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ABSTRACT

Two related problems of the design of robust adaptive beamformers
and multiuser multiple-input multiple-output (MIMO) receivers are
considered. A popular recent solution to these problems is based on
the worst-case performance optimization. Unfortunately, in practi-
cal applications the actual worst case occurs with a very low prob-
ability and, as a result, the worst-case based designs may be overly
conservative. As a less conservative alternative to the worst-case
designs, the so-called probabilistically constrained designs are in-
troduced. The latter approach guarantees that the distortionless re-
sponse constraint is satisfied for a mismatched array response with
a certain selected probability. Improved flexibility and performance
of the robust probabilistically constrained designs with respect to the
worst-case designs are illustrated via simulations.

1. INTRODUCTION

A recent popular approach to robust adaptive beamforming and ro-
bust multiuser MIMO receiver design is based on the worst-case per-
formance optimization [1]-[4]. The techniques developed using this
approach aim to optimize the performance assuming that the array
operates under the worst conditions. However, the actual worst op-
erational conditions may occur in practice with a very low probabil-
ity. Therefore, the techniques based on the worst-case approach may
be overly conservative and may lead to unnecessary performance
losses. Hence, obtaining less conservative robust alternatives is of
great interest. This paper introduces such an alternative probabilis-
tically constrained approach.

Our paper is organized as follows. In the next section we provide
an overview of robust adaptive beamforming and robust multiuser
MIMO receiver design. Section 3 presents a short description of
the worst-case approach in application to the considered problems.
The probabilistically constrained approach is presented in Section 4.
Simulation results are given in Section 5.

2. BACKGROUND

2.1. Adaptive Beamforming

The output of a narrowband beamformer is given by

y(t) = wHx(t) (1)

where t is the sample index, x(t) is the M × 1 complex vector of
array observations, w is the M × 1 complex vector of beamformer
weights, M is the number of array sensors, and (·)H denotes the
Hermitian transpose.

The optimal weight vector w in (1) can be obtained by maxi-
mizing the signal-to-interference-plus-noise ratio (SINR), or, in the
finite sample case, by solving the following optimization problem

min
w

wHR̂w subject to wHa = 1 (2)

where a is the signal steering vector, R̂ = 1
J

∑J
t=1 x(t)x(t)H is

the M ×M sample covariance matrix, and J is the number of snap-
shots available. The solution to (2) is given by the well known sam-
ple matrix inversion (SMI) based minimum variance distortionless

response (MVDR) beamformer w = (aHR̂
−1

a)−1R̂
−1

a.

2.2. Multiuser MIMO Receivers

A problem related to adaptive beamforming is the multiuser MIMO
receiver design problem. To establish a link between these two prob-
lems, let us consider an uplink multiuser MIMO communication sys-
tem. Assuming that the transmitters have the same number of anten-
nas and encode information-bearing symbols using the same orthog-
onal space-time block code (OSTBC) [4], the received signal can be
written as

Y =
I∑

i=1

X iH i + V (3)

where Y � [yT (1) · · · yT (T )]T , X i � [xT
i (1) · · · xT

i (T )]T , and
V � [vT (1) · · · vT (T )]T are the matrices of the received signals,
transmitted signals of the ith transmitter, and white Gaussian noise,
respectively, H i is the N ×M complex channel matrix between the
ith transmitter and the receiver, y(t) � [y1(t) · · · yM (t)], xi(t) �
[xi,1(t) · · · xi,N (t)], and v(t)� [v1(t) · · · vM (t)] are the row vec-
tors of the received signals, transmitted signals of the ith transmitter,
and noise, respectively, I is the number of transmitters, N is the
number of transmit antennas, T is the block length, and (·)T denotes
the transpose. The model (3) can be rewritten as [4]

Y =
I∑

i=1

A(H i)si + V (4)

where si � [si,1 · · · si,K ]T is the complex vector of information-
bearing symbols of the ith transmitter prior to space-time encoding,
P � [vec(Re{P })T vec(Im{P })T]T for any matrix P , vec(·) is
the vectorization operator stacking all columns of a matrix on top of
each other, A(H i) is the 2MT × 2K real matrix defined as

