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Abstract—Adopting the amplify-and-forward (AF) relay pro-
tocol, this paper focuses on the design of a multiuser multiple-
input multiple-output (MIMO) multi-relay system with direct
source-destination links taken into consideration. In order to
improve the quality of signal detection at the receiver, we
make use of the minimal mean-squared error (MMSE)-decision
feedback equalization (DFE) technique. With the constraints of
the signal transmission power at both source and relay nodes, the
minimization of the sum mean-squared error (MSE) for the signal
waveform estimation of all users’ data streams is employed as
our design criterion. Through the block coordinate descent (BCD)
method of Gauss-Seidel type, we develop an iterative algorithm
with guaranteed convergence to conduct the joint optimization
of all the source precoding, relay amplifying, feed-forward and
decision feedback matrices, where each step we take is to solve
a convex problem. It is shown from simulation results that, in
comparison to the linear MMSE receiver-based algorithm, the
proposed nonlinear one achieves better performance in terms
of both MSE and bit-error-rate (BER). Moreover, the system
reliability can be significantly improved when the signal-to-noise
ratios (SNRs) of direct links become relatively good.

Index Terms—multiuser, MIMO relay, AF, multi-relay, direct
links, MMSE, DFE

I. INTRODUCTION

In the past decade, there has been a rapid development in
the research field of multiple-input multiple-output (MIMO)
relay communications [1], where the linear non-regenerative
amplify-and-forward (AF) relay protocol attracts considerable
attention since it not only can expand the system coverage but
also has simple implementation structure and high processing
speed [2]. For a three-terminal half-duplex (HD) AF MIMO
relay system with no direct link between the source and
destination nodes, [3] presented the analytical characterization
of its ergodic capacity. [4] developed a unified framework, in-
cluding Schur-concave and Schur-convex objective functions,
to optimize multicarrier signal transmission. [5] investigated
the transceiver design of a dual-hop AF MIMO-orthogonal
frequency division multiplexing (OFDM) relay system under
channel uncertainties. Considering both one-way and two-
way relay systems with multiple relay nodes, [6] proposed
joint optimization schemes based on sum-rate maximiza-
tion and mean-squared error (MSE) minimization criteria. In
the presence of direct links, [7] provided low complexity
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transceiver design algorithms for three-terminal relay systems.
[8] developed iterative methods to solve the robust source and
relay design problem under multiuser scenarios. To further
improve the performance of a multi-hop relay system with
any number of hops, instead of the linear minimal mean-
squared error (MMSE) receiver, [9] adopted the nonlinear
MMSE-decision feedback equalization (DFE) receiver and
proved its effectiveness for Schur-convex objective functions.
Targeting at a multiuser multi-hop relay system with MMSE-
DFE receiver, [10] decomposed the system design problem and
developed two distributed transceiver optimization algorithms.

In this paper, for the first time as far as we know, the
nonlinear MMSE-DFE receiving technique is introduced to
the design of a multiuser HD AF MIMO multi-relay system
with not only multiple parallel relay nodes but also the direct
links between source and destination nodes taken into account.
To be specific, following the block coordinate descent (BCD)
method of Gauss-Seidel type [11], we jointly optimize the
precoding matrices of source nodes, the amplifying matrices
of relay nodes as well as the feed-forward and feedback
matrices in MMSE-DFE receiver by using the MSE minimiza-
tion criterion under transmission power constraints. Numerical
simulations verify the superiority of the proposed iterative
algorithm by comparison with the linear MMSE receiver-
based one, which indicates the potential of our research to
the future development of 5G communications, especially the
information aggregation services for Internet of Things [12].

This paper is organized as follows. Section II sets forth
the system model and target problem. Section III carries out
the design of an iterative transceiver optimization algorithm.
Section IV gives the numerical simulation results. Section V
draws a conclusion.

