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Abstract—Two-way relaying systems are known to be capable
of providing higher spectral efficiency compared with one-way
relaying systems. However, the channel estimation problem for
two-way relaying systems becomes more complicated. In this
paper, we propose a superimposed channel training scheme for
two-way MIMO relay communication systems, where the individ-
ual channel information for users-relay and relay-users links are
estimated. The optimal structure of the source and relay training
sequences are derived when the mean-squared error (MSE) of
channel estimation is minimized. We also optimize the power
allocation between the source and relay training sequences to
improve the performance of the algorithm. Numerical examples
are shown to demonstrate the performance of the proposed
channel training algorithm.

Index Terms—Channel estimation, superimposed training,
MIMO relay, two-way relay, MMSE.

I. INTRODUCTION

In recent years, multiple-input multiple-output (MIMO)

relay communication systems have attracted many research in-

terests due to the significant growth in the demand for fast and

reliable wireless communications [1]. Many research works

have been done to estimate the instantaneous channel state

information (CSI) that is required to retrieve the transmitted

information in a MIMO relay communication system [1]-[2].

However, the MIMO relay systems and channel estimation

algorithms mentioned in [1]-[2] are one-way relaying sys-

tems, where the direction of the transmission is fixed to one

direction, i.e., the source node transmits to the destination

node through a relay node. In contrast to one-way relaying

systems, transmission of information occurs in both directions

for two-way relaying systems, which are getting more attention

recently as it can provide higher spectral efficiency.

The channel estimation problem becomes more complicated

in two-way relaying systems and several algorithms have been

proposed in [3]-[5]. Maximum likelihood (ML) and linear

maximum signal-to-noise ratio (SNR) channel estimation tech-

niques have been introduced in [3], while block-based training

and pilot-tone based training algorithms are presented in [4].

All these algorithms are developed based on the assumption

that each node is equipped with single antenna only, and

extension to the MIMO case is not straightforward.

Two algorithms have been proposed in [5], namely, cascaded

channel estimation and individual channel estimation. In the

cascaded channel estimation algorithm, individual relay-user

channel information is not known, hence, optimization over

the MIMO relay network would be difficult. Consequently,

the authors of [5] suggested the individual channel estimation

algorithm, where the user-relay link channel information is

estimated at the relay node and feed-forward to the user nodes.

However, this algorithm requires the relay node to be capable

of performing signal processing, thus, increasing the cost and

complexity at the relay node.

In this paper, we propose a superimposed channel training

algorithm for two-way MIMO relay communication systems.

In particular, for a three-node MIMO relay communication

system, both source nodes transmit the training sequence

simultaneously to the relay node in the first time block. The

relay then amplifies the received signal and superimposes its

own training sequence, before transmitting the superimposed

signal to both user nodes. Using the training sequences from

the user and relay nodes, the individual channel information

for users-relay and relay-users links can be estimated. The

individual channel information for users-relay is important for

optimization of MIMO relay system, such as power allocation

and precoding [6]. The optimal training sequences are derived.

In particular, we show that the optimal training matrix matches

the eigenvector matrix of the correlation matrix of the MIMO

channel. We also optimize the power allocation between the

sources and relay training sequence.

The rest of this paper is organized as follows. In Section II,

we introduce the model of a two-way three-node wireless

MIMO relay communication system where the superimposed

channel estimation algorithm is applied. The optimal training

sequences and power allocation are derived in Sections III. In

Section IV, we show some numerical examples. Conclusions

are drawn in Section V.

II. SYSTEM MODEL

We consider a three-node two-way MIMO communication

system where node 1 and node 2 exchange information

through a relay node. Nodes 1 and 2 are equipped with N1

and N2 antennas, respectively, while the relay node has Nr

antennas. We concentrate on the case where the direct link

between both users, i.e., node 1 and 2, is sufficiently weak

and thus can be omitted [1]-[2]. This scenario occurs when the
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direct link is blocked by an obstacle, such as tall buildings,

and the relay plays an important role in this case as the direct

link is weak.

The channel estimation is completed in two time blocks. In

the first time block, the source node i transmits an Ni × T
training signal matrix Si, where T is the length of the training

sequence. The Nr × T received signal matrix Yr at the relay

node is given by

Yr =

2
∑

i=1

HriSi +Vr (1)

where Hri is the Nr ×Ni channel matrix from node i to the

relay node, and Vr is an Nr × T noise matrix at the relay

node.

