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ABSTRACT In this paper, we investigate the transceiver design in a two-hop amplify-and-forward (AF)
multiple-input multiple-output (MIMO) relay system with the direct link and quality-of-service (QoS)
constraint. The QoS criterion is specified by the upper bound of the mean-squared error of the signal
waveform estimation at the destination node. To minimize the total system transmission power, we apply
a new AF relay protocol where the source node transmits signals during both time slots. Two iterative
algorithms are proposed to jointly optimize the source and relay precoding matrices for the general case with
multiple concurrent data streams, and the special case where a single data stream is transmitted, respectively.
Simulation results show the effectiveness of both proposed algorithms. Interestingly, for the single data
stream case, the second algorithm converges faster than the first algorithm. Compared with conventional
two-hop MIMO relay systems where the source node is silent at the second time slot, the new protocol
reduces the system transmission power. Under a given system transmission power, the proposed algorithms
yield a higher system mutual information thanks to a better utilization of the direct link. Simulation results
in this paper shed lights on some fundamental questions in relay system design such as when direct
communication between source and destination (without any relay nodes) is optimal, and when the new AF
relay protocol provides a larger gain compared with the conventional single phase source power allocation.

INDEX TERMS MIMO relay, QoS, MSE, direct link, single data stream.

I. INTRODUCTION
Wireless relay communication is an important technique to
improve the coverage and reliability of wireless communi-
cation systems [1], [2]. By deploying multiple antennas at
the nodes, we have multiple-input multiple-output (MIMO)
relay systems. As an emerging and promising technique for
future high-speed reliable wireless communication, MIMO
relay systems have gained much attention recently [3].

In this paper, we focus on amplify-and-forward (AF)
MIMO relay systems due to their low cost and simplicity in
implementation. For AF MIMO relay systems, the relay pre-
coding matrix that minimizes the mean-squared error (MSE)
of the signal waveform estimation at the destination node has
been proposed in [4]. A unified framework has been proposed
in [5] to optimize the source and relay precoding matrices
with a broad class of objective functions. In [4] and [5],
the direct link between the source and destination nodes

is ignored. However, in practical systems, the direct link pro-
vides valuable spatial diversity, and thus, should be properly
considered in the MIMO relay system design.

Transceiver optimization considering the direct link has
been addressed in [6] based on the optimal structure of the
relay precoding matrix. Robust transceiver design for MIMO
relay systems with the direct link has been proposed in [7].
The aim of [4]–[7] is to optimize a given objective function,
subjecting to the transmission power constraint at the source
and relay nodes. However, the quality-of-service (QoS) con-
straints are not addressed in [4]–[7]. Note that in practical
communication systems, QoS criteria are very important, as
they greatly affect the user experience.

QoS constraints have been considered in [8] for power
allocation in AF MIMO relay systems. In [9], transceiver
design has been proposed where the QoS requirements
are specified as Schur-convex functions of the MSEs.
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Transceiver optimization for two-way MIMO relay systems
with MSE constraints has been studied in [10]. However, the
direct link is not considered in [8] and [9]. Moreover, we
note that in the second time slot of conventional AF MIMO
relay systems [3]–[9], the source node is silent and only the
relay node forwards the signal to the destination node. In the
single antenna relay system of [11] and [12], the second
time slot is utilized by the source node to transmit signals to
the destination node through the direct link, which improves
the system capacity. However, [11] and [12] do not consider
MIMO relay systems and QoS constraints.

In this paper, we investigate the transceiver design in a two-
hop AF MIMO relay system with the direct link and QoS
constraint. The QoS criterion is specified by the upper bound
of the MSE of the signal waveform estimation at the destina-
tion node, since MSE is directly related to other commonly
used QoS criteria such as the system bit-error-rate (BER)
and the source-destination mutual information [13]. Different
to [3]–[9], we consider a new AF relay protocol [11], [12]
where the source node transmits signals during both time
slots. Based on this new protocol, we investigate the
transceiver design which minimizes the total network trans-
mission power subjecting to the MSE constraint. As this
protocol enables the source node to exploit the diversity of
the channel in both time slots, we expect that the system
transmission power can be reduced compared with conven-
tional systems in [3]–[9]. We would like to note that this
new protocol was first proposed for single-antenna AF relay
systems [11], [12] and recently extended to AF MIMO relay
systems [14]. However, the QoS issue has not been studied
in [11], [12], and [14].

Since the transceiver optimization problem is nonconvex
withmatrix variables, the globally optimal solution is difficult
to obtain. We propose two iterative algorithms to solve the
problem. In particular, for the general case with multiple
concurrent data streams, we iteratively optimize the source,
relay, and receiver matrices till convergence. For the special
case where a single data stream is transmitted, we iteratively
optimize the source precoding vectors and the relay precod-
ing matrix by exploiting the optimal structure of the relay
matrix. In this case, the receiver matrix is obtained after the
convergence of the algorithm. Simulation results show that
both algorithms have fast convergence rate. Interestingly, for
the single data stream case, the second algorithm converges
faster than the first algorithm, as it reduces the number of
optimization variables during iterations. Compared with con-
ventional two-hop MIMO relay systems where the source
node is silent at the second time slot, the new protocol reduces
the system transmission power, particularly when the direct
link is strong. Under a given system transmission power, the
proposed algorithms yield a higher system mutual informa-
tion (MI) thanks to a better utilization of the direct link.

