
Joint Source and Relay Design for Wireless

Powered AF MIMO Relay Systems with Direct

Link

Bin Li

School of Electrical Engineering and Information

Sichuan University, Chengdu, Sichuan, China

Department of Mathematics and Statistics

Curtin University, Bentley, WA, Australia

Email: bin.li@curtin.edu.au

Yue Rong

Department of Electrical and Computer Engineering

Curtin University

Bentley, WA, Australia

Email: y.rong@curtin.edu.au

Abstract�In this paper, we consider a dual-hop amplify-
and-forward (AF) multiple-input multiple-output (MIMO) relay
system with a wireless powered relay node. In particular, the time
switching (TS) protocol is applied between wireless information
and energy transfer at the relay node. The direct link between
the source and destination nodes is considered. We study the
joint optimization of the source and relay precoding matrices
and the TS factor to maximize the source-destination mutual
information (MI) when a single data stream is transmitted from
the source node. We derive the optimal structure of the source
and relay precoding matrices, which reduces the original problem
to a simpler optimization problem. The simpli�ed problem is then
solved ef�ciently by a two-step method. Numerical simulations
show that the proposed algorithm yields a higher MI and better
rate-energy tradeoff than approaches with a �xed TS factor.

I. INTRODUCTION

Traditional wireless devices are powered by batteries with

a limited life time. A high cost is usually associated with

replacing batteries to extend the life time of wireless devices.

Furthermore, due to the physical and economic constraints,

replacing batteries cannot be easily carried out in many real

scenarios in practice. Wireless power transfer techniques,

which have the potential to avoid replacing batteries, have

received increasing interests recently [1].

The concept of simultaneous wireless information and en-

ergy transfer has been proposed in [2], where a receiver is

capable of performing information decoding (ID) and energy

harvesting (EH) simultaneously. To coordinate wireless in-

formation transfer and wireless energy transfer in practical

systems, a time switching (TS) protocol and a power splitting

(PS) protocol have been proposed in [3].

It is well-known that both multiple-input multiple-output

(MIMO) and relay communication techniques can improve the

system coverage and energy ef�ciency [4]-[7]. By equipping

multiple antennas at wireless devices, radio frequency (RF)

energy can be focused on particular devices so that they can

be charged more ef�ciently compared with using a single
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antenna. The application of EH in MIMO relay systems has

been studied in [8]-[12]. In [8], performance trade-offs of

several receiver architectures have been discussed by applying

EH in MIMO relay systems. Precoder design for decode-and-

forward (DF)-based MIMO relay networks has been studied

in [9] and [10].

A TS protocol and a PS protocol have been developed in

[11] for an amplify-and-forward (AF) MIMO relay system,

where the achievable rate is maximized for each protocol by

jointly optimizing the source and relay precoding matrices.

In [12], an orthogonal space-time block code (OSTBC) based

AF-MIMO relay system with a multi-antenna EH receiver has

been investigated.

In this paper, we consider a two-hop AF MIMO relay

system with a wireless powered relay node. Different to

existing works, we consider the direct link in this paper.

The TS protocol is adopted during the source phase, where

the source node transfers energy and information signals to

the relay node during the �rst and second time intervals,

respectively. During the second time interval, the source node

also sends signal to the destination node through the direct

link. Then, during the relay phase, the relay node uses the

harvested energy to forward the received information to the

destination node. As a novel contribution of this paper, we

propose an energy consumption constraint at the source node

during the information and energy transfer, which is more

general than the constant power constraints in [11].

We study the joint optimization of the source precoding

matrices, the relay amplifying matrix, and the TS factor to

maximize the source-destination mutual information (MI),

subjecting to the harvested energy constraint at the relay

node and the proposed source energy constraint at the source

node. The optimal structure of the source and relay matrices

is derived, which reduces the original problem to a simpler

problem. Based on the observation that the system MI is a

unimodal function of the TS factor, we develop a two-step

method to ef�ciently solve the simpli�ed problem.