In the second time block, the relay node amplifies Yr and

superimposes its own training matrix Sr. Thus, the Nr × T
signal matrix transmitted by the relay node can be written as

Xr =
√
αYr + Sr (2)

where α > 0 is the relay amplifying factor. From (1) and (2),

the Ni × T received signal matrix at node i is given by

Yi =HirXr +Vi

=
√
αHirHriSi +

√
αHirHrīSī +HirSr

+
√
αHirVr +Vi, i = 1, 2 (3)

where Hir is the Ni×Nr channel matrix from the relay node

to node i, and Vi is an Ni × T noise matrix at node i. Here,

ī = 2 for i = 1, and ī = 1 for i = 2.

We assume that all noises are independent and identically

distributed (i.i.d.) additive white Gaussian noise (AWGN) with

zero mean and unit variance. We also assume that the channel

matrices satisfy the well-known Gaussian-Kronecker model

[2], where Hri and Hir are complex-valued Gaussian random

matrix with

Hri ∼ CN (0,Tri ⊗Rri),

Hir ∼ CN (0,Cr ⊗Rir), i = 1, 2. (4)

Here Tri and Rri denote the Ni×Ni and Nr×Nr covariance

matrix at the transmit and receive side of Hri, respectively,

while Cr and Rir stand for the Nr × Nr and Ni × Ni

covariance matrix at the transmit and receive side of Hir,

respectively. Here ⊗ stands for the matrix Kronecker product.

In other words, from (4) we have

Hri = AriHri,wB
H
ri,

Hir = AirHir,wK
H
r , i = 1, 2 (5)

where AriA
H
ri = Rri, BriB

H
ri = TT

ri, AirA
H
ir = Rir,

KrK
H
r = CT

r , i = 1, 2, Hri,w and Hir,w are Nr × Ni and

Ni×Nr Gaussian random matrix with i.i.d. zero mean and unit

variance entries. Here (·)T and (·)H denote matrix (vector)

transpose and Hermitian transpose, respectively. We assume

that Hri,w and Hir,w, i = 1, 2, are statistically independent

of each other. The following lemma is important for the

derivation of optimal training matrices in the next section.

LEMMA 1 [7]: For H ∼ CN (0,Θ ⊗ Φ), there is

E[HAHH ] = tr(AΘT )Φ, and E[HHAH] = tr(ΦA)ΘT .

Here E[·] stands for statistical expectation, and tr(·) denotes

matrix trace.

III. OPTIMAL TRAINING MATRICES

Let us introduce the eigenvalue decomposition (EVD) of

TT
ri as UiΛiU

H
i , i = 1, 2, and the EVD of Cr as UrΛrU

H
r .

Then we have BH
ri = ΠiΛ

1

2

i U
H
i , i = 1, 2, and KH

r =

ΠrΛ
1

2

r U
H
r , where Πi and Πr are arbitrary Ni × Ni and

Nr×Nr unitary matrix, respectively. Using (5), we can rewrite

(3) as

Yi=
√
αGiiS̃i +

√
αGīiS̃ī + H̃irS̃r + V̄i (6)

where for i = 1, 2, Gij , HirH̃rj , S̃j , UH
j Sj , H̃rj =

HrjUj , j = i, ī, H̃ir , HirUr, S̃r , UH
r S, and V̄i ,√

αHirVr + Vi is the equivalent noise matrix at node i. In

the following, we develop algorithm to estimate H̃ir and Gij .

Then an estimate of Hir and Hrj can be obtained as Ĥir =

H̆irU
H
r and Ĥrj = Ĥ

†
irĞijU

H
j , j = i, ī, where (·)† stands

for matrix pseudo-inverse, H̆ir and Ğij are estimation of H̃ir

and Gij , respectively.

