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A B S T R A C T

Although biopsy-based necrosis rate is a golden standard for reflecting the sensitivity of bone tumor and
guiding postoperative chemotherapy, it requires biopsy which is invasive and time-consuming. In this paper,
we develop a new necrosis rate detection method using time series X-ray images instead of biopsy. To overcome
the limitations of few-shot samples, the proposed method utilizes a Generative Adversarial Network with
Long Short-term Memory to generate time series X-ray images. For further data expansion, an image-to-image
translation network is applied for producing the initial images. These augmented data are treated as the training
set of a 3D-Convolutional Neural Network classification model. Our method expands the few-shot bone tumor
X-rays by 10 times, and approaches the necrotic rate classification result of biopsy, which is the state-of-the-art
technique in the detection of few-shot bone tumor necrosis rate. Furthermore, it provides an efficient method
to investigate the bone tumor necrosis rate in few-shot samples.
1. Introduction

Primary malignant bone tumors are a group of highly malignant
tumors, represented by osteosarcoma, Ewing’s sarcoma, and undiffer-
entiated sarcoma (malignant fibrous histiocytoma) etc. Among them,
the most common one is Osteosarcoma (OS), which has an insidious
onset and rapid growth rate. It is the second universal malignant tumor
in children and adolescents (Dorfman and Czerniak, 1995; Ottaviani
and Jaffe, 2009). Although great progress has been made in the study
of bone tumor (Grignani et al., 2015; Lee et al., 2016; Zhang et al.,
2018), a certain percentage of patients in clinical practice have primary
or secondary resistance to chemotherapy, and the prognosis of such
patients is poor (Ferrari et al., 2003; Fagioli et al., 2008; Duchman
et al., 2015). As a consequence, accurate and timely diagnosis of the
efficacy of chemotherapy is the key to improving the survival rate
and prognosis of bone tumors. Necrosis rate is a widely adopted cri-
terion to measure the sensitivity of osteosarcoma to chemotherapy and
predict tumor outcome (Sami et al., 2008). Although applying biopsy
to measure the necrosis rate is very effective, this invasive operation
brings some risks (Interiano et al., 2016). Whether the surgeon plans to
remove the entire tumor at the time of the biopsy also affects the choice
of the type of the biopsy. Without the need to remove all or part of the
limb containing the tumor, an incorrect biopsy can sometimes make it
difficult for the surgeon to remove all tumors later. Partially removing
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the tumor may accelerate the spread of cancer. In addition, waiting for
biopsy results can be distressing.

In recent years, deep learning has shown strong capabilities in
solving medical image segmentation and classification tasks (Liu et al.,
2021; Singh et al., 2021; Hansen et al., 2022; Hatamizadeh et al.,
2022). In this paper, we introduce the 3D-Convolutional Neural Net-
work (CNN) (Jin et al., 2017) for time series image classification to
obtain necrosis rate results similar to those by biopsy. Considering that
the value of necrosis rate is an indicator of the effect of chemotherapy,
the image we use for classification is a time series diagram composed
of X-ray images at different chemotherapy stages. We develop a new
classification model to find the correlation between the chemotherapy
effect over time and its characteristic changes on X-ray images. Thus
the task of biopsy can be partially replaced by using time series X-
ray images during chemotherapy instead of biopsy images(Fig. 1c).
Even though this method does not give a specific necrosis rate value, a
classification result of the necrosis rate with suitable threshold can be
obtained.

Necrosis rate ranges from 0% to 100% and in the medical field 90%
is usually considered as a threshold point that is very useful for the
follow-up treatment of bone tumor (Kang et al., 2017). However, the
medical imaging data with a necrosis rate above 90% is limited (Kumar
and Gupta, 2016; Miller et al., 2018). The imbalance of two types
of data with 90% as the threshold will cause instability of the deep
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Fig. 1. Architecture of the proposed model. (a) Generating an X-ray image of the virtual patient by the Pix2Pix model. (b) Generating time series lesion images by the
Conv-LSTM-GAN model. (c) Classification of time series bone tumor images by the 3D-CNN model.
learning model. To solve this problem, we divide the patients’ necrosis
rates into two categories with the threshold of 80% (Wang et al., 2016).
The threshold is considered reasonable by orthopedic specialists of
Peking University People’s Hospital. Then the bone tumor necrosis rate
detection problem becomes a binary classification task with a threshold
as 80%.

From the analysis above, we need to track the effect of chemother-
apy through time series images. However, the number of time series
X-ray images of bone tumors is very limited due to patients’ privacy
and rarity of the bone tumor disease. This will seriously affect the
accuracy of the 3D-CNN classification model and lead to over-fitting of
the model caused by few-shot datasets, which is a common problem in
deep learning (Shi et al., 2015; Sun et al., 2017). In order to cope with
this significant challenge in the application of artificial intelligence in
the medical field due to few-shot datasets, this paper presents a new
data generation model named Convolutional Long Short-term Memory
Generative Adversarial Network (Conv-LSTM-GAN) to construct time
series X-ray images for predicting the effect of chemotherapy.

