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Abstract—We examine signaling strategies for wireless MIMO
networks with interference. Previous approaches have focused
on maximizing either individual or total throughput, resulting
in an inefficient or potentially unfair allocation of resources. We
propose two methods motivated by game-theoretic results. First,
we extend the non-cooperative Nash equilibrium proposed in
previous literature. Second, we present a cooperative method
based on the Nash bargaining solution which provides an
axiomatic arbitration scheme. Simulation results show that the
Nash bargaining solution provides a fair allocation of resources
without significantly sacrificing total throughput.

I. INTRODUCTION

Managing the mutual interference between multiple-input
multiple-output (MIMO) nodes in a wireless network is key
to realizing their inherent throughput advantages. Information-
theoretic approaches to this problem focus on controlling the
mutual information across links by appropriately choosing
source covariance matrices. For example, [1] proposes an
iterative water-filling algorithm to find a power allocation that
is individually optimal for each source node. As noted in [2],
this algorithm results in a Nash equilibrium [3], a signaling
strategy where no single source node can improve the mutual
information across its link by choosing a different covariance
matrix. This algorithm is therefore optimal from an individual
standpoint.

An alternative algorithm is proposed in [2] that is op-
timal from the perspective of the entire network. Using a
gradient search, the algorithm finds the source covariances
that maximize the sum mutual information across all links.
In [4], it is pointed out that when interference is high, the
optimal source covariances found in [2] perform worse than a
simple TDMA schedule. Motivated by this result, [4] presents
a framework in which the source covariances can vary in
time. This generalized model allows for the simultaneous
optimization of both the link schedule and power control.
By exploiting this additional degree of freedom, significantly
improved network throughput is achieved, and the TDMA
solution is obtained as a special case.

The methods described above are primarily concerned with
optimizing throughput, and can result in solutions where
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weaker links are never scheduled. In this paper, we introduce
two signaling strategies that incorporate fairness into the time-
varying schedule of [4]. First, we develop a time-varying
extension of the Nash equilibrium presented in [1]. Second,
we propose the application of the Nash bargaining solution [5]
to the problem. Our simulation results suggest that the Nash
bargaining approach provides an efficient trade-off between
overall throughput and individual link performance. When
mutual interference is high, the TDMA schedule results from
both the Nash bargaining solution and the time-varying Nash
equilibrium.

II. SYSTEM MODEL

Consider a wireless network which consists of L point-
to-point links; that is, there are L unique source nodes and
L unique destination nodes. For simplicity, we will assume
that each node has N antennas, although our results are not
dependent on this assumption. The source node on the ith link
transmits a complex baseband vector xi. The signal received
by the destination node can be written as

yi = Hi,ixi +
L∑

j=1
j �=i

Hi,jxj + ni , (1)

where Hi,j refers to the N×N channel matrix, which gives the
complex gain between the antennas of jth source node and the
ith destination node. The N × 1 vector ni represents additive
complex Gaussian noise normalized to have unit covariance
Cni

= I.
To discuss the information-theoretic properties of the net-

work, we view each xi as a zero-mean complex Gaussian
random vector with E{xixH

i } = Pi, where (·)H denotes the
Hermitian transpose. Each node is power-constrained:

tr{Pi} ≤ Pmax,i . (2)

As in [4], we define L time slots and allow the source
covariances to vary in time, assuming that the channel matrices
are static over the time slots. In [4], Rong and Hua constrain
the average power, requiring that

1
L

L∑
t=1

tr{Pi(t)} ≤ Pmax,i. (3)
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For each time slot, the interference covariance at the ith
receiver is given by

Ri(t) =
L∑

j=1
j �=i

Hi,jPj(t)HH
i,j . (4)

The average mutual information across link i can now be
expressed as

Ii =
1
L

L∑
t=1

log2

∣∣Hi,iPi(t)HH
i,i + I + Ri(t)

∣∣
|I + Ri(t)| , (5)

where |·| represents the matrix determinant.
In both [2] and [4], the projected gradient method is used

to find an optimal set of covariance matrices to maximize
the sum (or average) mutual information across the links.
Although we do not explicitly seek to maximize the sum
mutual information, we state several of their matrix gradient
results which will be useful in later sections. For z = x + jy,
we define ∇zf(z) = ∂f(z)/∂x + j∂f(z)/∂y. Using this
definition, it is shown in [2] that the gradient of a link’s mutual
information with respect to the source node’s covariance at a
particular time step is