Wewould like to note that although both [14] and this paper
use two phases for source power allocation, the novelties and
contributions of this paper compared with [14] are summa-
rized below.

1) The approaches used to optimize the source and
relay precoding matrices are different. For general
AF MIMO relay systems, the source precoding matri-
ces are updated through quadratically constrained
quadratic programming (QCQP) in [14], while in this
paper, the Lagrange multiplier method is applied to
optimize the source precoding matrices, which has a
lower computational complexity than QCQP.

2) The structure of the relay precoding matrix is different.
It is demonstrated in this paper that for both multiple
data streams and single data stream cases, the structure
of the optimal relay precoding matrix depends on the
strength of the direct link and the QoS constraint, which
is not shown in [14].

3) Compared with [14], more insights on the optimal
power allocation in AF MIMO relay systems are
revealed in this paper. We find that using both phases
for source power allocation provides a larger gain over
the conventional single phase source power allocation
when the direct link is not very strong or weak. When
the direct link is very strong compared with the relay
link, direct communication between source and desti-
nation (without any relay nodes) is actually optimal.

The rest of the paper is organized as follows. The model of
a two-hop AF MIMO relay system with direct link where the
source node transmits signals in both time slots is presented
in Section II. The transceiver optimization problemwithMSE
constraints is also formulated in Section II. Two algorithms
are proposed in Section III. Section IV shows numerical
results which demonstrate the effectiveness of the proposed
algorithms. Conclusions are drawn in Section V.

FIGURE 1. Block diagram of a two-hop AF MIMO relay system with direct
link where the source node transmits signals in both time slots.

II. SYSTEM MODEL
In this section, we introduce the model of a two-hop AF
MIMO relay system with direct link where the source node
transmits signals in both time slots. As shown in Fig. 1, the
MIMO relay systemwe consider in this paper has three nodes,
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and there areNs,Nr , andNd antennas in the source, relay, and
destination nodes, respectively. The data transmission from
the source node to the destination node is completed in two
time slots. At the first time slot, the source node transmits
a linearly precoded signal vector B1s to both the relay node
and the destination node, where s is the N1 × 1 source signal
vector and B1 is the Ns × N1 source precoding matrix. The
signal vectors received at the relay node and the destination
node at the first time slot can be written as

yr = HB1s+ nr (1)

yd,1 = TB1s+ nd,1 (2)

where H is the Nr × Ns channel matrix between the source
node and the relay node, T is the Nd × Ns channel matrix
between the source node and the destination node, nr is the
Nr × 1 noise vector at the relay node, and nd,1 is the Nd × 1
noise vector at the destination node at the first time slot.
We assume that E[ssH ] = IN1 , where E[·] stands for the
statistical expectation, (·)H denotes the Hermitian transpose,
and In denotes the n× n identity matrix.
At the second time slot, yr is linearly precoded by an

Nr × Nr matrix F at the relay node, and the source signal
vector s is linearly precoded by an Ns × N1 matrix B2 at the
source node. Then the source node and the relay node send
the precoded signal vectors to the destination node. From (1),
the signal vector received at the destination node is given by

yd,2 = GFyr + TB2s+ nd,2
= (GFHB1 + TB2)s+GFnr + nd,2 (3)

where G is the Nd × Nr channel matrix between the relay
node and the destination node, nd,2 is the Nd ×1 noise vector
at the destination node at the second time slot.

From (2) and (3), the received signal vectors at the
destination node in two time slots can be written as

yd =
(
GFHB1 + TB2

TB1

)
s+

(
GFnr + nd,2

nd,1

)
= H̄s+ v̄ (4)

where

H̄ =
(
GFHB1 + TB2

TB1

)
, v̄ =

(
GFnr + nd,2

nd,1

)
.

We would like to note that (4) is the most general case for a
three-node two-hop AF MIMO relay system. If B2 = 0, we
have a conventional MIMO relay system [3]–[9] where the
source node is silent at the second time slot. At the destination
node, yd is processed by a linear receiver due to its simplicity,
and the estimated signal is given by

ŝ =WHyd (5)

whereW is the 2Nd×N1 weight matrix of the linear receiver.
We assume that all channels are quasi-static, i.e., channel

matrices H, T, and G remain unchanged during one trans-
mission cycle. We assume that all noises are independent
and identically distributed additive white Gaussian noise with

zero mean and unit variance. We also assume that the des-
tination node knows the channel state information (CSI) of
H, T, and G. The destination node performs the transceiver
optimization, and then feeds back the optimized B1 and B2 to
the source node and F to the relay node.

The transmission power consumed by the source node
during two time slots is given by

Ps = tr(B1BH1 + B2BH2 ) (6)

where tr(·) denotes the matrix trace. From (1), the transmis-
sion power consumed by the relay node is

Pr = tr(F(HB1BH1 H
H
+ INr )F

H ). (7)

From (6) and (7), the total system transmission power can be
written as

Pt = Pr + Ps. (8)

From (4) and (5), the MSE of the signal waveform estimation
at the destination node is given by

MSE = tr(E[(ŝ− s)(ŝ− s)H ])

= tr((WH H̄− IN1 )(W
H H̄− IN1 )

H
+WHCW) (9)

where C is the equivalent noise covariance matrix given by

C = E[v̄v̄H ] =
(
GFFHGH

+ INd 0
0 INd

)
.