Current solution to solve the problem of small training samples
is mainly data augmentation (Perez and Wang, 2017; Chen et al.,
2021a). Recently, Generative Adversarial Network (GAN) is widely
used in image enhancement by generating high quality and diverse
images (Goodfellow et al., 2014; Zhan et al., 2021; Guan et al., 2022).
Not only has it achieved good results in the enhancement of natural
images, but also it has increasing applications in multimodal medical
image generation and classification (Frid-Adar et al., 2018; Zhan et al.,
2021; Chen et al., 2021b).

Hence in this paper, we propose a new Conv-LSTM-GAN model
to generate time series X-ray images during chemotherapy with the
starting images as input to augment the samples (Fig. 1b). Therefore
the entire time series images are composed of the initial input images
of Conv-LSTM-GAN and the subsequent generated time series images.

For the initial input image, we use another GAN model for image-to-
image translation named Pix2Pix to generate a single X-ray image (Isola
et al., 2017), which provides an X-ray image of the virtual patient and
serves as the first input image of Conv-LSTM-GAN(Fig. 1a). Then the
3D-CNN model uses the enhanced time series images generated by the
above two models as training set to obtain the final classification result.

In this way, we construct a model for the necrosis rate detection
based on these three modules. Our contributions are the following:

• An image-to-image translation GAN is utilized to learn the map-
ping relationship between tumor lesion image and its contour.
2

The lesion information with necrosis rate category is superim-
posed on the normal bone contour extraction image, then the
pre-chemotherapy tumor image with the necrosis rate category
label is generated, which significantly expands the input data of
the Conv-LSTM-GAN model to generate more samples of the time
series images.

• We propose the Conv-LSTM-GAN model to take advantage of
the time dimension characteristics of bone tumor X-ray images.
The model exploits the time correlation from real time series
tumor images before chemotherapy and in chemotherapy. The
Conv-LSTM-GAN takes the real and generated pre-chemotherapy
image as the first image of overall time series images, generating
subsequent image in chemotherapy.

• We input the tumor time series images generated into a 3D-CNN,
which extracts the most representative tumor time series image
lesion features, performing classification based on the category
label of the necrosis rate. We demonstrate that the classifica-
tion results of bone tumor necrosis rate obtained from images
generated by the proposed approach are close to those of biopsy.

To the best of our knowledge, the method in this paper is applied to
bone tumor medical image synthesis for the first time.

2. Method

The overall model presented in this article consists of serial modules
as shown in Fig. 1. First, we give a general overview of the con-
nection relationships and data interaction methods between all three
sub-modules. Next, we introduce the structure and workflow of each
sub-module in detail.

2.1. Overview of the model

As shown in Fig. 1, the three sub-modules are connected in a way
that one module provides the generated image data for its consec-
utive module. First, the image-to-image translation conditional GAN
(Pix2Pix) model (Isola et al., 2017) is adopted to translate normal
bone contour into bone tumor lesion image. Then for the generation
of time series image, we combine the traditional GAN with the Long
Short-Term Memory network (LSTM) to generate the sequence images
of starting images given by Pix2Pix (Sherstinsky, 2020). Finally, as
enhanced input data, the generated time series bone tumor images are
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Fig. 2. The result of extracting the contour of an image from the training set or the
test set and merging it with its original image.

sent into deep convolutional neural network of 3D-CNN (Sun et al.,
2017) to obtain the final necrosis rate classification result.

Pre-chemotherapy image generation model. The training sets are
the pre-chemotherapy bone tumor lesion image and its contour after
pre-processing. During the training process, the model has learned the
mapping relationship between the bone contour and the tumor lesion
image. Then the test data of normal bone contour extraction images
can be generated as pre-chemotherapy tumor images.

Time series image generation model. The time series images
of real bone tumors at different chemotherapy stages are used as
training images of the model. After the training process, the Generator
can finally generate sufficiently realistic time series X-ray bone tumor
images. Then in the process of Generating, the pre-chemotherapy bone
tumor images generated by the Pix2Pix model are sent into the Encoder
of the trained model as the given starting images of the time series
images. After this, the output of the trained Decoder in the Generator
is combined into the final generated time series images. In addition,
the category label of the overall complete images for the following
classification task is consistent with the input pre-chemotherapy bone
tumor image.

Classification of time series bone tumor images. We construct
a 3D-CNN network for the classification of the generated time series
bone tumor images. The network parameters are trained based on the
necrosis rate category labels.

2.2. Pix2Pix model generate pre-chemotherapy lesion images

2.2.1. Extract bone contour as pre-processing
We extract the bone contour by using the Canny edge detection op-

erator in the opencv module of python3. Canny edge detection method
extracting contour mainly includes the steps of graying, filtering, and
calculating the gradient magnitude and direction of the image using the
Canny operator.