A(H i) � [C1H i · · · CKH i D1H i · · · DKH i]

� [a1(H i) · · · a2K(H i)] (5)

V  977142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



and C1, . . . , CK , D1, . . . , DK are the OSTBC matrices [4].
Assuming that the first user is the user of interest, the estimate of

the data vector ŝ1 at the output of a linear receiver can be expressed
as [4]

ŝ1 = W T Y (6)

where W = [w1 · · · w2K ] is the 2MT × 2K real matrix of the re-
ceiver weight coefficients, and wk is the 2MT × 1 real weight vec-
tor that corresponds to decoding the kth entry of s1. The problem of
finding the matrix W that separates the signals from different users
is conceptually similar to the problem of finding a weight vector w
in (1). This similarity provides an opportunity to design the matrix
W using the MV principle. Specifically, each entry of s1 can be
estimated by minimizing the receiver output power while preserving
a unity gain for this entry of s1. It is also important to incorpo-
rate self-interference cancellation using additional zero-forcing con-
straints wT

k al(H1) = 0 for all l �= k [4]. Then, the problem of
linear receiver design can be written as [4]

min
W

tr{W T R̂W } subject to AT (H1)W = I2K (7)

where Im and tr{·} denote the m × m identity matrix and the
trace of a matrix, respectively, R̂ = 1

J

∑J
j=1 Y j Y j

T is the sam-

ple estimate of the 2MT × 2MT full rank covariance matrix R �
E{Y Y T } of the vectorized data, Y j is the jth received data block,
and E{·} denotes the statistical expectation. The solution to the MV
problem (7) can be obtained in a similar way as the solution to (2),

and is given by W = R̂
−1

A(H1)(A
T (H1)R̂

−1
A(H1))

−1.

3. WORST-CASE BASED DESIGNS

3.1. Robust Adaptive Beamformer Design

An essential shortcoming of the MVDR beamformer is that it is not
robust against a mismatch between the presumed and actual signal
steering vectors a and ã, respectively. In [1] and [2], the actual
(mismatched) steering vector ã has been explicitly modelled as

ã = a + δ �= a (8)

where δ denotes an unknown complex vector which describes the
effect of steering vector errors (the mismatch vector). It has been
assumed that δ is an unknown deterministic vector that is bounded
in its norm by some known positive constant ‖δ‖ ≤ ε, where ‖ · ‖
denotes the Euclidian (Frobenius) norm of a vector (matrix). The
design of robust adaptive beamformer based on the worst-case ap-
proach boils down to solving the MVDR problem for the worst-case
steering vector [1]

min
w

wHR̂w subject to min
‖δ‖≤ε

|wH ã| ≥ 1. (9)

The problem (9) can be equivalently rewritten as a so-called second-
order cone programming (SOCP) problem and efficiently solved us-
ing interior-point optimization techniques [1], or the Newton-type
numerical procedure [2]. The complexity of solving such problem is
comparable to that of the SMI beamformer.

3.2. Robust Multiuser MIMO Receiver Design

It can be seen from (7) that the MV receiver requires the CSI of the
user of interest. However, in practice, it is unrealistic to obtain the
exact CSI at the receiver. The only quantity available at the receiver

is the estimate Ĥ1, which represents a mismatched copy of H1.
Thus, similarly to (8) the actual channel can be modelled as