By vectorizing both sides of (6), we obtain

yi=
[√

αS̃T
i ⊗INi

,
√
αS̃T

ī ⊗INi
, S̃T

r ⊗INi

][

gT
ii, g

T
īi, h̃

T
ir

]T

+v̄i

=Miγi + v̄i, i = 1, 2 (7)

where for i = 1, 2, yi , vec(Yi), gij , vec(Gij),
j = i, ī, h̃ir , vec(H̃ir), and v̄i , vec(V̄i). Here for

a matrix A, vec(A) stacks up the columns of matrix A

into a single column vector, In denotes an n × n identity

matrix, Mi ,
[√

αS̃T
i ⊗INi

,
√
αS̃T

ī
⊗INi

, S̃T
r ⊗INi

]

, and

γi ,
[

gT
ii , gT

īi
, h̃T

ir

]T
is the vector of unknown variables at

node i.
Due to its simplicity, a linear MMSE estimator [8] is applied

at node i to estimate γi. We have

γ̂i = WH
i yi, i = 1, 2 (8)

where γ̂i stands for an estimation of γi and Wi is the weight

matrix of the MMSE estimator and given by

Wi =
(

MiRγi
MH

i +Rv̄i

)−1
MiRγi

, i = 1, 2. (9)

Here (·)−1 denotes matrix inversion. From (7), we find that

since a linear estimator is used, there is T ≥ N1 +N2 +Nr.

Using (7)-(9), the MSE of estimating γi can be obtained as

MSEi =E
[

tr
(

(γ̂i − γi)(γ̂i − γi)
H
)]

= tr
(

[

R−1
γi

+MH
i R−1

v̄i
Mi

]−1
)

, i = 1, 2. (10)

In (10), Rv̄i , E[v̄iv̄
H
i ] is the noise covariance matrix which

can be calculated using Lemma 1 and is given by

Rv̄i = IT ⊗
(

αtr(KrK
H
r )AirA

H
ir + INi

)

= IT ⊗
(

αtr(CT
r )Rir + INi

)

, i = 1, 2. (11)
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In (10), Rγi
, E[γiγ

H
i ] is the covariance matrix of γi and

can be calculated as follows. First, the mth column of Gij

is given by [Gij ]m = λ
1

2

j,mAirHir,wK
H
r ArjHrj,w[Πj ]m,

m = 1, · · · , Nj , where λj,m is the mth diagonal element of

Λj , and [Πj]m is the mth column of Πj . Since Hir,w and

Hrj,w are independent, the covariance matrix of [Gij ]m can

be calculated using Lemma 1 and is given by

E
[

[Gij ]m[Gij ]
H
m

]

=λj,mtr(KH
r ArjA

H
rjKr)AirA

H
ir

=λj,mbjRir, m=1, · · ·, Nj, j= i, ī (12)

where bj , tr(RrjC
T
r ). Second, the covariance matrix of the

mth column of H̃ir, denoted as [H̃ir]m, is given by

E
[

[H̃ir]m[H̃ir]
H
m

]

= λr,mRir, m = 1, · · · , Nr (13)

where λr,m is the mth diagonal element of Λr. From (12) and

(13), Rγi
can be written as

Rγi
=Bdiag

[

Λi⊗biRir, Λī⊗bīRir, Λr⊗Rir

]

, i=1, 2
(14)

where Bdiag[·] denotes a block diagonal matrix.

The transmission power consumed at nodes 1 and 2 is

tr(SiS
H
i ) = tr(S̃iS̃

H
i ), i = 1, 2. (15)

From (2), the power consumed at the relay node is given by

αE

[

tr
(

2
∑

i=1

HriSiS
H
i HH

ri + INr

)

]

+ tr(SrS
H
r )

= αNr + α
2
∑

i=1

tr(ΛiS̃iS̃
H
i )tr(Rri) + tr(S̃rS̃

H
r ). (16)

From (10), (15), and (16), the optimal training matrices can

be designed by solving the following optimization problem

min
α,S̃1,S̃2,S̃r

2
∑

i=1

tr
(

[

R−1
γi

+MH
i R−1

v̄i
Mi

]−1
)

(17)

s.t. tr(S̃iS̃
H
i ) ≤ Pi, i = 1, 2 (18)

α
[

Nr+

2
∑

i=1

tr(ΛiS̃iS̃
H
i )tr(Rri)

]

+tr(S̃rS̃
H
r )≤Pr(19)

where Pi is the transmission power available at node i, i =
1, 2, and Pr is the transmission power available at the relay

node. The following theorem establishes the optimal structure

of S1, S2, and Sr.

THEOREM 1: The optimal training sequence S1, S2, and

Sr satisfies SrS
H
i = 0, i = 1, 2, S1S

H
2 = 0, and SrS

H
r =

UrΣrU
H
r , SiS

H
i = UiΣiU

H
i , i = 1, 2, where Σr and Σi

are Nr ×Nr and Ni ×Ni diagonal matrices, respectively.