As shown in Fig. 2, this operation is used for the original pre-
chemotherapy tumor lesion image and the normal image with no
tumor. Moreover, the paired pre-chemotherapy images include necrosis
rates above 80% and below 80%, which are used as training sets for
the Pix2Pix model twice respectively. Also, the combined images of the
normal image (next referred to as category normal) and its contour are
split into two batches, which are used as test sets for two trained models
to generate two types of pre-chemotherapy bone tumor lesion images.
3

Fig. 3. Flowchart and output of the Pix2Pix model. (a) Optimization process of
Generator and Discriminator. (b) From left to right: contour of the original image,
original normal bone image during Pix2Pix model 1 test period, generated bone tumor
image before chemotherapy with category 0.

2.2.2. Pre-chemotherapy lesion images synthesis
The Pix2Pix model includes a Generator (G) and a Discriminator

(D) as shown in Fig. 3a. As their names imply, the Generator generates
an image, and the Discriminator determines whether it is real or fake.
We send the combined images into the Pix2Pix model and select the
left half of the paired image, which is the contour, and send it into G.
The contour is first convolved to obtain the picture features, and then
deconvolved to generate an image. Next, the generated image and its
original input contour image are combined and sent into D.

Discriminator D judges whether this pair of images is real or fake
and calculates the loss of this result with the preset ‘‘real’’ label to
optimize the Generator. On the other hand, the real image and its
original input contour image are also combined and sent into D besides
the paired image of the generated image and its contour to optimize
the Discriminator. Unlike G, the loss calculation in this optimization
process includes two parts. One is the loss of D’s ‘‘real or fake’’ result
and the preset ‘‘fake’’ label for the generated image pair whereas the
preset label to optimize G is ‘‘real’’, and the other loss is the ‘‘real
or fake’’ result of D’s real image pair and its preset ‘‘real’’ tag. The
Generator and Discriminator constantly gamble to obtain the optimal
model.

2.3. Conv-LSTM-GAN model generate time series lesion images

In the training stage, we first input real time-series images before
and during tumor chemotherapy to train Conv-LSTM-GAN. In the gen-
eration stage, the generated and real pre-chemotherapy tumor images
are combined as the input of the model, to generate time series images
in chemotherapy.

2.3.1. Change the contrast and brightness to expand the train data
Because there are too few real time series images, there is not

enough training data for an adversarial network to generate the time
series images. Some common data enhancement methods are adopted
for the training data. In this paper, the data is initially expanded by
changing the contrast and brightness based on the original dataset.

2.3.2. Generator
The generation network is composed of two layers of convolutional

LSTM. The input of the generation network consists of two parts, which
are the memory state and the first stage (before chemotherapy) images
in the time series.
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Fig. 4. Encoder and Decoder structure of Generator.
We aim to generate time series changes in the chemotherapy stage
with given starting pre-chemotherapy bone tumor images. Specifically,
𝑥𝑖 denotes the grayscale map of each bone tumor image, 𝑋 ∈ R𝑊 ×𝐻×𝑚

denotes the sequence of the first 𝑚 images of real time series bone
tumor images as shown in (1). Next we send this image sequence
and the initial state into the Encoder as shown in (2). The Encoder
transforms the input 𝑚 images into a vector representation 𝐿 through
a non-linear transformation F, where 𝑊 and 𝐻 denote the width and
height of an image, respectively.

𝑋 ∈ R𝑊 ×𝐻×𝑚 = ⟨𝑥1, 𝑥2 ⋯ 𝑥𝑚⟩ (1)

𝐿 = F(𝑧,𝑋 ∈ R𝑊 ×𝐻×𝑚) (2)

For the decoder as shown in (3), its task is to generate the image
𝑦𝑖 at time 𝑖 according to the intermediate vector representation 𝐿 of
the input 𝑚 images and the historical information 𝑦1, 𝑦2,… , 𝑦𝑖−1 that
has been generated before as shown in Fig. 4. In particular, the first
generated image 𝑦1 is obtained by taking the last image 𝑥𝑚 of the input
time series as input.

𝑦𝑖 =
{

𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐿, 𝑦1, 𝑦2,… 𝑦𝑖−1) , 𝑖𝑓 𝑖 ≥ 2
𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐿, 𝑥𝑚) , 𝑖𝑓 𝑖=1 (3)

Significantly, the basic structures of the Encoder and Decoder are
a two-layer ConvLSTM network. By repeating this neural network
module, a chain structure is formed as a whole Encoder or Decoder as
shown in Fig. 4. The mapping process of the Encoder can be expressed
as follows:
[

𝐻𝑡, 𝐶𝑡
]

=
{

𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀
(

𝑥𝑡,
[

𝐻𝑡−1, 𝐶𝑡−1
])

, 𝑖𝑓 2 ≤ 𝑡 ≤ 𝑚
𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀

(

𝑥1,
[

𝑧𝑘, 𝑧𝑘
])

, 𝑖𝑓 𝑡=1 (4)