∇Pi(t)Ii =
2

ln 2
HH

i,i

(
Hi,iPi(t)HH

i,i + I+Ri(t)
)−1

Hi,i. (6)

It is also shown that the gradient with respect to a different
source node’s covariance is

∇Pj(t)Ii =
2

ln 2
HH

i,j

(
(Hi,iPi(t)HH

i,i + I + Ri(t))−1

− (I + Ri(t))−1
)
Hi,j ,∀j �= i. (7)

III. TIME-VARYING NASH EQUILIBRIUM

In this section, we extend the algorithm of [1] to the
time-varying model described in [4]. Since [1] employs an
iterative water-filling scheme, we briefly review the water-
filling concept for a single point-to-point link. Let H be the
channel matrix for the link, which is known to both the
transmitter and receiver. Let UΣVH = H be the singular
value decomposition of the channel matrix and XDXH = P
be the eigen-decomposition of the source covariance. Further,
let σk and dk denote the N singular values of H and the
N eigenvalues of P, respectively. The column vectors of V
characterize the spatially orthogonal transmit modes of the
channel described by H. If the source chooses X = V, it can
distribute its power across the channel modes by selecting the
eigenvalues dk. It is shown in [6] that the optimal choice of
eigenvalues is given by

dk =
[
µ − 1

σ2
k

]+

, (8)

where [·]+ = max(·, 0), and µ is chosen to satisfy the power
constraint in (2):

N∑
k=1

dk = Pmax,i . (9)

If, in addition to white noise, there is fixed non-white inter-
ference described by the covariance R, we can apply a spatial
whitening transform

H̃ = (I + R)−
1
2 H , (10)

and use the water-filling algorithm as usual by substituting H̃
for H.

In [1], each source node iteratively updates its covariance by
water-filling across the whitened channel modes. However, in
altering its covariance, the source node alters the interference
on the other links. The source nodes must therefore continue
updating their covariance matrices until a steady-state results.

To extend this algorithm to the time-varying case, we first
note that the interference matrices will in general be different
at different time steps. Let H̃i,i(t) = (I + Ri(t))−

1
2 Hi,i be

the whitened channel matrix at time t for the ith link. Even
though the channel itself is static across the L time steps,
the whitened channel will be different, with different channel
modes. Since these different channel modes are temporally—
rather than spatially—orthogonal, we can water-fill across the
NL channel modes in a similar manner.

As in [1], the nodes iteratively water-fill until a steady
state is reached. Let U(t)Σ(t)VH(t) = H̃i,i(t) denote the
singular value decomposition of the whitened channel matrix
with singular values σk(t), and let X(t)D(t)XH(t) = Pi(t)
denote the eigen-decomposition of the source covariance with
eigenvalues dk(t). To water-fill across the NL modes, we set
X(t) = V(t), and choose the eigenvalues according to

dk(t) =
[
µ − 1

σ2
k(t)

]+

, (11)

and µ such that

1
L

L∑
t=1

N∑
k=1

dk(t) = Pmax,i, (12)

maximizing mutual information while ensuring that that the
average power constraint (3) is satisfied. While as in [1] there
is no guarantee of convergence, in practice the algorithm works
well and converges to a unique point at which no source node
can improve the mutual information across its link by altering
its power schedule described by the covariance matrices Pi(t).

IV. NASH BARGAINING SOLUTION

To discuss the Nash bargaining solution, we more care-
fully define the necessary game-theoretic concepts. Let K =
{1, 2, · · · , n} be the set of players. Each player i has a strategy
set Si, which is the set of actions it may implement. A
strategy profile s is an n-dimensional vector over the product
strategy space S = S1 × S2 × · · · × Sn. Each player has a
payoff function πi(s) which quantifies the utility derived by
player i from the implementation of the strategy profile si.
Finally, let R be the set of feasible payoff vectors, that is
R = {r : r = (π1(s), π2(s), · · · , πn(s))T , s ∈ S}. We assume
that R is compact, but not necessarily convex.

