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ABSTRACT

In this paper, an interesting relationship between the the worst-case
optimization-based and probability-constrained approaches to the ro-
bust adaptive beamformer design is found both in the cases of Gaus-
sian and non-Gaussian steering vector mismatch. The established
relationship demonstrates that the probabilistic beamformer design
may be approximately interpreted in terms of the worst-case de-
sign, and quanti es the parameters of the latter design in terms of
the beamformer outage probability.

Index Terms— Robust adaptive beamforming, probabilistic co-
nstraints, worst-case performance optimization

1. INTRODUCTION

A recent popular approach to the designing robust adaptive beam-
formers is based on the worst-case performance optimization [1]-[5].
The techniques developed using this approach aim to optimize the
output signal-to-interference-plus-noise ratio (SINR) for the worst
operational conditions. However, the actual worst operational condi-
tions may occur in practice with a rather low probability. To provide
more exibility in the beamformer design, a probability-constrained
approach to robust adaptive beamforming has been developed in [6]-
[7]. The key idea of the latter approach is to maintain the beam-
former distortionless response only for operational conditions which
occur with a suf ciently high probability rather than for all opera-
tional conditions corresponding to the uncertainty set.

In this paper, an interesting relationship between the probability-
constrained and the worst-case optimization-based beamformers is
derived. Speci cally, we show that the probabilistic robust beam-
former design of [7] can be approximated by the worst-case design
of [1] and [4]. The established relationship leads to a straightfor-
ward interpretation of the worst-case design parameters in terms of
the beamformer outage probability.

2. BACKGROUND

The output of a narrowband adaptive beamformer can be expressed
as

y(l) = wHx(l) (1)

where x(l) = [x1(l), . . . , xM (l)]T is the complex-valued array
snapshot vector, w = [w1, . . . , wM ]T is the complex-valued beam-
former weight vector, M is the number of array sensors, l is the
sample index, and (·)T and (·)H denote the transpose and Hermitian

transpose, respectively. The snapshot vector can be modeled as

x(l) = s(l)a + i(l) + n(l) (2)

where s(l) is the desired signal waveform, a is the signal steering
vector, and i(l) and n(l) are the interference and noise components,
respectively. A traditional approach to optimize the beamformer
weight vector is to maximize the “sample” output SINR

SINR =
σ2s |wHa|2
wHR̂w

(3)

where σ2s is the signal variance, R̂ = 1
K

∑K
k=1 x(k)x

H(k) is the
M×M sample covariance matrix, and K is the training sample size.
Then, the problem of maximizing the SINR in (3) can be equiva-
lently written as

min
w
wHR̂w subject to wHa = 1. (4)

The solution to this problem is referred to as the sample matrix in-
version (SMI) minimum variance beamformer.

In practice, the actual signal steering vector ã is usually a dis-
torted version of the presumed steering vector a. An essential short-
coming of the SMI beamformer is that it is not robust against such a
steering vector mismatch. In [1] and [4], the actual steering vector ã
has been explicitly modeled as

ã = a + δ �= a (5)

where δ denotes an unknown complex-valued vector describing the
effect of steering vector errors. It has been assumed in [1] and [4]
that δ is an unknown deterministic vector that is bounded in its Eu-
clidean norm by some known positive constant ‖δ‖ ≤ ε. Then, the
actual signal steering vector ã belongs to the following uncertainty
region:

A(ε) � {c : c = a + δ, ‖δ‖ ≤ ε} (6)

and the design of the robust adaptive beamformer boils down to solv-
ing the problem (4) for the worst-case steering vector [1]:

min
w
wHR̂w subject to min

‖δ‖≤ε
|wH(a + δ)| ≥ 1. (7)