Where 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 denotes the ConvLSTM cell of the Encoder, 𝐻𝑡
and 𝐶𝑡 represent the cell state and the hidden state of the ConvLSTM
cell at time 𝑡, respectively, noise 𝑧 makes up the initial state variables in
the ConvLSTM cell of the Encoder network, both the cell state 𝐶1 and
the hidden state 𝐻1 are linearly transformed by 𝑧, the dimension of 𝑧
is 𝑘, and 𝑥𝑖 ∈ R𝑊 ×𝐻 denotes the input image in this ConvLSTM cell at
the 𝑖𝑡ℎ time. In this way, we can obtain the final vector representation
𝐿 of the Encoder, which is equivalent to

[

𝐻𝑚, 𝐶𝑚
]

.
In contrast, the Decoder needs to save the output at each point in

time as the generated image while the Encoder is only used to save the
output state of the last point to the Decoder. (5) indicates the process
of each generated image by the ConvLSTM cell at time 𝑡. Similar to the
Encoder, the input of each cell is

(

𝑦𝑡,
[

𝐻𝑡−1, 𝐶𝑡−1
])

at time 𝑡, 𝑦𝑡 denotes
the generated bone tumor input image at time 𝑡. In particular, the input
4

for generating the image in the first time phase is the last frame 𝑥𝑚
of the input time series and vector representation 𝐿 obtained by the
encoder.
[

𝐻𝑡, 𝐶𝑡
]

=
{

𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀
(

𝑦𝑡,
[

𝐻𝑡−1, 𝐶𝑡−1
])

, 𝑖𝑓 𝑡 > 𝑚 + 1
𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀

(

𝑥𝑚, 𝐿
)

, 𝑖𝑓 𝑡 = 𝑚 + 1
(5)

𝐺𝑖𝑚𝑔 =
𝑛
∑

𝑡=1
𝑦𝑡 =

𝑛
∑

𝑡=1
𝐶𝑜𝑛𝑣(𝐻𝑡) (6)

We save the output of each time point 𝑦𝑡 to make up the generated
time series images as shown in (6). 𝐺𝑖𝑚𝑔 denotes the generated time
series images, 𝑛 is the length of the time series. Each generated image
𝑦𝑡 is obtained by the convolution operation of the hidden state 𝐻𝑡 of
the corresponding time period in the ConvLSTM cell, where 𝐶𝑜𝑛𝑣 repre-
sents a multi-layer convolution operation. Finally, the generated images
are combined with the corresponding previous time series images input
of the Encoder to obtain the entire time series images.

2.3.3. Discriminator
On the other hand, the network structure of the Discriminator is

similar to that of the Encoder. Because the role of the Discriminator is
equivalent to that of a classifier, it extracts the whole image sequence
features to obtain the final ‘‘real or fake’’ classification result to op-
timize itself and the Generator. Hence only the Encoder is needed to
achieve this purpose. As with the Encoder in the Generator, we send
time series images into the Discriminator, expand them in the time
sequence through the same ConvLSTM module, continuously update
the variable parameters of the ConvLSTM module, and finally obtain
the ‘‘real or fake’’ classification result. The input image and state
variable form are consistent with the Encoder network in Generator
as shown in (7),
[

𝐻𝑡, 𝐶𝑡
]

=
{

𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀
(

𝑥′𝑡 ,
[

𝐻𝑡−1, 𝐶𝑡−1
])

, 𝑖𝑓 2 ≤ 𝑡 ≤ 𝑛
𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀

(

𝑥′1,
[

𝑣𝑙𝑎𝑏𝑒𝑙 , 𝑣𝑙𝑎𝑏𝑒𝑙
])

, 𝑖𝑓 𝑡=1 (7)

where 𝑥′𝑡 represents a real image or a generated image when optimizing
D, 𝑛 is the length of the time series, which is also consistent with
the subsequent length of the real sequence except the input sequence.
Different from G, the initial state vector settings here are not converted
by the noise vector 𝑧, but all-zero vectors with the same dimensions
as the number of label categories 𝑙𝑎𝑏𝑒𝑙. The state vector output at
the last stage is transformed into a vector of ‘‘real or fake’’ through
a linear transformation. So the specific function of the Discriminator
is: (𝑋 ∈ R𝑊 ×𝐻×𝑛) → 𝐴 ∈ [0, 1], which can distinguish the real time
series (ideal result is 1) images from the generated time series images
(ideal result is 0) as shown in Fig. 5a. In other words, the output of the
last stage of the LSTM network is linearly transformed to determine
whether the input time series is real or fake.
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Fig. 5. Flowchart and output of the Conv-LSTM-GAN. (a) Optimization process of Generator and Discriminator. (b) Two on the left: the input time series images; Two on the
right: the generated time series images.
Fig. 6. 3D-CNN classification.