In particular, we show that the optimal TS factor can be
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Fig. 1. A dual-hop MIMO relay communication system with direct link and
an energy-harvesting relay node.

ef�ciently found by a golden section search. Whereas for a

given TS factor, the subproblem is solved through solving two

nonlinear equations in the second step. Numerical simulations

show that the proposed algorithm yields a higher MI and better

rate-energy tradeoff than approaches with a �xed TS factor.

II. SYSTEM MODEL

We consider a three-node two-hop MIMO communication

system where the source node transmits information to the

destination node with the aid of one relay node as shown in

Fig. 1. The source, relay, and destination nodes are equipped

with Ns, Nr, and Nd antennas, respectively. We assume that

the source node has its own power supply, while the relay

node is powered by harvesting the RF energy sent from the

source node.

In this paper, a time switching protocol [3] is considered.

In particular, there are three intervals in one communication

cycle T . In the �rst time interval, energy is transferred from

the source node to the relay node with a duration of αT , where
0 < α < 1 denotes the time switching factor. In the second

time interval, information signals are transmitted from the

source node to the relay node with a duration of (1 − α)T/2.
Meanwhile, these signals are also transmitted to the destination

node via the direct link. The last time interval of (1−α)T/2 is

used for relaying the information signals received by the relay

node to the destination node. For the simplicity of presentation,

we set T = 1 hereafter. In all three time intervals, signals are

linearly precoded before transmission.

More speci�cally, in the �rst time interval, an N1×1 energy-

carrying signal vector s1(t) is precoded by an Ns ×N1 matrix

B1 at the source node and transmitted to the relay node. The

optimal value of N1 will be determined later. We assume that

E{s1(t)sH
1 (t)} = IN1 , where E{·} stands for the statistical

expectation, In is an n × n identity matrix, and (·)H denotes

the Hermitian transpose. The received signal vector at the relay

node is given by

yr(t) = HB1s1(t) + vr(t), 0 ≤ t ≤ α (1)

where H is an Nr × Ns MIMO channel matrix between the

source and relay nodes, yr(t) and vr(t) are the received signal
and the additive Gaussian noise vectors at the relay node,

respectively. Based on [3], the RF energy harvested at the

relay node is proportional to the baseband received signal in

(1), which is given by

Er = ηαtr(HB1BH
1 HH) (2)

where tr(·) denotes the matrix trace and 0 < η ≤ 1 is the

energy conversion ef�ciency.

During the second time interval, an information-bearing

signal s2(t) with E{|s2(t)|2} = 1 is precoded by an Ns × 1
vector b2 at the source node and transmitted to the relay node.

The received signal vector at the relay node can be written as

yr(t) = Hb2s2(t) + vr(t), α ≤ t ≤ 1 + α

2
. (3)

While the received signal vector at the destination node in this

time interval can be written as

yd(t) = Kb2s2(t) + vd(t), α ≤ t ≤ 1 + α

2
(4)

where K is an Nd × Ns channel matrix between the source

and destination nodes, yd(t) and vd(t) are the received signal

and the additive Gaussian noise vectors at the destination node

in the second time interval, respectively.

Finally, during the third time interval, the relay node linearly

precodes yr(t), α ≤ t ≤ 1+α
2 , with an Nr ×Nr matrix F and

transmits the precoded signal vector

xr(t) = Fyr

(
t − 1 − α

2

)
,

1 + α

2
≤ t ≤ 1 (5)

to the destination node. From (3) and (5), the received signal

vector at the destination node in the third time interval can be

written as

yd(t) = Gxr(t) + vd(t)

= GFHb2s2

(
t − 1 − α

2

)
+ GFvr

(
t − 1 − α

2

)
+vd(t),

1 + α

2
≤ t ≤ 1 (6)

where G is an Nd × Nr MIMO channel matrix between

the relay and destination nodes, yd(t) and vd(t) are the

received signal vector at the third time interval and the additive

Gaussian noise vector at the destination node, respectively.