The worst-case vector a + δ that satis es the constraint in (7) can
be shown to lie on the boundary of the uncertainty region A(ε). The
solution to (7) can be interpreted as a diagonally loaded (DL) SMI
beamformer with an adaptive DL factor whose value is optimally
matched to the uncertainty region [1], [4].
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The worst-case design of (7) may be overly conservative, be-
cause the actual worst operational conditions may occur in practice
with a very low probability. A more exible approach to robust
beamformer design whose idea is to maintain the beamformer distor-
tionless response only for operational conditions which occur with a
suf ciently high probability has been proposed in [6]-[7]. The latter
approach corresponds to the following optimization problem:

min
w
wHR̂w subject to Pr{|wH(a + δ)| ≥ 1} ≥ p (8)

where δ is assumed to be random, Pr{·} stands for the probability
operator, and p is a preselected probability value that is related to the
beamformer outage probability as p = 1 − pout.

In general, the knowledge of the probability density function
(pdf) of the steering vector mismatch δ is required to specify the
probability operator Pr{·}. Two different assumptions on the statis-
tics of the mismatch vector are of particular interest:

• δ is drawn from a complex circularly symmetric Gaussian
distribution with zero mean and covariance matrix Cδ [8],
that is,

δ ∼ NC(0M ,Cδ) (9)

where 0M denotes the M × 1 vector of zeros;

• δ is drawn from a complex circularly symmetric unknown
distribution with zero mean and known covariance matrixCδ .

The covariance matrix Cδ captures the second-order statistics
of the uncertainties in the steering vector. Even though Cδ may be
actually non-diagonal, it typically can be approximated by the scaled
identity matrix for the simplicity reason [8].

3. GAUSSIAN MISMATCH

We rst establish an approximate relationship between the worst-
case optimization-based and probability-constrained approaches for
the case of Gaussian steering vector mismatch. Let us assume that
the steering vector errors are not too large, so that |wHδ| < |wHa|
is valid. Then, we have [1]

|wH(a + δ)| ≥ |wHa| − |wHδ| . (10)

From (10), it follows that

Pr{|wH(a + δ)| ≥ 1} ≥ Pr{|wHa| − |wHδ| ≥ 1} . (11)

The inequality (11) can be used to approximate the constraint in
(8). Indeed, according to (11), the latter constraint is always satis ed
if

Pr{|wHa| − |wHδ| ≥ 1} ≥ p . (12)

It can be assumed without any loss of generality that

Re{wHa} ≥ 0 , Im{wHa} = 0 (13)

because the cost function in (8) is unchanged when w undergoes an
arbitrary phase rotation [1]. Using the latter assumption and intro-
ducing b � wHa − 1, we can rewrite the left hand side of (12) as
Pr

{|wHδ| ≤ b
}

. Then, it follows that

Pr{|wHδ| ≤ b}
≥ Pr{|Re{wHδ}| ≤ b/

√
2 ∩ |Im{wHδ}| ≤ b/

√
2} (14)

where ∩ denotes the set intersection operation.

From (14), we can approximate (strengthen) the constraint (12)
by replacing it with the following constraint:

Pr{|Re{wHδ}| ≤ b/
√

2 ∩ |Im{wHδ}| ≤ b/
√

2} ≥ p . (15)

As the random variable wHδ is circular zero-mean complex
Gaussian distributed, its real and imaginary parts Re{wHδ} and
Im{wHδ} are real Gaussian i.i.d., that is,

Re{wHδ} ∼ NR
(
0M , ‖C1/2

δ w‖2/2
)

(16)

Im{wHδ} ∼ NR
(
0M , ‖C1/2

δ w‖2/2
)
. (17)

Using the latter property together with the fact that any functions of
independent random variables are statistically independent [9], we
obtain that

Pr{|Re{wHδ}| ≤ b/
√

2 ∩ |Im{wHδ}| ≤ b/
√

2}
= Pr{|Re{wHδ}| ≤ b/

√
2} Pr{|Im{wHδ}| ≤ b/

√
2}

=
(
Pr{|Re{wHδ}| ≤ b/

√
2}
)2

=
(
Pr{|Im{wHδ}| ≤ b/

√
2}
)2

(18)

where the last two equalities follow from the fact that |Re{wHδ}|
and |Im{wHδ}| are identically distributed. That is, the constraint
in (15) can be equivalently written as

Pr
{

|Re{wHδ}| ≤ b/
√

2
}

≥ √
p . (19)

Now, replacing the original constraint in (8) by its strengthened ver-
sion (19), the optimization problem in (8) can be approximated by

min
w
wHR̂w subject to Pr

{
|Re{wHδ}| ≤ b/

√
2
}

≥ √
p .