2.3.4. Objective function
We propose a combination of two objective functions to enhance

the model’s generation ability:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝐸𝑋∗
𝑖 ∼𝑝𝑑𝑎𝑡𝑎(𝑋

∗
𝑖 )
[log(𝐷(𝑋∗

𝑖 ))]+

𝐸𝑋𝑖∼𝑃𝑑𝑎𝑡𝑎(𝑋𝑖),𝑧∼𝑝𝑧(𝑧)
[log(1 −𝐷(𝐺(𝑋𝑖, 𝑧)))]

(8)

where 𝑋∗
𝑖 is a real time series bone tumor image sequence from

the training dataset, 𝑋𝑖 is an input time series images sequence of
the generated sequence, 𝑧 is the initial state variable vector of the
ConvLSTM cell in the Encoder of our proposed Conv-LSTM-GAN model.

2.4. Classification of time series bone tumor images

We send the generated images to the 3D convolutional neural
network for binary classification of bone tumor necrosis rate. The
threshold of the binary classification necrosis rate is 80%. The deep
convolutional neural network includes two 3D convolutional layers,
two 3D pooling layers, and two fully connected layers as shown in
Fig. 6.

The generated time series bone tumor image of each patient is
regarded as a whole sample and sent to the above mentioned deep
convolutional neural network, and this classifier is trained based on the
5

tumor necrosis rate label. The parameters of the network are trained
and adjusted to extract the most representative features of the time
series bone tumor lesion images.

3. Experiment settings and results

In this section, we first present the details of our bone tumor X-ray
image dataset, then report the image generation results and experi-
ment settings, finally analyze the classification results of the generated
datasets by the 3D-CNN model in comparison with different datasets.
All the experiments in this paper have been implemented in Tensorflow
on NVIDIA RTX2080Ti GPU with 11 GB memory. About 1 GB of GPU
memory is required to store model parameters, and about 10 GB of GPU
memory is consumed when ‘‘batch size’’ is set to 24 during training
with the input image size of 256 × 256. It takes about 12 h to train the
model until the model converges, and it only takes less than 1 min for
the trained model to detect a single image.

3.1. Dataset and classification threshold

We collect a dataset which contains bone tumor X-ray images of 119
patients from Peking University People’s Hospital. For each patient, the
bone tumor necrosis rate is diagnosed by orthopedic specialists. The
dataset also includes time-series chemotherapy images of 33 patients,
and each patient has 2 images before chemotherapy and 2 images in
chemotherapy. The ratio of males to females in the above dataset is
78:41, and the age distribution is 10 to 83 years old. The tube voltage
used in radiology is 100 kVp. In addition, we collected 130 extra bone
contour images for Pix2Pix model to generate bone tumor images.

Especially, a large amount of evidence points out that the extremely
low incidence of bone tumors has led to a small number of X-ray images
collected. According to Centers for Disease Control and Prevention,
Primary bone cancer is rare, which accounts for only about 0.5% of all
cancers in the U.S. Seer, the authoritative source for cancer statistics in
the US, points out that the rate of new cases of bone and joint cancer
was 1.0 per 100,000 men and women per year. In 2018, an estimated
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Table 1
Description of the Pix2Pix dataset.

Category Training(pair) Test(pair) Generated(single)

0 68 130 130
1 51 130 130

3,450 new cases of primary bone cancer will be diagnosed in the United
States (Miller et al., 2018). Taking into account the image specification
issues caused by different X-ray equipment and the impact of noise
interference, we can actually use very few images on the deep learning
model. In China, we have collected as many bone tumor images as
possible for the dataset.

X-ray images of bone tumors are already very scarce, and the
samples with a necrosis rate higher than 90% is even rarer. In our
dataset, If we use 90% as the classification threshold for necrosis rate,
the available input sample number ratio is 40:79 (above 90%: less than
90%) with a threshold of 90% used as the classification criterion. The
imbalance of two types of data with 90% as the threshold will cause
instability of the deep learning model. To solve this problem, we set the
threshold to 80%, which is feasible in the view of orthopedic specialists
in Peking University People’s Hospital.

3.2. Generation results of the Pix2Pix network

The input of the Pix2Pix model is the combination of paired images,
which are real bone tumor images before chemotherapy with necrosis
rate labels and their corresponding contour images. The Generator (G)
of the model can learn the mapping relationship of each pair of contour
image to the real pre-chemotherapy image after optimized by the
Discriminator (D). Then the generator can generate pre-chemotherapy
images with the same label as the real image based on a given contour
image (Fig. 1a).

Specifically, the Pix2Pix model is applied twice to generate bone
tumor images before chemotherapy with a necrosis rate below 80%
(here after referred to as label 0) and the necrosis rate above or equal to
80% (here after referred to as label 1). The first Pix2Pix model is trained
by 68 pairs of bone tumor images before chemotherapy with label 0 and
their contour images. Similarly, 51 pairs of bone tumor images before
chemotherapy with label 1 and their contour images serve as the input
to train the second Pix2Pix model (Table 1).