Based on (8) and (9), the transceiver optimization prob-
lem which minimizes the total system transmission power
subjecting to the MSE constraint can be written as

min
B1,B2,W,F

Pt (10)

s.t. MSE ≤ e (11)

where e denotes the upper-bound of MSE. We would like
to note that MSE-based transceiver designs have been con-
sidered extensively due to their good performance and sig-
nificantly reduced complexity. It has been shown in [15] that
minimal MSE (MMSE) estimation plays an important role
in approaching the information-theoretic limits of Gaussian
channels. As mentioned in [16], the user-wise MSE can be
used to approximate the achievable rate of the users when
they jointly decode their streams. In particular, when MMSE
receivers are employed, the achievable rate of a user is written
as the negative logarithm of the determinant of the MSE error
covariance matrix, which is tightly related to the user MSE.

III. PROPOSED TRANSCEIVER
OPTIMIZATION ALGORITHMS
The problem (10)-(11) is nonconvex with matrix variables
and the globally optimal solution is difficult to obtain.
Moreover, compared with the transceiver design for conven-
tional two-hop AF MIMO relay systems [8], [9], the prob-
lem (10)-(11) is more challenging to solve as B2 also needs
to be optimized. In this section, we propose two iterative
algorithms to solve the problem (10)-(11). The first algorithm
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is developed for the general case of multiple concurrent data
streams (N1 ≥ 1), where we iteratively update W, (B1,B2),
and F till convergence. The second algorithm is designed for
the single data stream case where N1 = 1. In this case, we
iteratively optimize (b1,b2) and F till convergence, andW is
obtained after the convergence of (b1,b2) and F.

A. TRANSCEIVER OPTIMIZATION
ALGORITHM FOR N1 ≥ 1
In this subsection, we present an iterative algorithm to solve
the problem (10)-(11) for the general case where multiple
concurrent data streams are transmitted from the source node
to the destination node.

Firstly, we consider the optimal receiver matrix W. Since
the objective function (10) does not containW, with givenB1,
B2, and F, the optimal W that minimizes the left-hand side
(LHS) of (11) is the well-known Wiener filter [17] given by

W = (C+ H̄H̄H )−1H̄ (12)

where (·)−1 denotes the matrix inversion.
Secondly, we fix W, B1, and B2 and optimize the relay

precoding matrix F by solving the following problem

min
F

tr(F(HB1BH1 H
H
+ INr )F

H ) (13)

s.t. MSE ≤ e. (14)

The problem (13)-(14) is a convex optimization problemwith
a convex quadratic objective function and a convex quadratic
constraint. The Lagrangian function associated with the prob-
lem (13)-(14) is given by

L(λ,F) = tr(F(HB1BH1 H
H
+ INr )F

H )+ λ( MSE− e)

(15)

where λ ≥ 0 is the Lagrange multiplier. By taking the partial
derivative of L(λ,F) with respect to F and let ∂L(λ,F)/
∂F = 0, we obtain the optimal structure of F as

F = F1F2F3 (16)

where

F1 = λ(INr + λG
HW1WH

1 G)−1GHW1 (17)

F2 = IN1 −WH
2 TB1 −WH

1 TB2 (18)

F3 = BH1 H
H (HB1BH1 H

H
+ INr )

−1 (19)

and W1, W2 contain the first and the last Nd rows of W,
respectively.

The unknown λ can be obtained from the following com-
plementary slackness condition of the problem (13)-(14) as

λ( MSE− e) = 0. (20)

If λ = 0, then (20) holds. Based on (17) and (16), this results
in F = 0. If the MSE constraint (14) is satisfied under F = 0
for given W, B1, and B2, then F = 0 is the optimal solution
to the problem (13)-(14). This may occur when the direct link
is strong such that it is optimal to switch off the relay node.
Otherwise, there must be λ > 0 such that MSE = e in (20).

The steps of obtaining such λ are presented in Appendix A.
Then the optimal F is obtained from (16). We would like to
note that as a contribution of this paper, the dependence of F
on the strength of the direct link and the QoS constraint is not
shown in [14].

Thirdly, we fixW and F and optimize the source precoding
matrices B1 and B2. With fixed F, we can ignore the term
tr(FFH ) in the objective function (10). By introducing

LH1 = WH
2 T+WH

1 GFH, LH2 =WH
1 T

D = INs +HHFHFH, ê = tr(WHCW)

the problem (10)-(11) can be rewritten as

min
B1,B2

tr(BH1 DB1 + BH2 B2) (21)

s.t. tr(B̄B̄H ) ≤ e− ê (22)

where

B̄ = IN1 − LH1 B1 − LH2 B2. (23)

We apply the Lagrange multiplier method [18] to solve the
problem (21)-(22). The Lagrangian function of (21)-(22) is

L(B1,B2, µ) = tr(BH1 DB1 + BH2 B2)+ µ(tr(B̄B̄)H − e+ ê)

where µ ≥ 0 is the Lagrange multiplier.
By letting ∂L

∂B1
= 0 and ∂L

∂B2
= 0, where ∂L

∂Bi
denotes the

partial derivative of L with respect to Bi, we obtain

B1 = µ(D+ µL1LH1 )
−1L1(IN1 − LH2 B2) (24)