(20)
The problem (20) can be further converted into a deterministic

equivalent form. Note that for any Gaussian random variable x and
any constant c, the probability Pr{x ≤ c} can be written as [9]

Pr{x ≤ c} =
1

2
+

1

2
erf

(
c − E{x}√

2E{(x − E{x})2}

)
(21)

where

erf(z) =
2√
π

∫ z

0

e−t
2
dt (22)

is the normalized error function for the Gaussian distribution. Using
(16) and (21), we have

Pr{|Re{wHδ}| ≤ b/
√

2}
= Pr{Re{wHδ} ≤ b/

√
2} − Pr{Re{wHδ} ≤ −b/

√
2}

=
1

2

[
erf

(
b√

2‖C1/2
δ w‖

)
− erf

(
− b√

2‖C1/2
δ w‖

)]

= erf

(
b√

2‖C1/2
δ w‖

)
(23)

where the last equality holds because the function erf(·) is odd. Us-
ing (23), the constraint in (20) can be written in the following equiv-
alent deterministic form:

erf

(
wHa − 1√
2‖C1/2

δ w‖

)
≥ √

p
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or, equivalently,

√
2 erf−1(

√
p) ‖C1/2

δ w‖ ≤ wHa − 1 . (24)

Hence, the problem (20) may be expressed as

min
w
wHR̂w

subject to
√

2 erf−1(
√
p) ‖C1/2

δ w‖ ≤ wHa − 1. (25)

The latter problem can be identi ed to be a second-order cone pro-
gramming (SOCP) problem which is exactly equivalent to the worst-
case based robust adaptive beamforming problem of [1] provided
that Cδ = σ2δIM and

ε = σδ
√

2 erf−1(
√
p) = σδ

√
2 erf−1(

√
1 − pout) . (26)

Summarizing the results of this section, we have shown that in
the case of Gaussian mismatch, the worst-case optimization-based
robust adaptive beamformer can be viewed as a strengthened ver-
sion of the probability-constrained robust beamformer. This con-
clusion lends support to our expectation of an improved exibility
of the probabilistic designs with respect to the worst-case designs.
Equation (26) explicitly quanti es the relationship between the two
approaches providing an interpretation of the worst-case design pa-
rameter ε in terms of the beamformer outage probability.

4. MISMATCH WITH UNKNOWN DISTRIBUTION

Let us use the approximation (12) of the original constraint in (8),
and additionally exploit the fact that the SINR is invariant to any
phase rotation ofw. Therefore, the constraint (12) can be written as

Pr{|wHδ| < b} ≥ p , Im{wHa} = 0 (27)

where the strict inequality in (27) is used for the sake of simplicity
of the subsequent derivations.

As the distribution of δ is unknown, a natural approach would
be to consider the worst-case distribution when computing the prob-
ability operator in the rst constraint of (27). The following theorem
(that is proved in [10] and [11] for more general cases) states the
main result for the probability operator in the rst constraint of (27).

THEOREM 1: For the worst-case distribution of δ, the probabil-
ity operator Pr{|wHδ| < b} can be upper- and lower-bounded by
the following semi-de nite programming (SDP) problems:

• Upper bound SDP:

min
Z , λ

(1 − λ) ≥ Pr{|wHδ| < b}

subject to ‖Z1/2w‖ − bλ ≥ 0,

0 	 Z 	 Cδ , 0 ≤ λ ≤ 1 (28)

where Z is an M × M Hermitian matrix and λ is a scalar.