Since the Discriminator can distinguish the generated and real lesion
image as much as possible after the optimization of G and D, the
trained Generator learns sufficiently credible lesion information from
the normal contour to the target lesion image. Hence the target pre-
chemotherapy lesion images with two necrosis rate category labels can
be approximated by the trained Generator. An example of the generated
pre-chemotherapy lesion image with label 0 is shown in Fig. 3b. The
normal bone contour images are divided into two batches as the test
data of two trained Generators of the models respectively. Then we
can obtain the generated pre-chemotherapy bone tumor images with
different categories(Table 1) .

3.3. Generation results of Conv-LSTM-GAN

After we obtain the preamble dataset of time series images in the
Pix2Pix model, the generated prediction images can be obtained by
the trained Generator of the Conv-LSTM-GAN model. In this paper,
the input to this Generator consists of two parts: 119 single real pre-
chemotherapy images and 260 pre-chemotherapy images generated by
Pix2Pix as shown in Table 2. In this paper, the length of the input bone
tumor image sequence is 2, and the output prediction sequence length
is also 2. A generated image sequence in the test period is shown in
Fig. 5b, whose input is a real pre-chemotherapy bone tumor image with
a necrosis rate below 80%.
6

c

During the training process, the available training data are obtained
from 33 patients with 4 X-ray images for each patient. We first expand
this training data by traditional data enhancement methods, hence the
amount of data is expanded to 7 times as described in Table 2. The
input and output image size of Conv-LSTM-GAN are both 256 × 256.
The time series length of the LSTM is set to 4.

As shown in Fig. 5a, the enhanced data serve as training data to the
Generator, which is composed of an Encoder and a Decoder (Cho et al.,
2014). We set a 1 × 256 noise vector which is uniformly distributed
as the initial state. This vector together with the first image 𝑥1 serves
as the whole input at the first time stage to a ConvLSTM cell of the
encoder as shown in Fig. 4. Then the input image of the next time stage
is combined with the cell state information passed by the current time
stage as the whole next input to the next ConvLSTM cell and so on
(Fig. 5a). We complete the coding of the input image sequence in this
way.

After the nonlinear transformation, an implicit vector representation
of the input sequence is obtained as shown in Fig. 5a. Based on
the implicit vector representation and the last original image 𝑥𝑚, the
generated image at the next moment 𝑥∗𝑚+1 can be predicted by the

ecoder, where 𝑚 is 2 in this paper. The image 𝑥∗𝑚+2, which is the fourth
mage can be generated in the same manner, based on the cell state
assed in the time dimension of the ConvLSTM cell in the Decoder and
he third generated image.

In the test period, the length of the test input image sequence is only
(𝑥1) for both the 119 single real pre-chemotherapy images and the

60 pre-chemotherapy images. In order to make the input sequence
ength greater than 1 to meet the coding requirements, all test input
mages are copied to obtain the second time stage images 𝑥2 (Figs. 1a
nd 5a).

.4. Classification results

.4.1. Classification results using the generated image data
After applying the above two generation models, we have generated

ufficient time series bone tumor images for the following binary clas-
ification task. This binary classification task takes the necrosis rate of
0% as a threshold, trains the 3D-CNN network to distinguish the image
eatures of the two classes, and obtains results that are as consistent as
ossible with the labels.

To improve the robustness of the network, we augmented the
ataset by traditional data augmentation methods before classification.
oth the training and test sets are expanded to 7 times. In addition,
he ratio of the training set to the test set is 2: 1 in all experiments
or comparison. We use the average value of each indicator after a 3-
old cross-validation for all datasets as the final result. As illustrated in
able 3, the final test accuracy of the generated data is stable at 90%.

.4.2. Further verification of the classification results
In addition to the accuracy of the classification, the test results of

eceiver Operating Characteristic (ROC) are shown in Fig. 7, including
he ROC curves of the 3-fold cross-validated test dataset and the av-
rage ROC value of the three curves. The abscissa indicates the false
ositive rate (FPR), while the ordinate shows the true positive rate
TPR). They are calculate as 𝑇𝑃𝑅 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁) and 𝐹𝑃𝑅 =
𝑃∕(𝑇𝑁+𝐹𝑃 ), where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 and 𝐹𝑁 represent the value of true
ositive, false positive, true negative and false negative respectively.
he X-ray image with a necrosis rate below 80% indicates positive type,
therwise it is negative. We use the converged classification model
o calculate the probability of ‘‘positive’’ prediction results for all test
amples. By comparing it with the label, we can obtain the FPR and
PR values of each point on the ROC curve. Besides, we also denote
he curve formed by the average ROC value as the center and the
tandard deviation of TPR as the upper and lower boundaries. It can
e seen from Fig. 7 that the difference between most of the TPR values
nd their average value is small, so the TPR value we obtained can
e considered as stable. More important, provided the ROC curve, the
ean Area under Curve (AUC) result of 0.97 indicates our trained

lassifier performs well.
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Table 2
Statistics of the generated time series images.
Model Training data Test data Generated data