PROOF: See Appendix A. �

The optimal structure of Sr and Si can be obtained from

Theorem 1 as Sr = UrΣ
1

2

r Ωr and Si = UiΣ
1

2

i Ωi, where

Ωr and Ωi are Nr × T and Ni × T semi-unitary matrix,

respectively, satisfying ΩrΩ
H
r = INr

, ΩiΩ
H
i = INi

, i = 1, 2,

and Ω1Ω
H
2 = 0, ΩiΩ

H
r = 0, i = 1, 2. Such Ωr, Ω1,

and Ω2 can be easily constructed, for example, from the

normalized discrete Fourier transform (DFT) matrix with

T ≥ N1 +N2 +Nr.

Interestingly, it can be seen that the optimal training matrix

at node i matches the eigenvector matrix of the transmitter

correlation matrix of Hri, and the optimal training matrix at

the relay node matches the eigenvector matrix of Cr. Using

Theorem 1 and the definition of Dij , Dsi and Dri in (32), the

optimization problem (17)-(19) is converted to the following

problem with scalar variables

min
α,σ1,σ2,σr

2
∑

i=1

(

Ni
∑

m=1

Ni
∑

n=1

[

1

biλi,mδi,n
+

ασi,m

αtr(CT
r )δi,n + 1

]−1

+

Nī
∑

m=1

Ni
∑

n=1

[

1

bīλī,mδi,n
+

ασī,m

αtr(CT
r )δi,n + 1

]−1

+

Nr
∑

m=1

Ni
∑

n=1

[

1

λr,mδi,n
+

σr,m

αtr(CT
r )δi,n + 1

]−1
)

(20)

s.t.

Ni
∑

m=1

σi,m ≤ Pi, i = 1, 2 (21)

αNr + α

2
∑

i=1

(

Ni
∑

m=1

λi,mσi,mtr(Rri)

)

+

Nr
∑

m=1

σr,m ≤ Pr (22)

α > 0, σ1,m ≥ 0, σ2,m ≥ 0, σr,m ≥ 0 (23)

where σr ,
[

σr,1, · · · , σr,Nr

]T
, σi ,

[

σi,1, · · · , σi,Ni

]T
, i =

1, 2, and λ1,m, λ2,m, λr,m, σ1,m, σ2,m, σr,m, δ1,m, δ2,m are the

mth diagonal element of Λ1,Λ2,Λr,Σ1,Σ2,Σr,∆1,∆2,

respectively.

The problem (20)-(23) is a non-convex optimization prob-

lem. However, the optimization of the problem (20)-(23) with

respect to σ1, σ2, and σr is convex when α is fixed. In

particular, for a given α, the optimal σ1, σ2, and σr can be

efficiently obtained through the Karush-Kuhn-Tucker (KKT)

optimality conditions of the problem (20)-(23). The gradient

conditions are given by

N1
∑

n=1

αd
(n)
1

[

c
(mn)
11 + αd

(n)
1 σ1,m

]2 +

N2
∑

n=1

αd
(n)
2

[

c
(mn)
12 + αd

(n)
2 σ1,m

]2 =

µ1 + µ3e
(m)
1 , m = 1, · · · , N1 (24)

N1
∑

n=1

αd
(n)
1

[

c
(mn)
21 + αd

(n)
1 σ2,m

]2 +

N2
∑

n=1

αd
(n)
2

[

c
(mn)
22 + αd

(n)
2 σ2,m

]2 =

µ2 + µ3e
(m)
2 , m = 1, · · · , N2 (25)

N1
∑

n=1

d
(n)
1

[

c
(mn)
r1 + d

(n)
1 σr,m

]2 +

N2
∑

n=1

d
(n)
2

[

c
(mn)
r2 + d

(n)
2 σr,m

]2 = µ3

m = 1, · · · , Nr (26)

where

c
(mn)
11 , 1/(b1λ1,mδ1,n), c

(mn)
12 , 1/(b1λ1,mδ2,n)

c
(mn)
22 , 1/(b2λ2,mδ2,n), c

(mn)
21 , 1/(b2λ2,mδ1,n)
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c
(mn)
r1 , 1/(λr,mδ1,n), c

(mn)
r2 , 1/(λr,mδ2,n)

d
(n)
1 , 1/(αtr(CT

r )δ1,n + 1), d
(n)
2 , 1/(αtr(CT

r )δ2,n + 1)

e
(m)
1 , αtr(Rr1)λ1,m, e

(m)
2 , αtr(Rr2)λ2,m

and µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0 are Lagrange multipliers such

that the complementary slackness conditions given by

µi

(

Pi −
Ni
∑

m=1

σi,m

)

= 0, i = 1, 2 (27)

µ3

(

Pr−αNr−α

2
∑

i=1

Ni
∑

m=1

λi,mσi,mtr(Rri)−
Nr
∑

m=1

σr,m

)

=0 (28)

are satisfied.