Combining (4) and (6), the received signal vector at the

destination over the second and the third time intervals is

y ,
[

yd(t)
yd

(
t − 1−α

2

)]
=

[
GFH

K

]
b2s2

(
t − 1 − α

2

)
+

[
GFvr

(
t − 1−α

2

)
+ vd(t)

vd

(
t − 1−α

2

) ]
,

1 + α

2
≤ t ≤ 1. (7)



We assume that H, G, and K are quasi-static and known

at the relay node. All noises are assumed to be additive white

Gaussian noise (AWGN) with zero-mean, E{vr(t)vH
r (t)} =

σ2
rINr , and E{vd(t)vH

d (t)} = σ2
dINd

. From (7), the mutual

information between source and destination is given as [13]

MI(α,b2,F)

=
1 − α

2
log2(1+σ−2

d bH
2 KHKb2+bH

2 HHFHGH

×(σ2
rGFFHGH + σ2

dINd
)−1GFHb2) (8)

where (·)−1 denotes the matrix inversion.

Note that the energy used to transmit s1(t) and s2(t) from

the source node is αtr(B1BH
1 ) and 1−α

2 bH
2 b2, respectively.

Therefore, the constraint on the energy consumed by the

source node can be written as

αtr(B1BH
1 ) +

1 − α

2
bH

2 b2 ≤ 1 + α

2
Ps (9)

where Ps is the nominal (average) power available at the

source node.

From (3) and (5), the energy consumed by the relay node

to transmit xr(t) to the destination node is given by

1 − α

2
tr(E{xr(t)xH

r (t)})

=
1 − α

2
tr(F(Hb2bH

2 HH + σ2
rINr )F

H). (10)

Based on (2) and (10), we obtain the following energy con-

straint at the relay node

1 − α

2
tr(F(Hb2bH

2 HH+ σ2
rINr

)FH)≤αηtr(HB1BH
1 HH).

(11)

From (8), (9), (11), the transceiver optimization problem

for linear non-regenerative wireless information and energy

transfer MIMO relay systems can be written as

max
0<α<1,B1,b2,F

MI(α,b2,F) (12)

s.t. αtr(B1BH
1 ) +

1 − α

2
bH

2 b2 ≤ 1 + α

2
Ps (13)

tr(F(Hb2bH
2 HH+σ2

rINr )F
H)≤ 2αη

1−α
tr(HB1BH

1 HH).(14)

III. THE PROPOSED ALGORITHM

The problem (12)-(14) is nonconvex with matrix variables

and is challenging to solve. In this section, we develop a novel

algorithm to solve the problem (12)-(14). First, we derive the

optimal structure of B1 and F, under which the problem (12)-

(14) can be simpli�ed. Let us introduce

H = UhΛ
1
2
h VH

h , G = UgΛ
1
2
g VH

g (15)

as the singular value decompositions (SVDs) of H and G,

respectively, with the diagonal elements of Λh and Λg sorted

in decreasing order.

THEOREM 1: The optimal B1 and F as the solution to the

problem (12)-(14) has the following structure

B∗
1 = λ

1
2
b vh,1, F∗ = c

1
2 vg,1bH

2 HH (16)

where (·)∗ denotes the optimal value, λb and c are positive

scalars that remain to be optimized, vh,1 and vg,1 are the �rst

columns of Vh and Vg , respectively.

It is interesting to see from (16) that the optimal B1 is a

vector (i.e., N1 = 1) matching vh,1. Based on Theorem 1,

the matrix optimization problem (12)-(14) can be reduced to

a simpler problem. This can be done by substituting (16) back

into (12)-(14), and we have

max
α,b2,c,λb

1−α

2
log2

(
1+

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
(17)

s.t. αλb +
1 − α

2
∥b2∥2 ≤ 1 + α

2
Ps (18)

c(∥Hb2∥4 + σ2
r∥Hb2∥2) ≤ 2αη

1 − α
λh,1λb (19)

where ∥ · ∥ stands for the vector Euclidian norm and λh,1 de-

notes the �rst diagonal element of Λh. As (17) monotonically

increases with ∥Hb2∥2, for any λb, the optimal b2 maximizing

(17) must satisfy equality in the constraint (19), i.e.,

αλb =
(1 − α)c
2ηλh,1

(∥Hb2∥4 + σ2
r∥Hb2∥2). (20)