Real After augment Real before
chemotherapy

Generated by
Pix2Pix

Output of the test data
composed of two sources

Conv-LSTM-GAN 33×4 33×4×7 89×2 260×2 (89+260)×4
Table 3
Classification results of different training datasets.
Threshold Train source Train data GAN model Test source Test data ACC REC PRE F1-score

80% Real 89×7 Real 30×7 0.948 0.983 0.445 0.613
80% Real+Generated (89+260)×7 cycleGAN Real 30×7 0.943 0.961 0.457 0.619
80% Real+Generated (89+260)×7 DCGAN Real 30×7 0.921 0.941 0.583 0.720
80% Real+Generated (89+260)×7 Conv-LSTM-GAN Real 30×7 0.916 0.948 0.796 0.865
90% Real+Generated (89+260)×7 Conv-LSTM-GAN Real 30×7 0.877 0.868 0.782 0.823
,

3.4.3. Comparison of classification results from different data sources

Table 3 summarizes the classification results of two different datasets
which specifically involve the following indicators: accuracy (ACC),
recall (REC) and precision (PRE). 𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝐹𝑃 +
𝑇𝑁 + 𝐹𝑁), 𝑅𝐸𝐶 = 𝑇𝑃𝑅, 𝑃𝑅𝐸 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ). We apply the
generated images to a 3D-CNN for the binary classification task as a
comparative experiment. The dataset for contrast consist of real pre
and post chemotherapy bone tumor images without any generated
images. This dataset contains X-ray images from 119 patients with two
images for each patient, where one is the pre-chemotherapy bone tumor
image while the other is the post-chemotherapy one. The data of the
experimental group is 379 generated bone tumor image sequences as
shown in Table 3. Each generated sequence includes two real input
images and two generated images.

In addition, we supplemented the experiment with 90% as the clas-
sification threshold, and compared the performance with the original
experiment (Table 3). The results show that using 90% as the classi-
fication threshold can still achieve good performance, which proves
the effectiveness of our proposed model. At the same time, due to the
imbalance of the dataset, the performance of the model trained with
90% as the threshold is worse than the model we proposed with 80%.

3.4.4. Fine-grained classification control experiment
In order to further illustrate the superiority of the combination of

bone tumor time series images and 3D-CNN model, we utilize a fine-
grained classification model (Wang et al., 2018) instead of 3D-CNN to
focus on the lesions. The classification results of this model is compared
with the results of 3D-CNN applied to the same experimental data.
The dataset for the control experiment comes from 119 real patient,
including 61 people with a necrosis rate less than 80%, and 58 people
with a necrosis rate greater than 80%. The time series images of each
patient contain one image before chemotherapy and one image during
chemotherapy.

In the fine-grained classification algorithm, the time series correla-
tion cannot be directly exploited, therefore two time series images are
directly spliced into one image to add the dimension of the plane image.
After the convolution operation on the input image, a feature map
representation of dimension 𝐶×𝐻×𝑊 (𝐶,𝐻,𝑊 represent the channel,
height and width of images respectively)is obtained. An additional 𝐶 ×
1 × 1 feature extractor is trained to extract the feature map response of
the specified parts of different channels. Finally, through the maximum
pooling, the most responsive feature map part of the entire feature map
can be determined.

The experimental results show that due to the lack of time series
information, the performance of fine-grained classification model under
the same dataset conditions is still weaker than the 3D-CNN time series
classification model in this paper (see Table 4).
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Table 4
Image generation evaluation metrics.

Model Category FID KID

Conv-LSTM-GAN Positive 47.93 0.0016
Conv-LSTM-GAN Negative 47.98 0.0016

cycleGAN Positive 163.90 0.1130
cycleGAN Negative 176.55 0.1130

DCGAN Positive 87.14 0.0476
DCGAN Negative 89.73 0.0591

Fig. 7. ROC curves of the 3-fold cross-validated test datasets, their average ROC value
(dark blue bold) and the standard deviation. (shaded region).

4. Discussion

A small sample bone tumor necrosis rate detection method based on
deep learning proposed in this paper combines generative adversarial
network and deep convolutional neural network. The results show that
the method of generating images to expand the dataset and the ap-
proach of classifying the necrosis rate detection can effectively simulate
the necrosis rate results obtained by biopsy.

4.1. Feasibility analysis of our scheme

From Table 3, it can be seen that the accuracy of classification using
the generated dataset is 90%, which is good enough to indicate that
the proposed model have learned a distribution similar to the original
data. And we use cross-validation to further determine the stability of
the results. On the other hand, each point on the ROC curve in Fig. 7
represents a pair of sensitivity and specificity under a certain threshold,
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the threshold selection rule is to select positive probability value cor-
responding to the predicted value of each sample in order from large
to small, which comprehensively reflects the changes in sensitivity and
specificity of bone tumors at different critical values. The area value
of the mean ROC is 0.97, which proves that our method has reliable
diagnostic values. At the same time, the PRE value in Table 3 is 0.979.
It shows that the false positive rate of the final test result is very low,
which further proves the validity of the AUC value. The above results
of our proposed 3D-CNN model in time series bone tumor images are
close to the biopsy results indicating the effectiveness of our necrosis
detection method. Besides, it effectively supports the reliability of using
sequential medical images instead of biopsy operations.