In a non-cooperative game, players attempt to maximize
individual utility without regard for the utility of others.
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They do not communicate and cannot make agreements prior
to play, resulting in the Nash equilibrium. In a cooperative
game, however, players may communicate, negotiate, and
make binding commitments prior to play. While it requires
more infrastructure, this framework can result in more efficient
strategies implemented by the players.

While there are many cooperative game-theoretic ap-
proaches we could discuss, we restrict our attention to a
generalization of the n-player Nash bargaining solution [5],
which axiomatically selects a set of points in R. Define the
disagreement point δ = (δ1, δ2, · · · , δn)T . The disagreement
point is interpreted as the “status quo” before bargaining or
the payoff each player is guaranteed should bargaining fail. It
represents a minimum payoff that each player demands in a
bargaining scenario.

Define the negotiation set N as the set of all payoff vectors
r for which ri > δi for all i. The Nash bargaining solution is
the set of payoff vectors φ(N ) (which we refer to as the Nash
bargaining set) defined by

φ(N ) =

{
r∗ ∈ N :

n∏
i=1

(r∗i − δi) ≥
n∏

i=1

(ri − δi),∀r ∈ N
}

.

(13)
In other words, the Nash bargaining set is the set of feasible
payoff vectors that maximize the product (called the Nash
product) in (13). In [7], the Nash bargaining solution is shown
to satisfy the axioms in the following paragraphs.

First, each r∗ ∈ φ(N ) is Pareto efficient, which means that
there is no payoff vector r ∈ R which gives each player higher
payoff than r∗. If there is an i for which ri > r∗i , there must
be at least one j for which rj < r∗j . Pareto efficiency ensures
that we do not overlook any payoff vectors for which each
player is better off.

Second, the solution is independent of positive affine trans-
formations in the players’ payoff functions.

Third, symmetry among the players is maintained. Let g be
a permutation of K. If g(r) = (rg(1), . . . , rg(L))T ∈ N for all
r ∈ N , then g(r∗) ∈ φ(N ) for all r∗ ∈ φ(N ).

Fourth, the solution is independent of irrelevant alternatives.
Consider another set of payoffs M such that M ⊂ N . If
φ(N ) ∩M is nonempty, then φ(M) = φ(N ) ∩M.

Finally, the solution satisfies a continuity condition which
we do not detail here. For a complete explanation, see [7].

When R is convex, only the first four axioms are necessary
and the solution contains a unique payoff vector. Otherwise,
the five axioms define a set of payoff vectors. With the possible
exception of the fourth, these axioms appear to be simple and
necessary criteria for a fair arbitration scheme. The axiom of
Pareto efficiency guarantees an efficient solution, while the
axiom of symmetry guarantees, at least in one sense, a fair
solution. We may therefore anticipate that the Nash bargaining
solution will effectively trade-off between network throughput
and individual links. In [8] it is noted that when δ = 0,
the Nash bargaining solution is identical to the proportional
fairness criterion proposed in [9].

A. Implementation

To apply the Nash bargaining solution to the MIMO power
schedule, we define K = {1, 2, · · · , L}, the set of source
nodes for each link. We denote player i’s strategy set as Pi, the
set of feasible collections of matrices that the ith source node
can implement. Each element pi ∈ Pi contains L matrices—
one for each time step. The product strategy space is P =
P1 × · · · × PL, where each element p contains L2 matrices.
The payoff function πi(p) for player i is simply the average
mutual information across the ith link given in (5).

Finally, we must define the disagreement point δ for the
MIMO network, which represents the status quo prior to bar-
gaining. A common choice for the status quo is the maximin
payoff to each player. The maximin payoff is a worst-case
scenario: if all other players agree to devote their efforts to
reducing player i’s payoff, how much payoff can player i
guarantee for itself? For our problem, the maximin payoff can
be expressed as

δi = max
pi∈Pi

min
pj∈Pj ,j �=i

Ii(p). (14)

The Nash product, which is denoted by Ψ(p), is now

Ψ(p) =
L∏

i=1

(Ii(p) − δi). (15)

Unfortunately, we cannot solve in closed-form for the
covariance matrices that maximize Ψ(p). Therefore, as in
[2] and [4] we will use the gradient projection method to
optimize Ψ(p). Although we maximize a different objective
function, whose maximum has different theoretical properties,
our brief development will largely parallel the discussion in
[2]. Gradient projection is used to optimize a scalar function
f(x), where x is constrained to be an element of some convex
set. Since the matrices that form the elements of P are positive
semi-definite and subject to a trace constraint, the convexity of
P is easily established. Properly implemented, the procedure
is guaranteed to converge to a local optimum.