By substituting (20) back into (18), the problem (17)-(19) can

be equivalently rewritten as

max
α,b2,c

1−α

2
log2

(
1+

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
(21)

s.t.
c

ηλh,1
(∥Hb2∥4+σ2

r∥Hb2∥2)+∥b2∥2 ≤ Ps
1+α

1−α
.(22)

To proceed further, we de�ne M(α) as the optimal value

of the following problem for a given α

max
b2,c

log2

(
1+

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
(23)

s.t.
c

ηλh,1
(∥Hb2∥4 + σ2

r∥Hb2∥2) + ∥b2∥2 ≤ Pα (24)

where Pα = Ps
1+α
1−α . Then, the optimal value of the problem

(21)-(22) can be written as

F (α) =
1 − α

2
M(α). (25)

The unimodality of F (α) is dif�cult to prove rigorously, and

it will be illustrated graphically later in this section. Based

on this observation, the problem (21)-(22) can be ef�ciently

solved by a two-step algorithm, where for a given α we

optimize b2 and c by solving the problem (23)-(24). And then

a simple one dimensional search (such as the golden section

search method [14]) can be applied to obtain the optimal α.

As (23) monotonically increases with c, for any ∥b2∥2 ≤
Pα, the optimal c maximizing (23) must satisfy equality in

(24), i.e.,

c∥Hb2∥2 =
ηλh,1(Pα − ∥b2∥2)

∥Hb2∥2 + σ2
r

. (26)



Substituting (26) back into (23), the problem (23)-(24) can be

equivalently written as

max
∥b2∥2≤Pα

∥Kb2∥2+
σ2

dλ(Pα − ∥b2∥2) ∥Hb2∥2

∥Hb2∥2+ σ2
r +σ2

rλ(Pα−∥b2∥2)
. (27)

where λ = ηλh,1λg,1/σ2
d. By introducing new variables x and

y with λ(Pα − ∥b2∥2) ≥ x and ∥Hb2∥2 ≥ y, the problem

(27) can be converted to

max
x,y,b2

∥Kb2∥2 +
σ2

dxy

σ2
rx + y + σ2

r

(28)

s.t. ∥Hb2∥2 ≥ y (29)

∥b2∥2 ≤ Pα − x/λ. (30)

The problem (28)-(30) can be solved by the Lagrange

multiplier method. The corresponding Lagrangian function is

given by

L = −∥Kb2∥2 − σ2
dxy

σ2
rx + y + σ2

r

+ β(y − ∥Hb2∥2)

+γ(∥b2∥2 − Pα + x/λ) (31)

where β ≥ 0 and γ ≥ 0 are the Lagrange multipliers. Based

on the Karush-Kuhn-Tucker (KKT) optimality conditions, we

obtain from (31) that

∂L
∂b2

= −bH
2 KHK − βbH

2 HHH + γbH
2 = 0 (32)

∂L
∂x

= − σ2
dy(y + σ2

r)
(σ2

rx + y + σ2
r)2

+
γ

λ
= 0 (33)

∂L
∂y

= − σ2
rσ2

dx(x + 1)
(σ2

rx + y + σ2
r)2

+ β = 0. (34)

From (32), we have

(βHHH + KHK)b2 = γb2. (35)

This indicates that the optimal b2 is

b∗
2 =

√
ξ∗v(β∗HHH + KHK) (36)

where ξ∗ is a positive scalar, v(A) stands for the principal

eigenvector of matrix A with ∥v(A)∥ = 1. For the simplicity
of notations, we denote b∗

2 =
√

ξ∗v(β∗). From (35), the

optimal γ is γ∗ = e(β∗HHH + KHK), where e(A) stands

for the principal eigenvalue of matrix A. Similarly, we denote

γ∗ = e(β∗) for the simplicity of notations.

