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Abstract—The interest in utilizing Wi-Fi signals for indoor
location estimation purposes has been increased recently due
to wide deployment of WLANs. Received signal strength (RSS)
based approach has become an attractive candidate for position-
ing owing to its simplicity and low-complexity, which can be
easily implemented in modern wireless devices such as laptops
and PDAs. However, the challenging nature of indoor wireless
propagation environments provoke time varying location estima-
tions from RSS based positioning algorithms. In this paper, we
have shown that this variability of the location estimations can be
reduced by introducing an antenna array at the receiving station.

In our proposed approach, the variation of the received signal
power with respect to time is averaged using a uniform linear
antenna array (ULA) at the mobile station. We further explore
the impact of number of array elements on the accuracy of the
position estimations by using representative set of multilateration
algorithms. In the first phase of analysis, we consider uncorrelated
Rayleigh fading channels on each antenna element whilst in the
second phase, we take into account the fading correlation between
antenna elements using the spatial correlation function for two-
dimensional (2D) diffuse field. The proposed positioning technique
can be integrated into IEEE 802.11 compatible receivers with
single-input multiple-output (SIMO) capability, thus be able to
use for robust indoor localization purposes.

Keywords - Indoor Positioning; Antenna Array; RSS; Fading
Correlation; Lateration.

I. INTRODUCTION

Indoor localization has recently been of significant interest
in wireless networks owing to the requirement of accurate loca-
tion base services (LBSs) for diverse of new applications, such
as health care monitoring, personal tracking, inventory control
and location specific information routing. Indoor environments,
however, impose great challenge for accurate localization due
to their inherent multipath effects including reflections and
diffractions. These have made signal characterization hard with
respect to location, thereby placing localization of wireless
devices in indoors as an active area of research.

To date, various physical modalities have been used for
indoor positioning including time of arrival (TOA) [1], time
difference of arrival (TDOA) [2], angle of arrival (AOA) [3]
and received signal strength (RSS) [4]. RSS-based techniques
have drawn considerable attention since they allow the reuse
of existing communication infrastructure, thus yield low cost,
simple and feasible localization solution. However, RSS mea-
surements are susceptible to short term fading. Consequently,

it necessitates the need of complex algorithms for robust
localization [1], which require substantial processing power
and time. Utilization of an antenna array, with closely spaced
antenna elements at the mobile station (MS), presents the
opportunity to smooth out these fading effects and employ
low complex positioning algorithms for accurate localization
purposes whilst maintaining the same number of wireless
access points (WAPs) used by localization system.

In this work, we analyse the variability reduction of RSS by
employing multi-element antenna systems at MS. In order to
relate our analysis for indoors, we consider Rayleigh-plus-log
normal statistical model that successfully describes the RSS
variation in open indoor environments [5]. Our analysis of
employing antenna arrays is of two-fold. First, we consider
totally uncorrelated channels on each antenna element. Second,
we replace the uncorrelated channel model with spatial corre-
lation function for 2D omni-directional diffuse field to model
the effect of fading correlation between antenna elements,
which appropriately reflects narrowband Rayleigh fading in
fixed wireless systems [6]. We then investigate the variance
reduction of RSS with respect to the number of antenna
elements and inter-element spacing. Furthermore, we verify
our analytical outcomes through simulations.

In next step, we numerically simulate the effect of using
an antenna array at MS for location accuracy. We use two
representative lateration algorithms: linear least square (LLS)
that gives closed-form location estimations, and nonlinear least
square (NLS) that gives more accurate location estimations
by solving an optimization problem [7]. Simulation results
demonstrate that using antenna array at MS provides better
location estimations compared to single antenna scenario.
Moreover, the results show that accuracy improves with the
number of elements on the antenna array.

The rest of this paper is organized as follows. In Sec-
tion II, we first introduce the radio propagation model for
fixed indoor wireless environments such as shopping malls
and large halls. Second, we present the diversity combining
technique employed at the receiving station. We then present
the network operation of localization in wireless infrastructure.
The analysis of RSS variance reduction in uncorrelated and
correlated channel models is also presented under this section.
The positioning techniques used for simulations are described
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in Section III. In Section IV, we demonstrate some numerical
examples, in particular, we emphasise the localization accuracy
improvement with respect to the number of array elements.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

A. RSS Model

Although presenting a generic model for RSS is not fea-
sible in indoor environments, it is well established that for
open indoor areas, the signal statistics can be modelled as
a combination of a quasi stationary process (i.e. multipath)
superimposed on a large scale process (shadowing and path-
loss) [5]. In our simulations, we assume that small scale fading
follows a Rayleigh distribution [8]. First, we construct the
multipath fading signal from in-phase and quadrature Gaussian
noise samples, which are then filtered, so that the frequency
domain of the output envelop has the desired Doppler spectrum
for a indoor fixed wireless communication system [9]. Here,
we use the bell-shaped spectrum in (1) as recommended by
the IEEE 802.11 community, which models the indoor areas
for WLAN applications where transmitter and receiver remain
stationary while people are moving in between [10]

D(f) =
1

1 +
(

3f
fd

)2
.