B2 = µ(INs + µL2LH2 )
−1L2(IN1 − LH1 B1). (25)

The Lagrange multiplier µ in (24) and (25) can be obtained
through the complementary slackness condition of the prob-
lem (21)-(22) given by

µ(tr(B̄B̄H )− e+ ê) = 0. (26)

Note that if µ = 0, then (26) holds. But this results in both
B1 = 0 and B2 = 0 according to (24) and (25). Therefore,
there must be a µ > 0 such that B̄ in (23) satisfies

tr(B̄B̄H ) = e− ê. (27)

Lemma 1: By solving LH1 B1 and LH2 B2 from (24) and
(25), we obtain the following equation

B̄ = (µ(L1D−1LH1 + L2LH2 )+ IN1 )
−1. (28)

Proof: See Appendix B.
By substituting (28) into (27), and introducing the eigen-

value decomposition (EVD) of LH1 D
−1L1 + LH2 L2 =

QϒQH , whereϒ is the eigenvalue matrix, (27) can be equiv-
alently rewritten as

N1∑
i=1

1
(1+ υiµ)2

= e− ê (29)

where υi is the ith diagonal element of ϒ. It can be seen that
as υi ≥ 0, i = 1, . . . ,N1, the LHS of (29) is monotoni-
cally decreasing with respect to µ when µ > 0. Thus, we
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can efficiently solve µ from (29) for example by bisection
method [18]. After obtaining µ, we can obtain LH1 B1 and
LH2 B2 according to (70) and (71), respectively, and then
obtain the optimal B1 and B2 from (24) and (25). Note
that in [14], B1 and B2 are updated through quadratically
constrained quadratic programming (QCQP), which has a
higher computational complexity than the Lagrange multi-
plier method.

TABLE 1. Procedure of the proposed algorithm for N1 ≥ 1.

With the analysis above, we can jointly optimize the
source, relay, and receiver matrices as shown in Table 1. This
algorithm starts with feasible F, B1, and B2, and iteratively
optimizes W, F, and (B1,B2). At each iteration, W is firstly
updated using (12). Then we update F by solving λ from (61).
Finallywe calculateµ in (29) and updateB1 andB2 according
to (24) and (25). This iterative process continues until the
termination condition is satisfied. We would like to note that
since the objective function Pt is non-increasing in every
iteration and Pt ≥ 0, the convergence of this algorithm
follows from this observation.

B. TRANSCEIVER OPTIMIZATION
ALGORITHM FOR N1 = 1
In the case of a single data stream, the dimension of source
signal vector s is 1. Thus, the source precoding matrices B1
and B2 become vectors b1 and b2, and the receiver matrices
W1 and W2 become vectors w1 and w2. In this subsection,
we develop an iterative algorithm to solve the transceiver opti-
mization problem (10)-(11) by exploiting the rank-1 structure
of the relay precoding matrix in the special case of N1 = 1.

By substituting (12) back into (9) and considering that
N1 = 1, the MSE becomes

MSE = (1+ bH1 T
HTb1 + b̃H C̄−1b̃)−1 (30)

where b̃ = Tb2 + GFHb1 and C̄ = GFFHGH
+ INd . The

total transmission power in this case becomes

Pt = bH1 b1 + bH2 b2 + tr(F(H1b1bH1 H
H
1 + INr )F

H ). (31)

Based on (30) and (31), the problem (10)-(11) can be
rewritten as

min
b1,b2,F

bH1 b1 + bH2 b2 + tr(F(H1b1bH1 H
H
1 + INr )F

H ) (32)

s.t. 1+ bH1 T
HTb1 + b̃H C̄−1b̃ ≥ 1/e. (33)

We first optimize the relay matrix F with b1 and b2
fixed. We have shown that the optimal F has the structure
in (16)-(19). In the single data stream case, (16) becomes

F = αβγGHw1bH1 H
H (34)

where α = λ/(1 + λwH
1 GGHw1), β = 1/(1 + bH1 H

HHb1),
and γ = 1−wH

2 Tb1−w
H
1 Tb2. Similar to the case ofN1 ≥ 1,

we first check whether λ = 0 is a valid solution, if not then
there is λ > 0. When λ > 0, by introducing q = αβγGHw1,
(34) can be rewritten as

F = qbH1 H
H . (35)

It can be seen from (35) that the optimal F in the single data
stream case is rank-1. Using (35), b̃ and C̄ in (30) become

b̃ = Tb2 + cGq, C̄ = cGqqHGH
+ INd (36)

where c = bH1 H
HHb1. Based on (35), (36), and the following

identity

(aaH + λI)−1a =
1

aHa+ λ
a

we obtain

b̃H C̄−1b̃ = bH2 T
HTb2 + c

(
1−
|bH2 T

HGq− 1|2

1+ cqHGHGq

)
. (37)

Using (35), the transmission power consumed by the relay
node becomes (c2+ c)qHq. Based on (37), it can be seen that
with fixed b1 and b2, the problem (32)-(33) can be rewritten
as the following problem

min
q

qHq (38)

s.t.
|bH2 T

HGq− 1|2

1+ cqHGHGq
≤ ẽ (39)

where ẽ = 1
c

(
1+ bH1 (T

HT+HHH)b1 + bH2 T
HTb2 − 1

e

)
.