Throughout the paper, (·)T , (·)H denote the transpose and
complex conjugate transpose of a vector or matrix. |x|, x−1,
x∗ represent the modulus, reciprocal and complex conjugate
of scalar x. For matrix X , rank(X), tr(X), X−1, X†, X1/2

stand for its rank, trace, inverse, pseudo-inverse and squareroot
[13], besides, [X]n, [X]m,n, [X]1:n, [X]1:m,1:n represent its
nth column vector, mth row and nth column element, leftmost
n columns and the submatrix composed of its first m rows and
first n columns. U [X] denotes the strictly upper triangular part
of matrix X . bd(·) stands for a block diagonal matrix. λi(X)
represents the ith biggest eigenvalue of a Hermitian matrix
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Fig. 1. System model for multiuser AF MIMO multi-relay communications
with direct links and MMSE-DFE receiver.

X . E[·] is the statistical expectation operator. In, 0m×n are
nth-order identity matrix and m× n zero matrix. CN (0 ,X)
(CN (0, x)) denotes the distribution of a circularly symmetric
complex Gaussian (CSCG) random vector (variable) with zero
mean and covariance matrix X (variance x).

II. SYSTEM MODEL AND TARGET PROBLEM

As shown in Fig. 1, we consider a multiuser AF MIMO
multi-relay system with direct links and MMSE-DFE receiver,
where the kth source node, k = 1, · · · ,K, transmits Nk data
streams through Ns,k antennas (Nk 6 Ns,k), the rth relay
node, r = 1, · · · , R, has Mr antennas and the destination node
has Nd antennas. With all nodes working in HD mode, the
communication process here can be completed within two time
slots. For the first time slot, the modulated signal vector sk ∈
CNk at the kth source node is linearly precoded into xk =
Bksk, where Bk ∈ CNs,k×Nk is the kth source precoding
matrix and xk is transmitted towards relay and destination
nodes. Here we assume that all users are symbol-synchronous
and sk satisfies E

[
sks

H
k

]
= INk

. Thus the received signal
vector at the rth relay node is given by

yr =
K∑

k=1

Hs,rkxk + nr = Hs,rBs + nr (1)

where Hs,rk ∈ CMr×Ns,k is the channel matrix between the
kth source node and the rth relay node, nr ∈ CMr is the noise
vector at the rth relay node, s ,

[
sT1 , · · · , sTK

]T ∈ CN , B ,
bd(B1, · · · ,BK) ∈ CNs×N , Hs,r ,

[
Hs,r1, · · · ,Hs,rK

]
∈

CMr×Ns with N ,
∑K

k=1Nk, Ns ,
∑K

k=1Ns,k. Besides,
through non-negligible direct source-destination links, the re-
ceived signal vector at the destination node for the first time
slot is given by

ysd =
K∑

k=1

Hsd,kxk + nsd = HsdBs + nsd (2)

where Hsd,k ∈ CNd×Ns,k is the channel matrix between the
kth source node and the destination node, nsd ∈ CNd is the
noise vector at the destination node for the first time slot and
Hsd ,

[
Hsd,1, · · · ,Hsd,K

]
∈ CNd×Ns . For the second time

slot, the rth relay node amplifies its received signal vector into
xr = Fryr, where Fr ∈ CMr×Mr is the rth relay amplifying
matrix and xr is transmitted towards the destination node.

Hence the received signal vector at the destination node for
the second time slot is given by

yd =
R∑

r=1

Hd,rxr + nd = HdFHsBs + HdFn + nd (3)

where Hd,r ∈ CNd×Mr is the channel matrix between the
rth relay node and the destination node, nd ∈ CNd is the
noise vector at the destination node for the second time slot,
meanwhile, we define Hs ,

[
HT

s,1, · · · ,HT
s,R

]T ∈ CM×Ns ,
F , bd(F1, · · · ,FR) ∈ CM×M , Hd ,

[
Hd,1, · · · ,Hd,R

]
∈

CNd×M , n ,
[
nT

1 , · · · ,nT
R

]T ∈ CM with M ,
∑R

r=1Mr.
Over the above two time slots, the composite received signal

vector at the destination node can be written as

y ,

[
yd

ysd

]
=

[
HdFHs

Hsd

]
Bs +

[
HdFn + nd

nsd

]
= As + v

(4)