With any fixed α, µ1, µ2, and µ3, the non-negative σ1,m,

σ2,m, and σr,m can be found by using the bi-section search for

all m, since the left-hand-side (LHS) of (24), (25), and (26) are

monotonically decreasing function of σ1,m, σ2,m, and σr,m,

respectively. To find the optimal µ1, an outer bi-section search

is used as the LHS of (21) is increasing function of σ1,m,

while in (24), σ1,m is monotonically decreasing function of

µ1. Similar method can be applied to find optimal µ2 and µ3.

Now we show some insights on the optimal α by con-

sidering the MSE objective function in (20). Interestingly,

it can be observed from (20) that the terms in the first and

second double summation are monotonically decreasing and

convex with respect to α, while the terms in the third double

summation are monotonically increasing and concave with

respect to α. This indicates that the estimation errors of both

sources-to-relay channels are improved when more power at

the relay node is allocated to assist the estimation of Gii and

Gīi in (6). On the other hand, the estimation errors of the

channels from the relay to both sources are decreased when

more power at the relay node is assigned to the superimposed

training sequence Sr.

A plot of the MSE value over a range of feasible values of

α is generated in Fig. 1 for the case where all nodes have the

same number of antennas, i.e., Ni = Nr = N = 4, i = 1, 2,

and the channel matrices have i.i.d. entries, i.e., Tri = Rri =
Rir = Cr = IN , i = 1, 2. Fig. 1 shows the MSE value versus

α for different P1 = P2, and Pr is set to be 20dB.

It can be observed from Fig. 1 that the MSE objective

function (20) is a unimodal (quasiconvex) function of α, i.e.,

the function has only one local minimum. For a unimodal

function, the minimum value can be efficiently found by the

golden section search (GSS) algorithm [10]. Hence, at least

the local optimal α, for the problem (20)-(23) can be obtained

by applying the GSS technique, and the procedure is listed in

Table I. Note that | · | denotes the absolute value, ε is a positive

constant close to 0, and φ is a positive constant reduction

factor. It has been proven that the optimal φ = 1.618 [10].

This algorithm requires reasonable computational complexity

as only few iterations are needed to find optimal α.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

superimposed channel estimation algorithm through numerical
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Fig. 1. MSE versus α for different P1 = P2 with N = 4 and Pr = 20dB.

TABLE I
PROCEDURE OF APPLYING THE GOLDEN SECTION SEARCH (GSS) TO FIND

THE OPTIMAL α IN PROBLEM (20)-(23).

1) Set a feasible bound [a,b] on α.
2) Define c1 = (φ− 1)a + (2− φ)b and c2 = (2 − φ)a + (φ− 1)b.
3) Solve problem (24) - (26) for α = c1;

Compute the MSE value defined in (20), fMSE(c1) for α = c1.
4) Repeat Step 3 for α = c2.
5) If fMSE(c1) < fMSE(c2), then assign b = c2.

Otherwise, assign a = c1.
6) If |b− a| ≤ ε, then end.

Otherwise, go to step 2.

simulations. We consider a three-node two-way MIMO relay

communication system where each node is equipped with

the same number of antennas, i.e., N1 = N2 = Nr = N .

For simplicity, we assume the power at the source nodes are

the same as the power at the relay node, i.e., P1 = P2 =
Pr = P . The channel covariance matrices are modeled as

[Tri]m,n = ρ|m−n|, i = 1, 2, [Rri]m,n = ρ|m−n|, i = 1, 2,

[Rir]m,n = ρ|m−n|, i = 1, 2, and [Cr]m,n = ρ|m−n|, where ρ
is the correlation coefficient with magnitude |ρ| < 1. For all

scenarios, the normalized MSE (NMSE) of channel estimation

at node 1 and 2 are computed.