As (28) monotonically increases with x > 0 and y > 0, to
maximize (28), equalities in (29) and (30) must hold at the

optimal solution. Therefore, we have

y∗ = ξ∗∥Hv(β∗)∥2, x∗ = λ(Pα − ξ∗). (37)

The rest of the problem is to �nd β∗ and ξ∗. This can be done

by substituting (37) back into (33) and (34) and solving the

following system of two nonlinear equations

β∗ =
σ2

rσ2
dλ(Pα − ξ∗)(λ(Pα − ξ∗) + 1)

(σ2
rλ(Pα − ξ∗) + ξ∗∥Hv(β∗)∥2 + σ2

r)2
(38)

e(β∗)
λ

=
σ2

dξ∗∥Hv(β∗)∥2(ξ∗∥Hv(β∗)∥2 + σ2
r)

(σ2
rλ(Pα − ξ∗) + ξ∗∥Hv(β∗)∥2 + σ2

r)2
. (39)

α
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Fig. 2. Unimodality of F (α). Ps = 5dBm and N = 3.

As (38)-(39) are two-dimensional nonlinear equations of β∗

and ξ∗, they can be ef�ciently solved by using standard

software package via, for example, the Newton's method, the

Broyden's method (quasi-Newton method), and the gradient

method [14].

To verify the unimodality of F (α) in (25), we solve the

problem (21)-(22) using the proposed algorithm to calculate

F (α) numerically. We set Ps = 5dBm, σ2
r = σ2

d = −50dBm,
and Ns = Nr = Nd = N . Fig. 2 shows F (α) versus α with

N = 3. It can be seen that F (α) indeed is a unimodal function
of α.

IV. SIMULATIONS

In this section, we study the performance of the proposed

algorithm via numerical simulations. In the simulations, the

three nodes are located in a line, where the distance between

the source node and the destination node is 20 meters, and

the distance between the source node and the relay node is

10d. Therefore, the relay-destination distance is 10(2 − d).
The channel matrices H, G, and K have complex Gaussian

entries with zero-mean and variances 1/(10d)3, 1/(10(2 −
d))3, and 1/203, respectively. The noise power at the relay and

the destination nodes is �xed as σ2
r = σ2

d = −50dBm. For all
simulation examples, we �x η = 0.4 and Ns = Nr = Nd =
N . We compare the performance of the proposed algorithm

with the �xed α algorithm, where α = 0.3, α = 0.5, and
α = 0.8. All the numerical simulation results are averaged

over 1000 independent channel realizations.

In the �rst example, we set d = 1. The MI of the proposed

algorithm and the �xed α approach versus the nominal power

Ps for N = 3 is shown in Fig. 3. We observe that the proposed

algorithm performs better than the �xed α scheme. This is

because α is optimized in our proposed algorithm so that a

higher MI is obtained.

To further interpret the performance gain of the proposed

algorithm in the �rst example, we plot the optimal time

switching factor α calculated by the proposed algorithm in the
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second example. In this example, we set d = 1. Fig. 4 shows

the optimal α versus the nominal power Ps with N = 3.
It can be seen from Fig. 4 that for the proposed algorithm,

the optimal α monotonically decreases as the nominal power

Ps increases. In particular, the optimal α becomes very small

when Ps is above 10dBm. The reason is that when Ps is large

enough, λb (the power level at the source node at the �rst

interval) obtained by the proposed algorithm increases. Thus,

even though α is small, the energy αηλh,1λb harvested by the

relay node is suf�cient to forward the signal to the destination

node. Therefore, more time can be allocated for information

transmission so that a higher data rate can be achieved at large

Ps.

In the third example, we �x d = 1 and study the energy

consumption and rate-energy trade-off of the proposed algo-

rithm. We �rst plot the energy consumption versus Ps with

N = 3 in Fig. 5. Then, we �x Ps = 10dBm and plot the MI

versus energy with N = 3 in Fig. 6. As shown in Fig. 5, the
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Fig. 6. MI versus energy with N = 3.

energy cost for the proposed algorithm is lower than any �xed

α schemes. The better rate-energy trade-off achieved by the

proposed algorithm is demonstrated in Fig. 6. This indicates

that the proposed algorithm achieves a higher rate with a less

energy consumption through optimizing α.