with A ,

[
HdFHs

Hsd

]
B ∈ C(2Nd)×N , v ,

[
HdFn + nd

nsd

]
∈

C2Nd . In our system, Hs,rk, Hd,r, Hsd,k are consid-
ered as quasi-static block fading channel matrices which
remain constant for each transmission of N data streams
from all source nodes to the destination node. For achiev-
ing an acceptable system performance, we typically re-
quire min{rank(Hs), rank(Hd), rank(Hsd)} > N , hence
min{Ns,M,Nd} > N . Besides, nr, nd, nsd are independent
and identically distributed (i.i.d.) additive white Gaussian noise
(AWGN) vectors with distributions CN (0 , IMr

) for nr and
CN (0 , INd

) for nd, nsd. Therefore we have

C , E
[
vvH

]
=

[
HdFFHHH

d + INd
, 0Nd×Nd

0Nd×Nd
, INd

]
. (5)

In the MMSE-DFE receiver at the destination node, first
of all, the N th symbol in s is estimated as ŝN = wH

Ny
and detected as s̃N . Then, for i = N − 1, · · · , 1, the ith
symbol in s is estimated as ŝi = wH

i y−
∑N

j=i+1 di,j s̃j . Here,
wi ∈ C2Nd is the ith feed-forward vector for i = 1, · · · , N
and di,j is the (i, j)th decision feedback coefficient for j =
i+ 1, · · · , N and i = 1, · · · , N − 1. Thus, with the estimated
signal vector ŝ , [ŝ1, · · · , ŝN ]

T ∈ CN , the detected signal
vector s̃ , [s̃1, · · · , s̃N ]

T ∈ CN , the feed-forward matrix
W , [w1, · · · ,wN ] ∈ C(2Nd)×N and the strictly upper
triangular decision feedback matrix D ∈ CN×N whose ith
row and jth column element is di,j , we have ŝ = WHy−Ds̃,
from which, by further assuming no error propagation as in
[9]–[10] with s̃ = s, we can obtain

ŝ = WHy −Ds =
(
WHA−D

)
s + WHv. (6)

Now, the MSE of the signal waveform estimation of each
data stream can be derived as

Ei , E
[
|ŝi − si|2

]
=

(
i−1∑
j=1

∣∣∣wH
i [A]j

∣∣∣2)+
∣∣wH

i [A]i − 1
∣∣2

+

(
N∑

j=i+1

∣∣∣wH
i [A]j − di,j

∣∣∣2)+ wH
i Cwi (7)
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for i = 1, · · · , N , where if i = N the third term in (7) will
become zero. So the sum MSE for all data streams is given by

Es ,
N∑
i=1

Ei = tr
{

E
[
(ŝ− s) (ŝ− s)

H
]}

= tr
[(
WHA−U

) (
WHA−U

)H
+ WHCW

]
(8)

with U , IN+D being called the decision feedback matrix as
well. Moreover, we can derive the signal transmission power of
the kth source node as Qk , tr

{
E
[
xkx

H
k

]}
= tr

(
BkB

H
k

)
and that of the rth relay node as Pr , tr

{
E
[
xrx

H
r

]}
=

tr
[
Fr

(
Hs,rBBHHH

s,r + IMr

)
FH
r

]
, which are set to be not

greater than qk and pr, respectively. Therefore, with {Bk} ,
{B1, · · · ,BK}, {Fr} , {F1, · · · ,FR}, the target problem for
optimizing the relay system in Fig. 1 is given by

min
{Bk},{Fr},W ,U

tr
[(
WHA−U

)
×
(
WHA−U

)H
+ WHCW

]
(9)

s.t. tr
(
BkB

H
k

)
6 qk, k = 1, · · · ,K, (10)

tr
[
Fr

(
Hs,rBBHHH

s,r + IMr

)
FH
r

]
6 pr,

r = 1, · · · , R, (11)

[U ]i,j =

{
0, i > j,

1, i = j.
(12)

Note that the problem formulated above is the first one as far as
we know in the joint optimization of the matrix parameters in
a multiuser AF MIMO multi-relay system with direct links and
MMSE-DFE receiver. For solving this challenging nonconvex
problem, in the next section, we employ the Gauss-Seidel BCD
method and propose an iterative algorithm.