H1 = Ĥ1 + ∆1 �= Ĥ1 (10)

where ∆1 is the matrix of CSI errors.
Similarly to the SMI beamformer, an essential shortcoming of

the MV receiver in (7) is that it is not robust against CSI errors.
To add robustness to this MV receiver, it has been assumed in [4]
that ∆1 is an unknown deterministic matrix whose norm is bounded
by some known positive constant, that is, ‖∆1‖ ≤ ε. Using the
notations of (5), it can be shown that for any OSTBC ‖∆1‖ =
‖ek‖ for all k = 1, . . . , 2K, where ek � ak(H1) − ak(Ĥ1)
[4]. Then, using the worst-case approach, the robust modification of
(7) should minimize the output power subject to the constraint that
the distortionless response is maintained for the worst-case ak(Ĥ +
∆), and subject to the worst-case zero-forcing constraints for self-
interference. Then, the corresponding optimization problem can be
written as [4]

min
wk

wT
k R̂wk subject to min

‖ek‖≤ε
wT

k (ak(Ĥ1)+ek) ≥ 1

max
‖Ek‖≤η

‖(BT
k +ET

k )wk ≤ ξk (11)

where the 2MT × (2K − 1) matrices Bk and Ek are defined
as Bk � [a1(Ĥ1) . . . ak−1(Ĥ1) ak+1(Ĥ1) . . . a2K(Ĥ1)] and
Ek � [e1 . . . ek−1 ek+1 . . . e2K ], respectively, ξk is the value
that limits the contribution of self-interference in the uncertainty re-
gion ‖Ek‖ ≤ η, and η = ε

√
2K − 1 [4]. The problem (11) can

be equivalently written as a SOCP problem [4], and solved with the
complexity comparable to the complexity of the MV receiver (7).

3.3. Probability of the Worst Case: Numerical Example

To characterize the probability of the worst case, let us consider a
numerical example for the beamformer (9). In this case, the worst
case mismatch vector can be written as: δW = −wεejφ/‖w‖,
where φ = angle{wHa} [1]. Considering a scenario with Ri-
cian propagation medium, where the presumed signal steering vec-
tor is the plane wave with the nominal direction-of-arrival (DOA)
θ0 while the actual steering vector corresponds to a spread source
around θ0, the actual mismatch vector δ can be modelled as δ =
σδ√

L

∑L
l=1 ejψla(θ0 +θl), where σ2

δ characterizes the mismatch (sc-
attering) power, L is the number of nonline-of-sight (NLOS) com-
ponents due to scattering, ψl is the phase shift parameter of the lth
NLOS component, and θl is the angle shift of lth NLOS component
with respect to the nominal DOA. We denote the norm of deviation
of the actual mismatch vector from the worst case mismatch vector
as z = ‖δW − δ‖.

For calculating δW, we choose the signal-to-noise ratio (SNR)
and interference-to-noise ratio (INR) to be equal to 15 dB and 40 dB,
respectively, M = 10, ε = 3, and J = 100. For calculating δ, the
parameters θl are independently drawn in each simulation run from
a uniform random generator with zero mean and unit variance, and
the parameters ψl are independently and uniformly drawn from the
half-interval [0, 2π) in each run.

Fig. 1 shows the histogram p(z) computed from 1000 trials for
δ. This figure confirms our conjecture that the worst-case designs
may be overly conservative: note that the probability of occurrence
of the worst-case mismatch is nearly zero, and most of mismatch
vectors are far away from the worst-case mismatch vector.
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Fig. 1. The histogram of p(z).

4. PROBABILISTICALLY CONSTRAINED DESIGNS

4.1. Robust Adaptive Beamformer Design

Assuming that the mismatch δ is an unknown random vector with
known probability density function, the robust formulation of the
adaptive beamformer based on the probabilistically constrained ap-
proach can be written as

min
w

wHR̂w subject to Pr{|wH ã| ≥ 1} ≥ p (12)

where p is a certain probability value, and Pr{·} stands for the prob-
ability operator. The problem (12) belongs to a class of chance-
or probability-constrained stochastic programming problems [5]. It
aims to minimize the beamformer output power subject to the con-
straint that the probability of the distortionless response to the signal
with mismatched steering vector is lower-bounded by a certain se-
lected value of p.