V. CONCLUSIONS

An optimal TS protocol for wireless powered dual-hop AF

MIMO relay networks with direct link has been developed

in this paper. The joint optimization of the source and relay

precoding matrices and the TS factor is studied to maximize

the source-destination MI subjecting to an energy constraint at

the source node and an EH constraint at the relay node. The

optimal structure of the source and relay precoding matrices

has been derived, which reduces the original problem to a

simpler problem. We have shown that this simpli�ed problem

is a unimodal function of the TS factor, and a two-step method

has been developed to solve this problem. The optimal TS

factor has been obtained by the golden section search method.



For a given TS factor, the remaining variables are optimized

via solving two nonlinear equations by exploring the structure

of the problem. Numerical studies show that the proposed

algorithm performs better than approaches without optimizing

the TS factor.

REFERENCES

[1] X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, �Wireless charger
networking for mobile devices: Fundamentals, standards, and applica-
tions,� IEEE Wireless Commun., vol. 22, pp. 126-135, Apr. 2015.

[2] L. R. Varshney, �Transporting information and energy simultaneously,�
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Toronto, Canada, July 6-11,
2008, pp. 1612-1616.

[3] R. Zhang and C. K. Ho, �MIMO broadcasting for simultaneous wire-
less information and power transfer,� IEEE Trans. Wireless Commun.,
vol. 12, pp. 1989-2001, May 2013.

[4] B. Li, Y. Rong, J. Sun, and K. L. Teo, �A distributionally robust linear re-
ceiver design for multi-access space-time block coded MIMO systems,�
IEEE Trans. Wireless Commun., vol. 16, pp. 464-474, Jan. 2017.

[5] Z. He, J. Zhang, W. Liu, and Y. Rong, �New results on transceiver design
for two-hop amplify-and-forward MIMO relay systems with direct link,�
IEEE Trans. Signal Process., vol. 64, pp. 5232-5241, Oct. 2016.

[6] Y. Rong, �Simpli�ed algorithms for optimizing multiuser multi-hop
MIMO relay systems,� IEEE Trans. Commun., vol. 59, pp. 2896-2904,
Oct. 2011.

[7] Y. Rong and M. R. A. Khandaker, �On uplink-downlink duality of multi-
hop MIMO relay channel,� IEEE Trans. Wireless Commun., vol. 10,
pp. 1923-1931, June 2011.

[8] Z. Ding, C. Zhong, D. W. K. Ng, M. Peng, H. A. Suraweera, R. Schober,
and H. V. Poor, �Applications of smart antenna technologies in simulta-
neous wireless information and power transfer,� IEEE Commun. Mag.,

vol. 53, pp. 86-93, Apr. 2015.
[9] B. Fang, W. Zhong, S. Jin, Z. Qian, and W. Shao, �Game-theoretic

precoding for SWIPT in the DF-based MIMO relay networks,� IEEE

Trans. Veh. Technol., vol. 65, pp. 6940-6948, Sep. 2016.
[10] J. Huang, H. Chen, Y. Jiang, J. Meng, A. Xu, X. Guo, and B. Chen,

�Precoder design for MIMO decode-and-forward relay channels with
energy harvesting constraint,� in Proc. IEEE Conf. Industrial Electronics

Applications, Hefei, China, June 5-7, 2016, pp. 368-372.
[11] K. Xiong, P. Fan, C. Zhang, and K. B. Letaief, �Wireless information

and energy transfer for two-hop non-regenerative MIMO-OFDM relay
networks,� IEEE J. Select. Areas Commun., vol. 26, pp. 1397-1407,
Aug. 2015.

[12] B. K. Chalise, W. K. Ma, Y. D. Zhang, H. Suraweera, and M. G. Amin,
�Optimum performance boundaries of OSTBC based AF-MIMO relay
system with energy harvesting receiver,� IEEE Trans. Signal Process.,
vol. 61, pp. 4199-4213, Sep. 2013.

[13] Y. Rong, �Optimal joint source and relay beamforming for MIMO relays
with direct link,� IEEE Commun. Lett., vol. 14, pp 390-392, May 2010.

[14] A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms and

Engineering Applications. Spring Street, NY: Springer Science+Business
Media, LCC, 2007.