• Lower bound SDP:

max
P , τ

(1 − Tr{CδP }) ≤ Pr{|wHδ| < b}

subject to P 
 τwwH , bτ − 1 ≥ 0, τ ≥ 0 (29)

where P is an M × M Hermitian matrix and τ is a scalar.

We now show that the bounds in Theorem 1 are tight. It can be
easily seen that the objective function in (28) is minimized if Z =

Cδ and λ = ‖C1/2
δ w‖/b provided that ‖C1/2

δ w‖ < b. Then, the
upper bound on the probability operator Pr{|wHδ| < b} is given
by the optimal solution of (28) and can be written as

Pr{|wHδ| < b} ≤ 1 − ‖C1/2
δ w‖
b

. (30)

Furthermore, taking into account that b > 0, the optimal solution of
(29) is given by τ = 1/b and P = wwH/b. Inserting this optimal
value of P into the objective function of (29), we can express the
lower bound for Pr{|wHδ| < b} as

Pr{|wHδ| < b} ≥ 1 − ‖C1/2
δ w‖
b

. (31)

Combining (30) and (31), we conclude that if

‖C1/2
δ w‖ < b (32)

then the upper and lower bounds coincide and, therefore,

Pr{|wHδ| < wHa − 1} = 1 − ‖C1/2
δ w‖

wHa − 1
. (33)

Inserting (33) into the rst constraint of (27), we obtain the fol-
lowing equivalent deterministic constraint

1

1 − p
‖C1/2

δ w‖ ≤ wHa − 1 . (34)

Note that (34) automatically guarantees that (32) is satis ed. Thus,
the condition (32) can be ignored.

Using (34), the probability-constrained problem of (8) can be
approximated as

min
w
wHR̂w subject to

1

1 − p
‖C1/2

δ w‖ ≤ wHa − 1 (35)

where (35) represents a strengthened version of (8). The problem
(35) belongs to the class of SOCP problems and is equivalent to
the worst-case based robust adaptive beamforming problem of [1]
if Cδ = σ2δIM and

ε = σδ/(1 − p) = σδ/pout . (36)

Comparing (26) and (36), we observe that

σδ/(1 − p) > σδ
√

2erf−1(
√
p) (37)

and, therefore, in the case of unknown distribution of δ, the radius
ε of the spherical uncertainty region suggested by the equivalent
SOCP problem is larger than in the case of Gaussian steering vec-
tor distribution. This can be explained by the fact that in the case
of unknown distribution, the probabilistic robust beamformer should
protect the performance against the worst-case distribution.

5. SIMULATIONS

In our simulations, we assume a uniform linear array of M = 10
omnidirectional sensors spaced half a wavelength apart, and two in-
terfering sources with plane wavefronts and the directions-of-arrival
(DOAs) equal to 30◦ and 50◦, respectively. A total of 100 indepen-
dent Monte-Carlo runs are used to obtain each point.
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Fig. 1. Output SINR versus SNR. INR = 20 dB, K = 100.

A scenario with the Ricean propagation medium is considered
where the presumed signal steering vector is a plane wave with the
nominal DOA θ0 while the actual steering vector corresponds to a
spatially spread source with the central angle θ0. The actual mis-
match vector δ can be modeled as [1]

δ =
σδ√
L

L∑
l=1

ejψla(θ0 + θl) (38)

where σ2δ characterizes the power of scattered nonline-of-sight
(NLOS) signal components, L is their number, ψl is the phase shift
parameter of the lth NLOS component, and θl is the angular shift
of lth NLOS component with respect to the nominal DOA. The pa-
rameters θl are independently drawn in each simulation run from a
uniform random generator with zero mean and standard deviation
of σθ = 5◦. The parameters ψl are independently and uniformly
drawn from [0, 2π) in each run. Throughout this example, L = 20,
θ0 = 3◦, and σδ = 0.3 have been taken.