The classification results of necrosis rate we obtained can assist
doctors in diagnosing the effects of chemotherapy, which helps to
improve the overall diagnostic level of bone tumor diseases in hospitals.
Thus, patients can obtain better survival prognosis and quality of life.

Although important discoveries are revealed by our studies, there
are also limitations. The overall classification results of the generated
image performs well, and the false positive rate is very low when the
model is stable. However, the true positive rate of 0.814 in Table 3 is
not satisfactory, hence the future work needs to focus on improving
the accuracy of detecting positive samples. More importantly, if the
length of each time-series training dataset we can obtain is sufficiently
long in the future, we can try to generate longer time series images for
each patient, which will predict richer information about chemotherapy
effects.

4.2. Time correlation advantage of generated images

It can be seen from Table 4 that the classification performance of
the generated image is not as good as that of the real image. The reason
may be that the features of the generated image is not as rich as the real
image. Note that the time length of each sample of the generated image
is 4, which is twice the length of the real image sequence(Table 2).
Hence although the dataset of real pre and post chemotherapy bone
tumor images has achieved a higher accuracy, the length of the time
span is limited. So this dataset does not fully reflect the change of the
lesion in the time dimension. Meanwhile, the number of samples of the
generated image is more than 3 times that of the real image, which will
be more conducive to the stability and robustness of the classification
model.

In summary, the method we proposed for generating time series
bone tumor images during chemotherapy reveals the temporal corre-
lation of bone tumor images effectively. By learning the time series
features in real bone tumor time series images, a subsequent time
series of the input initial time-phase images can be generated. So we
can predict the development trend of the lesion over time, which
is important for the evaluation of the effect of chemotherapy. For
example, reduction in flocculent lesions over time can be found in
Fig. 5b, from which the effectiveness of chemotherapy can be inferred.

4.3. A significant increase in the number of generated images

In addition to using the time correlation between images in the
chemotherapy phase to enhance the data, this paper also uses the
Pix2Pix network to generate the pre-sequence images of the time
sequence to further increase the number of datasets. This method
provides a more powerful data support for the training stability and the
generalization ability of the deep learning model. As shown in Table 1,
the Pix2Pix model makes a major contribution in increasing the number
of pre-sequence samples for time series images, which produces two
types of pre-chemotherapy samples for a total of 260 virtual patients.
In this way, the number of generated images is approximately 10 times
that of the real 4-sequence image. Hence we complete the first step of
8

bone tumor image data enhancement.
Moreover, we use the Pix2Pix model to learn the mapping rela-
tionship between the real pre-chemotherapy bone tumor image and its
contour, so as to obtain the pre-chemotherapy image from the normal
bone contour. As shown in Fig. 3b, in comparison with the normal bone
image with no tumor, we can clearly see the generated lesion in the
generated bone tumor image.

Prior works have noted the importance of biopsy-based necrosis rate
detection (Goodfellow et al., 2014; Frid-Adar et al., 2018). However,
this operation brings problems such as infections of invading tissues. In
this paper, it has been demonstrated that this problem can be resolved
by a novel approach for the detection of necrosis rate using time series
X-ray images instead of biopsy. In reviewing the literature, no data
was found on the link between time series X-ray images generated by
GAN and the necrosis rate detection. On the other hand, the results of
our study corroborate the findings of previous works of applying GAN
in the medical image field. Last but not least, more research on this
topic needs to be undertaken before the link between medical images
and the necrosis rate detection is more clearly understood. At the same
time, research on GAN in few-shot medical images will attract lots of
interests.

5. Conclusions

Primary malignant bone tumors are a group of highly malignant
tumors. The current method of detecting bone tumor necrosis rate
relies on the invasive and time-consuming biopsy. In this study, we
propose a non-contact method to detect bone tumor necrosis rate with
few-shot X-rays images based on deep learning. It expands the few-
shot X-rays by 10 times, and achieves the necrotic rate classification
results similar to biopsy. Our method translate normal bone contour
into bone tumor lesion image to expand the rare bone tumor dataset
based on the mapping relationship between tumor lesion image and its
contour. Then it exploits the time correlation from the real time series
tumor images to generate the subsequent images in chemotherapy for
given pre-chemotherapy images. Finally, the real and generated time
series images are sent into 3D-CNN to obtain the final necrosis rate
classification result. It is a new approach for the study of small sample
medical images. In the future, We will further improve the scalability
and generalization of our model so that it can be applied to solve more
clinical problems, such as the tumor detection of CT, MRI and PET
images.
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