III. ALGORITHM DESIGN

Since the key principle of the Gauss-Seidel BCD method
is to iteratively optimize blocks of variables, the algorithm
developed here is made up of three main steps in one iteration,
aiming to optimize {Bk}, {Fr} as well as W and U ,
respectively, and before executing these steps, we initialize Bk

as Bk =
[√

qk/Nk INk
, 0T

(Ns,k−Nk)×Nk

]T
and Fr as Fr =√

pr/Mr

(
Hs,rBBHHH

s,r + IMr

)−1/2
for k = 1, · · · ,K and

r = 1, · · · , R.
The first step is to optimize W and U with fixed {Bk} and
{Fr}. It can be seen that the optimal di,j which minimizes
Ei in (7) should meet di,j = wH

i [A]j , consequently we have

D = U
[
WHA

]
(13)

and Ei for i = 1, · · · , N becomes

Ei = wH
i

(
i∑

j=1

[A]j [A]
H
j + C

)
wi−wH

i [A]i− [A]
H
i wi + 1.

(14)

The above is a convex quadratic function with respect to wi,
whose minimum is obtained by making its gradient, ∇wi

Ei =(∑i
j=1 [A]j [A]

H
j + C

)
wi − [A]i [14], equal to zero, thus

wi =

[(
[A]1:i [A]

H
1:i + C

)−1

[A]1:i

]
i

=

[[
C−1 −C−1 [A]1:i

(
Ii + [A]

H
1:i C

−1 [A]1:i

)−1

× [A]
H
1:i C

−1

]
[A]1:i

]
i

=

[
C−1 [A]1:i

(
Ii + [A]

H
1:i C

−1 [A]1:i

)−1
]
i

(15)

where for obtaining the last two equations, we make use of
the matrix inversion lemma, namely, (X + Z1Y Z2)−1 =

X−1−X−1Z1

(
Y −1 + Z2X

−1Z1

)−1
Z2X

−1 for invertible
matrices X and Y .

Now, the following QR factorization [13, Theorem 2.1.14]
can be introduced:[

C−1/2A
IN

]
= QR =

[
Q̇

Q̈

]
R (16)

where factor Q ∈ C(2Nd+N)×N has orthonormal columns and
R ∈ CN×N is an upper triangular matrix with positive main
diagonal elements, besides, all the rows of Q are divided into
two parts, i.e., Q̇ ∈ C(2Nd)×N and Q̈ ∈ CN×N , as a result,

C−1/2A = Q̇R, IN = Q̈R. (17)

According to (17), we have

C−1/2 [A]1:i =
[
C−1/2A

]
1:i

=
[
Q̇
]
1:i

[R]1:i,1:i , (18)

Ii = [IN ]
H
1:i [IN ]1:i = [R]

H
1:i,1:i

[
Q̈
]H
1:i

[
Q̈
]
1:i

[R]1:i,1:i (19)

from which,

wi =

[
C−1/2

[
Q̇
]
1:i

[R]1:i,1:i

[
[R]

H
1:i,1:i

([
Q̈
]H
1:i

×
[
Q̈
]
1:i

+
[
Q̇
]H
1:i

[
Q̇
]
1:i

)
[R]1:i,1:i

]−1
]
i

. (20)

Here, since
[
Q̈
]H
1:i

[
Q̈
]
1:i

+
[
Q̇
]H
1:i

[
Q̇
]
1:i

=
[
Q̈HQ̈

]
1:i,1:i

+[
Q̇HQ̇

]
1:i,1:i

=
[
QHQ

]
1:i,1:i

=
[
IN
]
1:i,1:i

= Ii,

wi =
[
C−1/2

[
Q̇
]
1:i

[R]
−H
1:i,1:i

]
i

= C−1/2
[
Q̇
]
i
[R]
−∗
i,i (21)

for i = 1, · · · , N . Thus the optimal feed-forward matrix is

W = C−1/2Q̇D−HR (22)

where DR ∈ CN×N represents a diagonal matrix with the
same diagonal elements as those in R. Now, by using (13),
(16), (17) and (22), we can further get the optimal decision
feedback matrix as