In the following, we show that the problem (38)-(39) can be
efficiently solved by the Charnes-Cooper transformation [19]
and the semidefinite relaxation (SDR) technique [20].

The constraint (39) can be rewritten as

qHGHTb2bH2 T
HGq+ a ≤ ẽc(Gq+ η)H (Gq+ η) (40)

where η = 1
ẽcTb1 and a = 1− ẽ+ ẽcηHη. Let us introduce an

auxiliary variable t with |t| = 1 and f̃ = tq. By multiplying
both sides of (40) with |t|2, the constraint (40) becomes

f̃HGHTb2bH2 T
HGf̃+ a ≤ ẽc(Gf̃+ ηt)H (Gf̃+ ηt). (41)

By introducing f̄ = [f̃T , t]T in (41), the problem (38)-(39)
can be equivalently rewritten as

min
f̄

f̄HA1f̄ (42)

s.t. f̄HA2 f̄+ a ≤ ẽcf̄HA3 f̄ (43)

f̄HA4 f̄ = 1 (44)
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where

A1 =

(
INr

0

)
, A2 =

(
GHTb2bH2 T

HG
0

)
A3 =

(
GH

ηH

)
(G η ), A4 =

(
0

1

)
.

By using the SDR technique, the problem (42)-(44) can be
relaxed to the following semidefinite programming (SDP)
problem

min
R�0

tr(RA1) (45)

s.t. tr(RA2)+ a ≤ ẽc tr(RA3) (46)

tr(RA4) = 1. (47)

The SDP problem (45)-(47) can be efficiently solved by
interior-point methods [21].

The optimal f̄ for the problem (42)-(44) can be found by
first solving the SDP problem (45)-(47) and then recovering
f̄ fromR as follows. If the solutionR is rank-1, i.e.,R = rrH ,
then we let f̄ = r. For the case of higher rank R, according
to Theorem 2.3 (Algorithm 3) in [22], we can find a vector
f̄0 in polynomial time such that tr(f̄H0 Ai f̄0) = tr(RAi), i =
1, 2, 3, 4, which means we can find a rank-1 optimal solution
f̄0 f̄H0 to the relaxation problem (45)-(47) and f̄0 is the optimal
solution to the original problem (42)-(44). Thenwe can obtain
q = f̃/t and the optimal F = qbH1 H

H .
After optimizing F, we fix F in the problem (32)-(33)

and optimize the source precoding vectors b1 and b2. With
fixedF, by introducing a vector b = [bT1 ,b

T
2 ]
T , the constraint

(33) can be rewritten as

(1+ bH8b)−1 ≤ e (48)

where

8 =

(
HHFHGH

TH

)
C̄−1

(
GFH T

)
+

(
THT 0
0 0

)
.

With fixed F, we can ignore the item tr(FFH ) in (32). And
the objective function can be rewritten as bHPb, where

P =
(
HHFHFH 0

0 0

)
+ I2Ns . (49)

Using (48) and (49), the problem (32)-(33) can be rewritten
as

min
b

bHPb (50)

s.t. bH8b ≥
1
e
− 1. (51)

The problem (50)-(51) can be solved by using the
SDR technique, where we obtain a relaxation of the
problem (50)-(51) as

min
Q̃�0

tr(PQ̃) (52)

s.t. tr(8Q̃) ≥
1
e
− 1. (53)

After solving the SDP problem (52)-(53), by using the ran-
domization technique in [23], the optimal b for the problem
(50)-(51) can be recovered from Q̃ by finding a vector b0
such that tr(PQ̃) = bH0 Pb0 and tr(8Q̃) = bH0 8b0. Then
the optimal b1 and b2 can be obtained from b0.

TABLE 2. Procedure of the proposed algorithm for N1 = 1.

Now we can iteratively optimize the source precoding
vectors b1, b2, and the relay precoding matrix F. In each
iteration, we first solve the SDP problem (45)-(47) and obtain
the optimal F as (35) by recovering q from R. Then we solve
the SDP problem (52)-(53) and obtain the optimal b1 and b2
by recovering them from Q̃. The procedure of the proposed
algorithm for the case of N1 = 1 is summarized in Table 2.
Since the update of b and F can only decrease or maintain
the objective function (31), the convergence of the proposed
algorithm in Table 2 follows from this observation.

IV. NUMERICAL RESULTS
In this section, we study the performance of two proposed
algorithms through numerical simulations. In the simulations,
the channel matricesH,G, andT are set to complex Gaussian
random matrices whose entries are independent and identi-
cally distributed (i.i.d.) Gaussian random variables with zero
mean and variance of σH , σG, and σT , respectively. We set
σH = σG = 1 and introduce1 = σG/σT to measure the gain
of the relay link over the direct link. A large 1 indicates a
week direct link relative to the relay link. For convenience,
we refer to the algorithm for the general case of N1 ≥ 1
as Algorithm 1 and the algorithm for the special case of
N1 = 1 as Algorithm 2. The SDP problems in Algorithm 2
are solved by the CVX convex optimization toolbox [24].
As comparison, the performance of the conventional AF
MIMO relay system where the source node is silent at the
second time slot (i.e. B2 = 0 for N1 > 1 and b2 = 0 for
N1 = 1) is shown. We also include the performance of a two-
hop AF MIMO relay system without the direct link (σT = 0)
as a benchmark [5].

