(VVT ) ≥ 0, or equivalently D(V) ≥ 0
according to (4). In the case of D(V) > 0, i.e., det(VVT ) ≥ 0,
VVT is positive definite, then it follows from Lemma 1 that

det
(
VVT

)

≤ det
(
v1vT

1

)
det

⎛

⎜
⎝

⎡

⎢
⎣

v2vT
2 · · · v2vT

I
...

. . .
...

vI vT
2 · · · vI vT

I

⎤

⎥
⎦

⎞

⎟
⎠

≤ det
(
v1vT

1

)
det

(
v2vT

2

) · · · det
(
vI vT

I

)

= ‖v1‖2
2 ‖v2‖2

2 · · · ‖vI ‖2
2

≤ ‖v1‖2
1 ‖v2‖2

1 · · · ‖vI ‖2
1= 1.

(16)

Thus we obtain 0 ≤ D(V) ≤ 1.
If all entries of V are equal, V is not of full row rank. As a

result, VVT is not of full rank, leading to D(V) = 0. As for
the D(V) = 1, the proof is decomposed into two parts.

1) Sufficiency: From the condition c1), one can obtain
vi vT

i = 1,∀i . Also, from the condition c2), it holds that
vi vT

j = 0,∀i �= j . Since VVT becomes the identity matrix
in this case, we have D(V) = det(VVT ) = 1.

2) Necessity: If D(V) = 1, then VVT is positive definite
and all inequalities in (16) should degenerate into equations.
The degeneration of the third inequality implies that there is
only one nonzero element in vi ,∀i , which is the condition c1).
At the same time, based on Lemma 1, the degenerations of the
first two inequalities mean that ∀i �= j, vivT

j = 0, i.e., vi and
v j are orthogonal, which is the condition c2). This completes
the proof.

APPENDIX B

PROOF OF THEOREM 1

Proof: It is shown in Assumption A2) that m ≥ n. So we
prove theorem by considering the cases of m = n and m > n
separately.

1) In the case of m = n, based on the features of
determinant, we have

det
(

WXXT WT
)

= det(W) det
(

XXT
)

det
(

WT
)

= det2(W) det
(

XXT
)
. (17)

Because X is known and det(XXT ) > 0, maximizing
det(WXXT WT ) is equivalent to maximizing det2(W) or
| det(W)|. Under this circumstance, (6) degenerates into
Wang’s optimization (see [10, eq. (24)]. Then, this theorem
can be proved by directly using the results of [10, Th. 2].

2) In the case of m > n, since x j t = ∑n
k=1 a jkskt ,∀ j, t and∑m

j=1 wi j x j t ≥ 0,∀i, t , it holds that

m∑

j=1

wi j

n∑

k=1

a jkskt =
m∑

j=1

n∑

k=1

skt wi j a jk ≥ 0 ∀i, t . (18)

So, for the sub-matrix Ŝ, it also holds that
m∑

j=1

n∑

k=1

ŝktwi j a jk ≥ 0 ∀i, t . (19)

Given that Ŝ satisfies D(Ŝ) = 1, then Ŝ can be represented
by Ŝ = L̂P̂, where L̂ and P̂ denote a diagonal matrix and
a permutation matrix, respectively. Therefore, (19) can be
simplified to

m∑

j=1

wi j a jk ≥ 0 ∀i, k. (20)

Considering that
∑m

j=1 wi j = 1,∀i and
∑n

k=1 a jk = 1,∀ j , it
follows:

n∑

k=1

m∑

j=1

wi j a jk = 1 ∀i. (21)

Moreover, since Ŝ = L̂P̂, the sub-matrix X̂ corresponding to
Ŝ of X can be accordingly represented as

X̂ = AŜ = AL̂P̂. (22)

On the other hand, based on the principle of diagonal
reduction in [42], for the observation matrix X, there exist
nonsingular square matrices B and C such that

BXC =
[

In×n 0n×(T −n)

0(m−n)×n 0(m−n)×(T−n)

]

. (23)

Hence, X can be decomposed as

X = GH (24)

where G is a m × n matrix consisting of the first n column
vectors of B−1, and H is a n × K matrix consisting of the first
n row vectors of C−1. Then, X̂ can also be expressed as

X̂ = GĤ (25)

where Ĥ is the sub-matrix (corresponding to X̂) of H. Note
that X̂ is of full column rank. So, Ĥ is nonsingular. Based on
(22) and (25), it follows:

G = AL̂P̂Ĥ−1. (26)

Substituting (24) and (26) into the cost function in (6), we
obtain

det
(

WXXT WT
)

= det
(

WGHHT GT WT
)

= det
(

WAL̂P̂Ĥ−1HHT Ĥ−T P̂T L̂T AT WT
)

= det(WA)det
(

L̂P̂Ĥ−1HHT Ĥ−T P̂T L̂T
)

det
(

AT WT
)

= det2(WA)det
(

L̂P̂Ĥ−1HHT Ĥ−T P̂T L̂T
)
. (27)

Since det(L̂P̂Ĥ−1HHT Ĥ−T P̂T L̂T ) > 0 is independent of
W, maximizing det(WXXT WT ) is meant by maximizing
det2(WA), i.e., | det(WA)|. Based on (20), (21) and the [10,
Lemma 1], it holds that | det(WA)| ≤ 1, where the equation
holds if and only if WA is a permutation matrix. Note that
if WA is a permutation matrix, the equality, and inequality
conditions in (6) hold. Therefore, the optimal solution W∗ of
(6) satisfies W∗A = P. This completes the proof.
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