D = U
[
D−1

R Q̇HQ̇R
]

= U
[
D−1

R

(
IN − Q̈HQ̈

)
R
]

= U
[
D−1

R R−D−1
R R−H

]
= D−1

R R− IN , (23)
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therefore the optimal U is given by

U = D−1
R R. (24)

It is worth noting that the nonlinear MMSE-DFE receiver
optimized above can be readily changed into the degenerate
linear MMSE receiver. To this end, we set U to be IN
and estimate s as W̄Hy, where W̄ ∈ C(2Nd)×N denotes
the linear receiving matrix. Hence, the sum MSE becomes
Ēs = tr

[(
W̄HA− IN

) (
W̄HA− IN

)H
+ W̄HCW̄

]
, of

which the gradient with respect to W̄ is ∇W̄ Ēs =

A
(
W̄HA− IN

)H
+ CW̄ . By making it equal to zero, we

can get the optimal W̄ as

W̄ =
(
AAH + C

)−1
A. (25)

The second step is to optimize {Bk} with fixed {Fr}, W
and U . Here we define

G , WH

[
HdFHs

Hsd

]
= [G1, · · · ,GK ] (26)

where for k = 1, · · · ,K, Gk ∈ CN×Ns,k consists of the(∑k−1
j=0 Ns,j + 1

)
th column to the

(∑k
j=0Ns,j

)
th column

of G with Ns,0 = 0. Additionally, we set U = [U1, · · · ,UK ],
where for k = 1, · · · ,K, Uk ∈ CN×Nk consists of the(∑k−1

j=0 Nj + 1
)
th column to the

(∑k
j=0Nj

)
th column of U

with N0 = 0. Therefore the optimization problem with respect
to {Bk} can be written as

min
{Bk}

K∑
k=1

tr
[
(GkBk −Uk) (GkBk −Uk)

H
]

(27)

s.t. tr
(
BkB

H
k

)
6 qk, k = 1, · · · ,K, (28)

K∑
k=1

tr
(
FrHs,rkBkB

H
k HH

s,rkF
H
r

)
6 p̃r,

r = 1, · · · , R (29)

where p̃r , pr − tr
(
FrF

H
r

)
. The above is a convex quadrat-

ically constrained quadratic programming (QCQP) problem
and several approaches, like the famous interior-point method
[15], can be utilized to solve it. Noteworthily, the Matlab-based
convex programming software CVX [16] is an efficient tool
to help obtain the optimal solution of the problem (27)–(29).

The third step is to optimize each Fr for r = 1, · · · , R
with fixed {Fj |j 6= r}, W , U and {Bk}. Here we set W =[
W T

1 ,W
T
2

]T
, where W1,W2 ∈ CNd×N are made up of the

first Nd rows and the last Nd rows of W , respectively. Then,
with Gs,r , Hs,rB, Gd,r , WH

1 Hd,r and Jr , U −∑R
j=1,j 6=rW

H
1 Hd,jFjHs,jB−WH

2 HsdB, the optimization
problem with respect to Fr is given by

min
Fr

fr(Fr) = tr
[
(Gd,rFrGs,r − Jr)

× (Gd,rFrGs,r − Jr)
H

+ Gd,rFrF
H
r GH

d,r

]
(30)

s.t. gr(Fr) = tr
[
Fr

(
Gs,rG

H
s,r + IMr

)
FH
r

]
− pr 6 0. (31)

The above is also a convex QCQP problem, which can be
solved via the Karush-Kuhn-Tucker (KKT) conditions [15]
with the Lagrange multiplier µr, i.e.,

gr(Fr) 6 0, µr > 0, µr gr(Fr) = 0,

∇Fr
Lr(Fr, µr) = 0Mr×Mr

(32)

where the gradient of the Lagrangian Lr(Fr, µr) , fr(Fr) +
µr gr(Fr) with respect to Fr is derived as

∇Fr
Lr(Fr, µr) =

(
GH

d,rGd,r + µrIMr

)
FrSr − Tr (33)

with Sr , Gs,rG
H
s,r + IMr and Tr , GH

d,rJrG
H
s,r.