To simplify our algorithm, we find the covariances that
maximize ln(Ψ(p)), which is given by

Ψ′(p) = ln(Ψ(p)) =
L∑

i=1

ln(Ii(p) − δi). (16)

First, we must compute the gradient of Ψ′ with respect to
each covariance matrix in p. Applying the chain rule to the
logarithm, we get

∇Pi(t)Ψ
′(p) =

L∑
j=1

1
Ij(p) − δj

∇Pi(t)Ij(p). (17)

This equation exposes an important feature of the Nash
bargaining solution. Finding the Nash bargaining solution is
similar to finding the global optimum from [4], except that
each term in the gradient is scaled by a variable weight.
If a link’s mutual information is comparatively close to the
disagreement point, it gets a higher weight in computing the
gradient.
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At iteration k, we take a step in the direction of the gradient
for each source node and each time block, forming a new
collection of matrices p̂k:

P̂k
i (t) = Pk

i (t) + s∇Pk
i (t)Ψ

′(pk), (18)

where s is a fixed step size. However, simply following
the gradient may lead us outside our feasible region P .
We therefore project p̂k onto P . Using the usual matrix
inner product 〈A, B〉 = tr(AHB), the induced norm is
‖A‖F =

√
tr(AHA), the Frobenius norm. Therefore, we

project onto P by choosing the element p̃k ∈ P that minimizes
the sum of the squared Frobenius norm of the matrices in
p̃k − p̂k:

p̃k = arg min
p∈P

L∑
i=1

L∑
t=1

∥∥∥Pi(t) − P̂k
i (t)

∥∥∥2

F
. (19)

Since the source nodes’ constraints are independent of each
other, the constrained optimization can be decoupled into L
independent problems. We omit the details here, but it is
straightforward to show that the projected matrices are given
by

P̃k
i (t) = Xk

i (t)[Dk
i (t) − νk

i I]+(Xk
i (t))H , (20)

where Xk
i (t)Dk

i (t)(Xk
i (t))H = P̂k

i (t) is the eigen-
decomposition of P̂k

i (t), [A]+ zeros out any negative entries
in the matrix A, and νk

i is chosen to satisfy the constraints
in (3). For each source node, the projection operator equally
scales down the eigenvalues of the L matrices until the average
trace constraint is satisfied.

We complete the iteration by stepping in the feasible direc-
tion defined by p̃k:

pk+1 = pk + ak(p̃k − pk), (21)

where ak ∈ [0, 1] is a variable step size. Since (21) defines
a convex combination of two elements of the convex set P ,
pk+1 ∈ P . As in [2] and [4], we choose ak using Armijo’s
rule along the feasible direction p̃k − pk. This rule requires
that ak = γmk , where γ ∈ [0, 1] and mk is the smallest
nonnegative integer such that

Ψ′(pk+1) − Ψ′(pk) ≥ σγmk
〈∇Ψ′(pk), p̃k − pk

〉
(22)

= σγmk

L∑
i=1

L∑
t=1

tr
(
(∇Pi(t)Ψ

′(pk))H(P̃i(t) − Pi(t))
)
(23)

for a small constant σ. After each iteration, we check to see
whether or not the convergence criterion is met, which is

max
∣∣pk+1 − pk

∣∣ < ε (24)

for a small constant ε. If (24) is met, iterations stop and pk+1

is chosen as a fair power schedule.
To compute the disagreement point δ, we modify the

gradient projection method to search for the maxi-min point
for each link. The ith source node steps in the direction of
steepest ascent, while the other nodes step in the direction
of steepest descent. When the algorithm converges, the ith

source cannot improve the mutual information across its link,
and the other sources cannot further damage it. The algorithm
is repeated for each of the L links.