In general, the problem (12) is mathematically intractable. How-
ever, it can be approximately solved if we assume a specific ana-
lytic form for the probability operator Pr{·} [6]. Assuming that δ
is drawn from a complex circularly symmetric Gaussian distribution
with zero mean and covariance matrix Cδ , i.e., δ ∼ CN (0M , Cδ),
it is easy to verify that wH(a + δ) ∼ CN (wHa, ‖C1/2

δ w‖2).
Hence, the random variable |wH(a+δ)| has Rician distribution. To
avoid complications related to this distribution, we approximate the
constraint in (12) by the following constraints: Pr{|Re{wH ã}| ≥
β}≥p and Pr{|Im{wH ã}| ≥ β}≥p, where β = 1/

√
2 is the so-

lution to the equation 1 = |wH ã|2 = Re{wH ã}2+Im{wH ã}2 =
2β2. Then, the optimization problem (12) can be approximated by

min
w

wHR̂w

subject to Pr{|Re{wH ã}| ≥ 1/
√

2} ≥ p (13)

Pr{|Im{wH ã}| ≥ 1/
√

2} ≥ p

where Re{wH ã} and Im{wH ã} are real Gaussian random vari-
ables with the means Re{wHa} and Im{wHa}, respectively, and
the variance ‖C1/2

δ w‖2/2. The first constraint in (13) can be equiv-
alently rewritten as

Pr{|Re{wH ã}|≥1/
√

2}=1−Pr{|Re{wH ã}|≤1/
√

2}
=1−[Pr{Re{wH ã} ≤ 1/

√
2}−Pr{Re{wH ã} ≤ −1/

√
2}]

= 1 − 1

2

[
erf

(√
1/2 − Re{wHa}

‖C1/2
δ w‖

)
(14)

− erf

(
−√

1/2 − Re{wHa}
‖C1/2

δ w‖

)]

where erf(·) denotes the standard error function for Gaussian distri-
bution. The same steps are also applicable to the second constraint.
Then we can write a deterministic equivalent to the problem (13) as

min
w

wH(R̂ + γIM )w

subject to erf

(
−√

1/2 − Re{wHa}
‖C1/2

δ w‖

)

− erf

(√
1/2 − Re{wHa}

‖C1/2
δ w‖

)
≥ 2(p − 1) (15)

erf

(
−√

1/2 − Im{wHa}
‖C1/2

δ w‖

)

− erf

(√
1/2 − Im{wHa}

‖C1/2
δ w‖

)
≥ 2(p − 1)

where an additional fixed diagonal loading (DL) (with the DL fac-
tor γ) is used to add the robustness against small sample size, and
p ∈ (0.5, 1). The problem (15) is convex and belongs to a class of
nonlinear programming (NLP) problems [7]. It can be efficiently
solved using sequential quadratic programming (SQP) technique.
The latter technique is an iterative approach in which each search
direction is the solution of a particular quadratic programming (QP)
subproblem [7]. The computational complexity of solving QP sub-
problems is higher than the complexity of solving SOCP problems.

4.2. Robust Multiuser MIMO Receiver Design
The probabilistically constrained design for the robust multiuser re-
ceiver corresponds to obtaining the receiver coefficient vector wk for
the kth entry of s1 as the solution to the following probabilistically
constrained optimization problem

min
wk,ξ

wT
k R̂wk + ‖ξ‖2

s.t. Pr{wT
k (ak(Ĥ1) + ek) ≥ 1} ≥ p, (16)

Pr{σ1|wT
k (al(Ĥ1) + el)| ≤ ξl} ≥ p,

l = 1, . . . , 2K, l �= k

where ξ = [ξ1, . . . , ξk−1, ξk+1, · · · , ξ2K ]T is the (2K − 1) × 1
vector whose values limit the contribution of self-interference, and
σ1 is the standard deviation of the waveform of the desired user.

It is important to note that the probability bound p in the prob-
lems (16) determines the amount of channel mismatch that is al-
lowed at the receiver and should be selected according to the quality
of service (QoS) requirements. In contrast to the worst-case based
formulation (11), the formulation (16) maintains the distortionless
response for kth entry of s1 and suppresses self-interference proba-
bilistically rather than deterministically. Note that the probabilistic
distortionless response constraint in (16) can be also referred to as a
non-outage probability constraint.