At this point, there are two possible cases to obtain the
optimal Fr from (32). One case is µr = 0, where we have

Fr =
(
GH

d,rGd,r

)†
TrS

−1
r . (34)

If (34) satisfies gr(Fr) 6 0, then it is the unique optimal
solution. Otherwise, we should consider the other case, i.e.,
µr > 0, from which,

Fr =
(
GH

d,rGd,r + µrIMr

)−1
TrS

−1
r (35)

and gr(Fr) = 0 ought to be satisfied. In order to determine
the optimal µr in (35), we substitute (35) into gr(Fr) = 0,
resulting in

gr(µr) = tr
[(
GH

d,rGd,r + µrIMr

)−2
TrS

−1
r TH

r

]
− pr = 0.

(36)
Note that gr(µr) is a monotonically decreasing function and an
upper bound of µr can be found for gr(µr) = 0. Specifically,
according to (36) and Theorem 4.3.53 in [13], we have

pr 6 λ1

[(
GH

d,rGd,r + µrIMr

)−2
]

tr
(
TrS

−1
r TH

r

)
=
[
λMr

(
GH

d,rGd,r

)
+ µr

]−2
tr
(
TrS

−1
r TH

r

)
6 µ−2

r tr
(
TrS

−1
r TH

r

)
(37)

which further leads to

µr 6 Bu ,
√

tr
(
TrS

−1
r TH

r

)/
pr. (38)

Now, with 0 < µr 6 Bu, the solution of gr(µr) = 0 can
be readily gotten through the bisection method [15], thus the
optimal Fr in (35) is determined.

So far, all the major procedures for one iteration of our
proposed algorithm have already been covered, which include
computing W , U as (22), (24), solving the problem (27)–
(29) to obtain {Bk} and solving the problem (30)–(31) to
obtain Fr for r = 1, · · · , R. Hereafter, we call this iterative
BCD algorithm “the DFE-Rx algorithm” for the nonlinear
receiver it adopts. Note that during the iterations of the DFE-
Rx algorithm, each step we take is to solve a convex problem
with respect to a certain block of variables, which yields a
unique optimal solution to make the value of the objective
function Es decrease. Since Es also has a lower bound of
at least zero, the convergence of this algorithm is assured
and every limit point converged by the iterative process is
a Nash point [11]. To implement the DFE-Rx algorithm in
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TABLE I
SYSTEM SETTINGS

Ex. K Ñ Ñs R M̃ Nd ∆SNR (dB)

1 2 4 4 1 8 8 30

2 2 4 4 1 8 8 20

3 2 4 4 1 8 8 10

4 2 4 4 2 8 8 30

5 2 4 4 2 4 8 30

6 2 3 4 2 4 8 30

practice, one of the relay nodes can be assigned to collect
the channel state information, perform the developed iterative
algorithm and deliver the optimized system parameters to their
corresponding source, relay and destination nodes. In this
paper, we make comparisons between the DFE-Rx algorithm
and the linear MMSE receiver-based algorithm, which follows
the same procedures to optimize {Bk} and {Fr}, yet adopts
the linear receiving matrix given by (25) and sets U as
IN . This algorithm is hereafter called “the L-Rx algorithm”,
noteworthily, whose procedures are similar to the Tri-Step
algorithm proposed in [8]. Through simulation tests, it is
deemed appropriate to carry out both the DFE-Rx algorithm
and the L-Rx algorithm for 10 iterations, since after that, the
performance gains can almost be neglected, which also reflects
the fast convergence speed of the considered algorithms.