Let us introduce the singular value decompositions (SVDs)
of H = UhDhVH

h , G = UgDgVH
g , and T = UtDtVH

t .
The proposed algorithms are initialized by B1 = ζVh,1D1,
F = ζVg,1DfUH

h,1, and B2 = 0, where ζ is a positive value,
Vh,1, Vg,1, and Uh,1 contain N1 columns of Vh, Vg, and Uh,
respectively, associated with the corresponding largest N1
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singular values, D1 and Df are N1 × N1 diagonal matrices
with random positive diagonal elements. Note that such
initialization enables a fair comparison with the conventional
AFMIMO relay system where the source node is silent at the
second time slot. To obtain feasible initial precodingmatrices,
we start with a small ζ and increase the value of ζ with a given
step length until the MSE constraint (11) is satisfied. In the
simulations, we have also tried to initialize B2 = Vt,1D2,
where Vt,1 contains N1 columns of Vt associated with the
largest N1 singular values of T, and D2 is an N1 × N1
diagonal matrix with random positive diagonal elements.
Simulation results show that these two initialization
approaches yield similar results. All simulation results are
averaged over 1000 channel realizations.

FIGURE 2. Example 1: Pt versus the NMSE at various direct link strength.
Algorithm 1, N1 = 2, Ns = Nr = Nd = 2.

In the first example, we study the impact of the direct link
andB2 on the system performance. The number of antennas is
fixed to Ns = Nr = Nd = 2. To test the system performance
at various strength of the direct link, we set 1 as 10dB and
20dB. Fig. 2 shows the system total transmission power Pt
versus the normalizedMSE (NMSE), whereN1 = 2 is chosen
for Algorithm 1. Here, the NMSE is obtained by dividing
the MSE (9) by the number of data streams N1. It can be
seen from Fig. 2 that for all systems, the transmission power
required to achieve a certain MSE increases when the MSE
constraint becomes stricter (i.e. smaller NMSE). For a given
NMSE, a remarkable power saving can be achieved if the
direct link is considered, and such power saving is more
significant when the MSE constraint is stricter. We can also
observe from Fig. 2 that compared with the conventional AF
MIMO relay system where B2 = 0, Algorithm 1 further
reduces the system power level, especially in the case of strict
MSE constraint and strong direct link (smaller 1). This can
be explained by the fact that when the direct link is strong, it
is important to exploit the direct link in the second time slot.
While for a weak direct link, more power should be allocated
to the relay link. In this case, there is not much difference
between B2 = 0 and B2 6= 0.

FIGURE 3. Example 1: Pt versus the NMSE at various direct link strength.
Algorithm 2, N1 = 1, Ns = Nr = Nd = 2.

FIGURE 4. Example 2: System MI versus Pt at various direct link strength.
Algorithm 1, N1 = 2, Ns = Nr = Nd = 2.

Fig. 3 illustrates the system total transmission power versus
the NMSE with N1 = 1 using Algorithm 2. Similar to
Fig. 2, we can observe from Fig. 3 that the power required to
maintain a certain MSE decreases as the direct link becomes
stronger. It can also be seen that Algorithm 2 reduces the
system power consumption throughout the whole range of
NMSE.

In the second example, we show that the performance
gain achieved by the two proposed algorithms in terms of
saving the system transmission power while ensuring QoS
is also reflected in the increase of the system MI under a
given power. In this example, the simulation parameters are
set identical to those in the first example. The system MI is
calculated after F, B1, and B2 are obtained using Algorithm 1
in Table 1 as

MI = log2 |IN1 + H̄HC−1H̄|.

Note that we have ignored the constant factor 1/2 that
accounts for the two time slots used. As this factor is ignored
for all other schemes, it has no effect on the performance com-
parison between the proposed algorithms and other schemes.
Fig. 4 shows the system MI versus the total transmission
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FIGURE 5. Example 2: System MI versus Pt at various direct link strength.
Algorithm 2, N1 = 1, Ns = Nr = Nd = 2.

power Pt . It can be seen that among the systems tested,
Algorithm 1 yields the highest system MI through optimiz-
ing B2. The increase of the MI is more significant at high
power levels and when the direct link is stronger.

Fig. 5 illustrates the system MI versus Pt with N1 = 1
using Algorithm 2. Similar to Fig. 4, it can be observed
from Fig. 5 that Algorithm 2 has the highest system MI.
Moreover, theMI gain is larger at1 = 10dB than1 = 20dB.
Interestingly, unlike in Fig. 4, the MI gain is almost constant
at all power levels. Such difference is mainly due to different
number of data streams in two scenarios as will be verified
later on.

FIGURE 6. Example 3: Pt versus 1. Algorithm 1, e = 0.3, N1 = 1,
Ns = Nr = Nd = N .

In the third example, we fix the MSE constraint e = 0.3
in (11), and vary 1 to provide an insight of Algorithm 1.
We set N1 = 1 and Ns = Nr = Nd = N . Fig. 6 shows
Pt versus 1. It can be seen that as 1 increases, the system
power required approaches to that of the system without the
direct link. Interestingly, we observe that the power required

under Algorithm 1 is very close to that with B2 = 0 when 1
is very large or small. This can be explained as follows.When
1 is small, the direct link is strong enough and only little or
no power should be transmitted through the relay link. Since
the direct link channelT is assumed to be constant during two
time slots, setting B2 = 0 does not change the system MSE
and power consumption. On the other hand, when1 is large,
the direct link is very weak such that all the transmission
power should be directed to the relay link. Thus, B2 = 0 is
optimal in this scenario. It can also be observed from Fig. 6
that for both N = 16 and N = 64, Algorithm 1 saves the
system power in the middle range of 1.