Fig. 2 shows the NMSE of channel estimation at node 1 for

different α when N = 4 and ρ = 0.8. The optimal α curve

is obtained by applying the GSS algorithm on the proposed

superimposed channel estimation algorithm to find the optimal

α for different P . With these optimal α, different number of

antennas and normalized correlation coefficient are used for

the next scenario to show the impact of these parameters on

the performance of the proposed algorithm and the results are

shown in Fig. 3. Note that the NMSE of channel estimation

at node 1 is the same as NMSE at node 2 for both scenarios.

From the simulation results, it can be seen that the optimal

α changes when P changes. At a smaller P , the optimal α
is smaller, while at a greater P , the optimal α is greater. It is

proven as well that GSS algorithm can be used to obtain the

optimal α at different P , hence, yields the best performance
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Fig. 3. MSE versus P for different N and ρ with optimal α

curve compared to simulations with constant α. Similar to [5],

the NMSE for the case when N = 4 is greater compared to

the case when N = 2 as there are more unknowns to estimate.

V. CONCLUSIONS

We have proposed a superimposed channel training algo-

rithm for two-way MIMO relay systems. This algorithm can

efficiently estimate the individual CSI for two-way MIMO

relay systems. The optimal training sequences and the power

allocation between these training sequences are derived.

APPENDIX A

PROOF OF THEOREM 1

PROOF: Let us introduce the EVD of Rir = Qi∆iQ
H
i . We

can equivalently rewrite (11) and (14) as

Rv̄i=IT ⊗
(

Qi(αtr(C
T
r )∆i + INi

)QH
i

)

, (29)

Rγi
=Uγi

Bdiag
[

Λi⊗bi∆i, Λī⊗bī∆i, Λr⊗∆i

]

UH
γi

(30)

where Uγi
, Bdiag

[

INi
⊗Qi, INī

⊗Qi, INr
⊗Qi

]

, i =
1, 2. Substituting (29) and (30) back into (10), MSEi can be

rewritten as

MSEi=tr













Dii 0 0

0 Dīi 0

0 0 Dsi



+





√
αS̃∗

i ⊗INi√
αS̃∗

ī
⊗INi

S̃∗
r⊗INi





(

IT ⊗Dri

)

×
(√

αS̃T
i ⊗INi

,
√
αS̃T

ī ⊗INi
, S̃T

r ⊗INi

)

]−1
)

(31)

where (·)∗ denotes complex conjugate and

Dij ,Λ−1
j ⊗(bj∆i)

−1, j = i, ī, Dsi , Λ−1
r ⊗∆−1

i

Dri ,
(

αtr(CT
r )∆i + INi

)−1
(32)

are all diagonal matrices. It can be seen from (31) that the

objective function (17) is minimized only if

(S̃∗
i ⊗INi

)IT ⊗Dri(S̃
T
ī ⊗INi

) =
(

S̃∗
i S̃

T
ī

)

⊗Dri = 0 (33)

(S̃∗
j⊗INi

)IT ⊗Dri(S̃
T
r ⊗INi

) =
(

S̃∗
j S̃

T
r

)

⊗Dri = 0 (34)

where for i = 1, 2, and j = i, ī. Equations (33) and (34)

hold if and only if S̃∗
1S̃

T
2 = 0 and S̃∗

i S̃
T
r = 0, i = 1, 2, or

equivalently S1S
H
2 = 0 and SiS

H
r = 0, i = 1, 2. Then the

objective function (17) can be written as

2
∑

i=1

tr
(

[

Dii + αS̃∗
i S̃

T
i ⊗Dri

]−1
+
[

Dīi + αS̃∗
ī S̃

T
ī ⊗Dri

]−1

+
[

Dsi + S̃∗
r S̃

T
r ⊗Dri

]−1
)

. (35)

Since Dii, Dīi, Dsi, and Dri are all diagonal, to minimize

(35), S̃∗
1S̃

T
1 , S̃∗

2S̃
T
2 , and S̃∗

rS̃
T
r must be diagonal. Note that

tr(ΛiS̃iS̃
H
i ) in the constraints (19) is minimized if S̃iS̃

H
i is

diagonal and its diagonal entries are in the inverse order of that

of Λi [9]. Denote S̃rS̃
H
r = Σr, S̃iS̃

H
i = Σi, i = 1, 2. Then

we have SrS
H
r = UrΣrU

H
r , SiS

H
i = UiΣiU

H
i , i = 1, 2. �
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