Similarly to (13), the problem (16) can be converted into its con-
vex deterministic equivalent. Specifically, assuming that [∆i]n,m ∼
CN (0, σ2

h) and p ∈ (0.5, 1), the first constraint in (16) can be easily
converted into a second-order cone (SOC) constraint [8]

σh‖(I2M ⊗ GT
k )wk‖ ≤ wT

k ak(Ĥ1) − 1

erf−1(2p − 1)
(17)
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where Gk =

{
Ck, k = 1, . . . , K

Im{Dk−K}, k = K + 1, . . . , 2K
and ⊗ sta-

nds for the Kronecker product. The last 2K − 1 constraints in (16)
can be rewritten as the following deterministic convex nonlinear con-
straints

erf

(
ξl − σ1w

T
k al(Ĥ1)

σhσ1‖(I2M ⊗ GT
l )wk‖

)

−erf

(
−ξl − σ1w

T
k al(Ĥ1)

σhσ1‖(I2M ⊗ GT
l )wk‖

)
≥ 2p, (18)

l = 1, . . . , 2K, l �= k

or can be approximated by the following SOC constraints [8]

σ2
1

1−p
wT

k

(
al(Ĥ1)a

T
l (Ĥ1)+

σ2
h

2
(I2M ⊗GlG

T
l )

)
wk ≤ ξ2

l

l = 1, . . . , 2K, l �= k. (19)

Using (18), the problem (16) can be equivalently written as NLP
problem, and using (19) it can be approximated by the following
SOCP problem

min
wk,τ

τ

subject to ‖Zkwk‖ ≤ τ (20)

σh‖(I2M ⊗ GT
k )wk‖ ≤ wT

k ak(Ĥ1) − 1

erf−1(2p − 1)

where R̂ + Qk = ZT
k Zk is the Cholesky factorization of R̂ + Qk,

τ is a new variable such that ‖Zkwk‖ ≤ τ , and

Qk � σ2
1

1 − p

2K∑
l=1,l�=k

[
al(Ĥ1)a

T
l (Ĥ1) +

σ2
h

2

(
I2M ⊗ GlG

T
l

)]
.

(21)
The approximate SOCP problem (20) is computationally more at-
tractive than the NLP problem.

5. SIMULATIONS

In this section we consider a simulation example in application to the
robust multiuser MIMO receiver design. An uplink cellular commu-
nication system with multiple transmitters is simulated. Throughout
the simulations, we assume a single receiver equipped with M =
8 antennas. The MIMO channel between the ith transmitter and
the receiver is assumed to be quasi-static Rayleigh flat fading with
[H i]n,m ∼ CN (0, 1). The channel mismatch ∆i is assumed to be
independent on H i with [∆i]n,m ∼ CN (0, σ2

h). We set σ2
h = 0.1.

The following receivers are compared in terms of symbol er-
ror rates (SERs): the SOCP-based approximation of the probabilis-
tically-constrained receiver (20) denoted as PC-SOCP, the worst-
case based SOCP receiver (WC-SOCP) (11), and the DL version
of the MV receiver (7) (DLMV), where the DL factor 10σ2

v is cho-
sen, and σ2

v is the noise variance. The probability p in the proposed
robust receivers is set to 0.99. For the worst-case based receiver,
ε = 7σh, as suggested in [4]. 300 Monte Carlo runs are used to
obtain each curve.

A scenario with I = 4 transmitters, where each transmitter
is equipped with N = 3 antennas, is simulated. The half rate
(K = 4, T = 8) OSTBC from [9] is employed. The INR is equal
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Fig. 2. SER versus SNR.

to 20 dB and the QPSK modulation scheme is used. Fig. 2 shows
the SER performance of the aforementioned methods versus SNR
when J is equal to 130. It clearly demonstrates that the proposed
probabilistically-constrained robust receiver consistently enjoys the
best performance as compared with the other methods tested. More-
over, the proposed receiver outperforms the worst-case based re-
ceiver, especially in low and medium SNR regions.
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