IV. NUMERICAL SIMULATIONS

The superior MSE and bit-error-rate (BER) performance of
the DFE-Rx algorithm over the L-Rx algorithm is verified by
Monte Carlo simulations, which are carried out with Intel Core
i7-10510U processor and Matlab R2017b software under 64-
bit Windows 10 operating system. Here, the i.i.d. Rayleigh fad-
ing channel environment is assumed, where all the elements in
each of Hs,rk, Hd,r, Hsd,k are i.i.d. random variables, subject
to CN

(
0, σ2

s,rk/Ns,k

)
, CN

(
0, σ2

d,r/Mr

)
, CN

(
0, σ2

sd,k/Ns,k

)
,

respectively, with the signal propagation path loss represented
by the variances σ2

s,rk/Ns,k, σ2
d,r/Mr, σ2

sd,k/Ns,k, which are
normalized by the numbers of transmitting antennas and also
implicitly contain the noise powers. Hence the signal-to-noise
ratios (SNRs) of the (k, r)th source-relay link, the rth relay-
destination link and the kth source-destination link can be
defined as SNRs,rk , qk σ

2
s,rk/Ns,k, SNRd,r , pr σ

2
d,r/Mr

and SNRsd,k , qk σ
2
sd,k/Ns,k. For the sake of simplicity, we

set Nk = Ñ , Ns,k = Ñs, Mr = M̃ , SNRs,rk = SNRd,r =
SNR and SNRsd,k = SNR − ∆SNR for k = 1, · · · ,K and
r = 1, · · · , R, where ∆SNR denotes the difference of SNR
between the indirect source-relay, relay-destination links and
the direct source-destination links. All the simulation results
are obtained from the average of 1500 independent channel
realizations with the range of SNR being 0–30 dB as well as
6 examples (Exs.) of system settings as given in Table I.

In the following, Figs. 2–3 and Figs. 4–5 respectively show
the MSE performance and the BER performance of the DFE-
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Fig. 2. MSE versus SNR performance comparisons for Exs. 1–3.
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Fig. 3. MSE versus SNR performance comparisons for Exs. 4–6.

Rx and L-Rx algorithms. Specifically, Figs. 2–3 display the
average MSE per data stream, i.e., Es/N , and in order to
obtain the BER curves in Figs. 4–5, half a million bits per
data stream under QPSK modulation are transmitted through
the relay system, where we consider the influence of the error
propagation within the MMSE-DFE receiver, whose decision
feedback symbols are not the exactly correct ones as assumed
in mathematical derivations, but the practical ones regenerated
from previously detected bits with detection errors.

According to the simulation results in Figs. 2–5, for both
the DFE-Rx and L-Rx algorithms, Ex. 2 has better MSE and
BER performance than that of Ex. 1, which is due to the
increased SNRs of direct links, and for the same reason, Ex.
3 outperforms Ex. 2. Compared with Ex. 1, Ex. 4 increases the
number of relay nodes, thus brings in more power resources
and has evident performance improvement. Since the relay
nodes in Ex. 5 are equipped with less antennas than those in
Ex. 4, the spatial diversity order is reduced, thereby lowering
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Fig. 5. BER versus SNR performance comparisons for Exs. 4–6.

the performance. Ex. 6, by comparison to Ex. 5, decreases
the number of data streams at each source node, consequently,
raises the spatial diversity order and improves the performance.

It can be seen from all the examples that, although, caused
by the error propagation within the MMSE-DFE receiver, a
little BER performance degradation appears in the low range
of SNR (i.e., as SNR 6 7.5 dB), the DFE-Rx algorithm can
always perform better than the L-Rx algorithm in terms of
both MSE and BER when SNR becomes moderately high.
Such performance superiority is particularly obvious for Ex.
1 and Ex. 5, where there is more than an order of magnitude
BER performance improvement as SNR > 17.5 dB.

V. CONCLUSION

Considering the direct links between source and destination
nodes, this paper used the MMSE-DFE receiving technique to
enhance the reliability of the signal transmission in a multiuser
AF MIMO multi-relay system, whose parameter matrices were

jointly optimized by our proposed DFE-Rx algorithm. Through
numerical simulations, we verified the superior MSE and BER
performance of the DFE-Rx algorithm by comparison with the
L-Rx algorithm, which adopts the linear MMSE receiver, and
also demonstrated that when direct links have relatively high
SNRs, they can notably improve the system reliability.
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