FIGURE 7. Example 3: ρ = Pr /Pt versus 1. Algorithm 1, e = 0.3, N1 = 1,
Ns = Nr = Nd = N .

Let us introduce ρ = Pr/Pt as the percentage of the
transmission power consumed by the relay node out of the
total transmission power. Fig. 7 shows ρ versus 1. We can
see that when 1 = 0, the transmission power in the relay
link is reduced to 0, which means F = 0 (i.e., (20) holds with
λ = 0) when the direct link is strong. This agrees with the
observation in Fig. 6. Moreover, it can be seen from Fig. 7
that ρ increases with 1 and approaches to that of the system
without the direct link. Due to a better utilization of the direct
link throughB2, Algorithm 1 yields a smaller ρ and converges
to the system without the direct link slower compared with
setting B2 = 0. Interestingly, we can also observe from
Fig. 7 that the number of antennas affects ρ. For each 1,
a largerN results in a smaller proportion of power transmitted
through the relay link. From Figs. 6 and 7, we can see that
to achieve a given system MSE, increasing the number of
antennas effectively reduces the system transmission power
consumption.

In the fourth simulation example, we compare the per-
formance of the two proposed algorithms with N1 = 1,
as Algorithm 2 is only applicable to a single data stream
system. We set Ns = Nr = Nd = N and 1 = 10dB.
Fig. 8 illustrates the system MI versus the total transmission
power. It can be seen from Fig. 8 that when N is small
(N = 4), both algorithms have a very close MI performance.
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FIGURE 8. Example 4: Comparison between two proposed algorithms.
1 = 10dB, N1 = 1, Ns = Nr = Nd = N .

When N is large (N = 16), Algorithm 2 has a slightly better
MI performance than Algorithm 1. This can be explained by
the fact that Algorithm 2 involves less optimization parame-
ters. It can also be observed from Fig. 8 that both algorithms
are capable of reducing the transmission power as the number
of antennas increases, which agrees with the observation
in Figs. 6 and 7.

FIGURE 9. Example 5: Normalized MI versus Pt . N1 = Ns = Nr = Nd = N .

In the fifth example, we study the performance of
Algorithm 1with a large number of data streams. Fig. 9 shows
the normalized MI (system MI divided by N ) versus Pt .
We set N1 = Ns = Nr = Nd = N and chose 1 to
be 10dB and 20dB. The MSE constraints are set as loga-
rithmically spaced numbers from 0.01N to 0.9N . It can be
seen from Fig. 9 that at 1 = 10dB, the MI per data stream
remains almost unchanged as N increases from 16 to 64. For
1 = 20dB, the normalized MI is slightly higher at N = 16.
Therefore, Algorithm 1 can be applied in relay systems with
a large number of antennas such as massive MIMO relay
systems.

TABLE 3. Average number of iterations required by two proposed
algorithms till convergence.

In the last example, we study the convergence behavior
of the two proposed algorithms. We choose 1 = 10dB,
Ns = Nr = Nd = N , and set the convergence criterion
ε = 10−4 in Tables 1 and 2. It can be seen from Table 3
that as expected, for both proposed algorithms, the number
of iterations increases when e decreases and N increases.
We can also see that Algorithm 2 has a faster convergence
rate than Algorithm 1.

Finally, we compare the computational complexity of the
two proposed algorithms. We set N1 = Ns = Nr = Nd = N
for Algorithm 1 and N1 = 1,Ns = Nr = Nd = N for
Algorithm 2. In one iteration of Algorithm 1, since the
bisection method has a low complexity, the computation
of Algorithm 1 is mainly on matrix multiplication, inver-
sion, EVD and SVD operations, which have a complex-
ity order of O(N 3). For one iteration of Algorithm 2, the
computational complexity is mainly from the solving the
two SDP problems (45)-(47) and (52)-(53) which has a
complexity order of O(N 7) [21]. Thus, Algorithm 2 has a
higher per iteration complexity than Algorithm 1. However,
Algorithm 2 converges faster (see Table 3) and has a better
performance (see Fig. 8) than Algorithm 1 when N1 = 1.
Such performance-complexity tradeoff is interesting in prac-
tical MIMO relay systems.

V. CONCLUSIONS
We have investigated the transceiver optimization for
two-hop AF MIMO relay systems with the direct link and
MSE constraints, where the source node transmits signals in
both time slots. Two iterative algorithms have been developed
to minimize the total system transmission power subjecting
to MSE constraints by jointly optimizing the source, relay,
and receiver matrices. Algorithm 1 works for the general
case of multiple concurrent data streams, while Algorithm 2
is developed for the single data stream case. Simulation
results show that both proposed algorithms converge fast
and reduce the system transmission power compared with
conventional two-hop AF MIMO relay systems where the
source node is silent at the second time slot. Under a given
system transmission power, the proposed algorithms yield a
higher system MI thanks to a better utilization of the direct
link. We have found that using both phases for source power
allocation provides a larger gain over the conventional single
phase source power allocation when the direct link is not very
strong or weak. When the direct link is very strong compared
with the relay link, direct communication between source
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and destination (without any relay nodes) is actually optimal.
As future works, transceiver optimization which guarantees
QoS for the system in this paper under imperfect CSI will
be investigated. Applying the new protocol to AF MIMO
relay systems with nonlinear receivers is also an interesting
problem for our future research.