V. RESULTS

To evaluate the performance of the Nash bargaining so-
lution, we simulate using MIMO channels with independent
Rayleigh fading and variable signal- and interference-to-noise
ratios (SNR and INR). We set Pmax,i = N,∀i and choose

Hi,i =
√

ρi

N
H̄i,i,Hi,j =

√
βi,j

N
H̄i,j , (25)

where the entries of H̄i,i and H̄i,j are independent complex
Gaussian distributed with zero mean and unit variance. The
parameter ρi is the expected received signal-to-noise ratio
(SNR) across the ith channel when the ith source transmits
at full power, and βi,j is the expected received interference-
to-noise ratio (INR) between the jth transmitter and the ith
receiver when the ith source transmits at full power.

We show two measures of system performance: average
mutual information per link and minimum mutual information
per link. The average mutual information per link quantifies
the effectiveness of the algorithm in terms of total throughput,
while the minimum mutual information quantifies the “fair-
ness” of the solution. For our simulations, we let the number
of links be L = 6 and the number of antennas be N = 2.
In the gradient projection algorithm, we set s = 1, γ = 0.5,
σ = 10−3, and ε = 10−3.

First, we examine system performance as we vary INR. In
this simulation, each link has an SNR of 20dB and the INR
is the same among all links. While this scenario is somewhat
artificial, it allows us to easily examine how each algorithm
handles increased interference. In Figure 1, we show the
average mutual information per link as a function of INR. For
comparison, we show results for the Nash bargaining solution
(NBS) alongside those for the time-varying Nash equilibrium,
the optimal power schedule (OPS) of [4], the Nash equilib-
rium of [1], and a TDMA power schedule. Each data point
represents the average of 100 independent simulations.

Since the SNR and INR are the same for all of the links,
the Nash bargaining solution and the global OPS are similar.
This intuitively pleasing result stems from the fact that, when
players’ feasible utilities are symmetric, the Nash bargaining
solution equally allocates utility. The instances where the NBS
yields a higher throughput than the OPS are a likely an artifact
of the local, rather than global, optimality of the gradient
projection approach. We also note that the time-varying and
standard Nash equilibrium solutions perform almost identi-
cally unless the INR is high, in which case the time-varying
approach converges to the TDMA schedule.

Next, we examine performance when the links have signif-
icantly different quality. We set the INR at 10dB for all links,
and we let the SNR (in dB) be a Gaussian random variable
with a mean of 20dB and a variable standard deviation. In
Figures 2 and 3 we show the average and minimum mutual
information per link, respectively, as a function of the standard
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Fig. 1. Average mutual information per link versus INR.
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Fig. 2. Average mutual information per link versus SNR standard deviation.

SNR is zero, the links have roughly the same quality and the
NBS and OPS solutions are similar. As we increase the SNR
standard deviation, however, some links are significantly better
than others. Naturally, the OPS approach exploits this asym-
metry best in terms of total throughput. The NBS performs
just slightly worse, followed by the Nash equilibrium solutions
and finally TDMA. The NBS approach, however, enjoys a
significantly improved worst-case performance than OPS and
the Nash equilibrium solutions and is no worse than TDMA for
large link variance. These results support the use of the Nash
bargaining approach to provide a useful trade-off between total
network throughput and individual link performance.

VI. CONCLUSION

In this paper we have proposed a MIMO network power
scheduling strategy based on the Nash bargaining solution
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Fig. 3. Minimum mutual information per link versus SNR standard deviation.

from cooperative game theory. Our experimental results in-
dicate that this approach provides a useful trade-off between
total network throughput and individual link quality.

There remain several important issues that bear further
investigation. First, as in [4], the power constraint limits the
time-averaged rather than instantaneous transmitted power.
Under this model, source nodes may transmit, for short
durations, at higher power than is possible under the models
used in [1] and [2]. The impact of per-time-slot and even per-
antenna power constraints are an important practical issue that
should be addressed.

Also, since the gradient projection method outlined in
Section IV-A only guarantees a stationary point, the algorithm
does not necessarily result a member of the Nash bargaining
set. Fortunately, however, our empirical results are encourag-
ing, suggesting that even in non-ideal situations the spirit of
the Nash bargaining approach works well.
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