Figure 1 compares the beamformers (25), (35) and the worst-
case beamformer of [1] with ε = 3 (the latter value is recommended
in [1] as a good ad hoc choice of this parameter). In this gure, the
output SINRs of these three beamformers and the optimal SINR are
displayed versus the signal-to-noise ratio (SNR) in the case when
K = 100, the interference-to-noise ratio (INR) is equal to 20 dB,
p = 0.9 is taken in (25) and (35), and the non-diagonal matrix Cδ
is approximated by σ2δIM in (25) and (35).

From this gure, we see that all the beamformers tested have
quite a similar performance and, in particular, the SINR curves for
the beamformer (35) and the technique of [1] are indistinguishable.
At high SNRs, the beamformer (25) experiences a slight degradation
relative to the other two techniques tested. This additional degrada-
tion can be explained by the fact that the random actual mismatch
corresponding to the considered Ricean scenario is not Gaussian,
while it is assumed to be Gaussian in (25). Note that all the beam-
formers tested correspond to the same general form of the SOCP
problem and, hence, the difference between them is entirely caused
by different choices of ε.

6. CONCLUSIONS

We have demonstrated that the popular worst-case optimization-ba-
sed robust minimum variance beamformer can be viewed as a con-
servative approximation of the probability-constrained robust min-
imum variance beamformer. Such a relationship have been found
both in the cases of Gaussian and non-Gaussian (unknown) distri-
bution of the steering vector mismatch. The established relationship
demonstrates that the probabilistic beamformer designs can be ap-
proximately interpreted in the nomenclature of the worst-case de-
signs where the parameters of the latter designs can be quanti ed in
terms of the beamformer outage probability.

7. REFERENCES

[1] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust
adaptive beamforming using worst-case performance opti-
mization: A solution to the signal mismatch problem,” IEEE
Trans. Signal Processing, vol. 51, pp. 313-324, Feb. 2003.

[2] S. Shahbazpanahi, A. B. Gershman, Z.-Q. Luo, and
K.M. Wong, “Robust adaptive beamforming for general-rank
signal models,” IEEE Trans. Signal Processing, vol. 51,
pp. 2257-2269, Sept. 2003.

[3] S. A. Vorobyov, A. B. Gershman, Z-Q. Luo, and N. Ma, “Adap-
tive beamforming with joint robustness against mismatched
signal steering vector and interference nonstationarity,” IEEE
Signal Processing Letters, vol. 11, pp. 108-111, Feb. 2004.

[4] R. G. Lorenz and S. P. Boyd, “Robust minimum vari-
ance beamforming,” IEEE Trans. Signal Processing, vol. 53,
pp. 1684-1696, May 2005.

[5] Robust Adaptive Beamforming, P. Stoica and J. Li, Editors,
John Wiley & Sons, Hoboken, NJ, 2006.

[6] S. A. Vorobyov, Y. Rong, and A. B. Gershman, “Robust adap-
tive beamforming using probability-constrained optimization,”
in Proc. IEEE Workshop on Statistical Signal Processing, Bor-
deaux, France, July 2005, pp. 934-939.

[7] S. A. Vorobyov, Y. Rong, and A. B. Gershman, “Probability-
constrained robust minimum variance beamforming,” submit-
ted to IEEE Trans. Signal Processing.

[8] O. Besson and F. Vincent, “Performance analysis of beam-
formers using generalized loading of the covariance matrix in
the presence of random steering vector errors,” IEEE Trans.
Signal Processing, vol. 53, pp. 452-459, Feb. 2005.

[9] A. Papoulis, Probability, Random Variables, and Stochastic
Processes. McGraw-Hill Inc., 3rd Edition, 1991.

[10] L. Vandenberghe, S. Boyd, and K. Comanor, “Generalized
Chebyshev bounds via semide nite programming,” SIAM Re-
view, to appear in 2006.

[11] S. A. Vorobyov, Y. C. Eldar, and A. B. Gershman,
“Probabilistically-constrained estimation of random parame-
ters with unknown distribution,” in Proc. 4th IEEE Sensor Ar-
ray and Multichannel Signal Processing Workshop, Waltham,
Massachusetts, USA, July 2006, pp. 404-408.

II  980