APPENDIX A
SOLUTION TO λ IN (20)
By substituting (16) back into (9), we have

MSE = tr(WH
1 GF1F2F3(HB1BH1 H

H
+ IN1 )F

H
3 F

H
2 F

H
1

×GHW1 − F2BH1 H
HFH3 F

H
2 F

H
1 G

HW1

−WH
1 GF1F2F3HB1FH2 )+ tr(F2FH2 +WHW).

(54)

From (19), we obtain the identity of

F3(HB1BH1 H
H
+ IN1 )F

H
3 = F3HB1. (55)

Denoting

F̌1 = WH
1 GF1 = FH1 G

HW1 (56)

F̌3 = F3HB1 = BH1 H
HFH3 (57)

and using (55), we can rewrite (54) as

MSE = tr((F̌1 − IN1 )F2F̌3FH2 (F̌1 − IN1 ))+ ě (58)

where ě = tr(F2FH2 +WHW− F2F̌3FH2 ). By introducing
the SVD ofWH

1 G = U6VH , from (56) and (17), F̌1 becomes

F̌1 = λU6(IN1 + λ6
2)−16UH . (59)

By substituting (59) back into (58), we have

MSE = tr((λ6(IN1 + λ6
2)−16 − IN1 )U

HF2F̌3FH2 U

× (λ6(IN1 + λ6
2)−16 − IN1 ))+ ě. (60)

Denoting the ith main diagonal elements ofUHF2F̌3FH2 U and
6 by ωi and σi, i = 1, . . . ,N1, respectively, MSE = e can
be equivalently rewritten from (60) as

N1∑
i=1

ωi

(1+ λσ 2
i )

2
= e− ě. (61)

SinceUHF2F̌3FH2 U is positive semidefinite, we have ωi ≥ 0,
i = 1, . . . ,N1. Thus, the LHS of (61) is monotonically
decreasing with respect to λ > 0. Therefore, we can
efficiently solve λ > 0 from (61) using the bisection
method.

APPENDIX B
PROOF OF LEMMA 1
Using the matrix identity of

(A+ BCD)−1 = A−1 − A−1B(DA−1B+ C−1)−1DA−1

(62)

we have

µLH1 (D+ µL1LH1 )
−1L1

= µLH1 D
−1L1 − µLH1 D

−1L1(LH1 D
−1L1 + µ

−1IN1 )
−1

×LH1 D
−1L1

= µLH1 D
−1L1(IN1 − (LH1 D

−1L1 + µ
−1IN1 )

−1LH1 D
−1L1)

= µLH1 D
−1L1(µLH1 D

−1L1 + IN1 )
−1

= A1(A1 + IN1 )
−1 (63)

where A1 = µLH1 D
−1L1. Similarly, we have

µLH2 (IN1 + µL2LH2 )
−1L2 = A2(A2 + IN1 )

−1 (64)

where A2 = µLH2 L2.
Left-multiplying both sides of (24) and (25) byLH1 andLH2 ,

respectively, and using (63) and (64), we have

LH1 B1 = A1(IN1 + A1)−1(IN1 − LH2 B2) (65)

LH2 B2 = A2(IN1 + A2)−1(IN1 − LH1 B1). (66)

By substituting (66) into (65), we obtain

LH1 B1 = A1(IN1 + A1)−1(IN1 − A2(IN1 + A2)−1

× (IN1 − LH1 B1))

= A1(IN1 + A1)−1(IN1 + A2)−1

+A1(IN1 + A1)−1A2(IN1 + A2)−1LH1 B1. (67)

Solving (67) for LH1 B1, we have

LH1 B1 = (IN1 − A1(IN1 + A1)−1A2(IN1 + A2)−1)−1

×A1(IN1 + A1)−1(IN1 + A2)−1. (68)

Applying the matrix identity (62), we obtain

(IN1 − A1(IN1 + A1)−1A2(IN1 + A2)−1)−1

= ((IN1 + (IN1 − A1(IN1 + A1)−1)A2)(IN1 + A2)−1)−1

= ((IN1 + (IN1 + A1)−1A2)(IN1 + A2)−1)−1

= (IN1 + A2)(IN1 + (IN1 + A1)−1A2)−1

= (IN1 + A2)(IN1 + A1 + A2)−1(IN1 + A1). (69)

Substituting (69) back into (68), we have that

LH1 B1 = (IN1 + A2)(IN1 + A1 + A2)−1A1(IN1 + A2)−1

= (A1(IN1 + A2)−1 + IN1 )
−1A1(IN1 + A2)−1

= A1(IN1 + (IN1 + A2)−1A1)−1(IN1 + A2)−1

= A1(IN1 + A1 + A2)−1. (70)

In a similar way, we can obtain

LH2 B2 = A2(IN1 + A1 + A2)−1. (71)

Finally, by substituting (70) and (71) back into (23), we have

B̄ = IN1 − LH1 B1 − LH2 B2

= IN1 − (A1 + A2)(IN1 + A1 + A2)−1

= (IN1 + A1 + A2)−1.
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