(1)

Here, fd is the frequency at which the spectrum is dropped
to 10% of its peak and it is approximately equal to 3 kHz
for 2.4 GHz centre frequency systems according to [10]. The
maximum frequency component of the Doppler spectrum fmax
is set arbitrarily to 5fd [9].

Second, we characterize the received power (dBm) at a point
which is di distance away from a WAP by

Pr(di) = Pt −PL(d0)− 10nplog10

(
di
d0

)
−MFi

−Xσi
(2)

where Pt (dBm) is the WAP transmit power (typically 40dBm
for Wi-Fi systems), PL(d0) (dB) is the path-loss at the Fraun-
hofer distance (d0 ≈ 1 m for Wi-Fi systems according to
[11]), np is the path-loss gradient, MFi represents the small-
scale fading (dB) due to multipath propagation whilst Xσi

is the long-term fading (dB) due to shadowing. However,
for indoor environments such as large shopping malls and
office floors with small desk partitions, Xσi

may be neglected.
Nevertheless, the temporal fluctuation of received power at a
given point in space is totally characterized by MFi in (2).

B. RSS Variance Reduction with Antenna Array

In this subsection we investigate the result of using an
antenna array at the receiving station to reduce the temporal
fluctuation of received signal power. We consider a single user
communication system and diversity receive channel model
with maximal ratio combining (MRC). First, we assume that
the receiver lies in a rich scattering environment described by
the one-ring model in [6], also, in particular, a sufficiently
large inter-element space(≥ λ/2, where λ is the wavelength).

Thus, the channels on each antenna elements can be considered
to be uncorrelated. Second, we remove the latter assumption
and analyse the temporal fluctuation of the power against the
inter-element spacing. Fig.1 shows the system model for both
of these investigations.

1) Uncorrelated Rayleigh Fading: Each channel from trans-
mitter to receiver in Fig.1 are circularly symmetric complex
Gaussian distributed, denoted by hi ∼ Ñ(0, 2σ2), where
hi = xI + jxQ in which xI and xQ are i.i.d N(0, σ2). When
the channel is slow and flat fading, the received signal vector
z can be written as

z = yu(t) + n (3)

where z = [z1, z2, . . . , zL]T , y = [y1, y2, . . . , yL]T and n =
[n1, n2, . . . , nL]T , yi is the channel between transmitter and ith

receiving antenna, u(t) is the unit power transmitted signal and
ni is the associated AWGN with the channel. According to the
model illustrated in Fig. 1, the channels become uncorrelated
when the channel covariance matrix CH = IL, where IL is
an L×L identity matrix, and L is the number of elements in
receiver antenna array. After diversity combining with MRC,
the output signal is given by

r(t) = wHyu(t) + wHn

= wHILhu(t) + wHn. (4)

To maximize the SNR, by Cauchy-Schwarz inequality, we
take w = κh , where κ is an arbitrary constant. Therefore, we
can derive the effective power of the combiner’s output by

Peff = κ2
∣∣hHh

∣∣2
= κ2

(
|h1|2 + |h2|2 + · · ·+ |hL|2

)2
(5)

where the term (|h1|2 + |h2|2 + · · · + |hL|2) is chi-squared
distributed with 2L degrees of freedom. We consider σ = 1
without loss of generality and choose κ such that it normalizes
the ensemble average, E{Peff } = 4κ2L(L+ 1). Thus, we get
κ = 1/

(
2
√
L(L+ 1)

)
. Furthermore, the variance of Peff can

be derived as

σ2
P =

2

L

(
2 +

1

(L+ 1)

)
. (6)

It is clear from (6) that the variance of the effective output
power reduces with number of array elements. Moreover, Fig.
2 illustrates that a fade reduction of 16.15 dB can be achieved
by using four elements on the antenna array, while a fade
reduction of 16.86 dB can be achieved by using six elements.

2) Correlated Rayleigh Fading: We previously assumed
that the channels experience uncorrelated fading. However,
in real propagation environments, channel fadings may not
be independent owing, for example, to insufficient spacing
between antenna elements [6]. In this subsection, we analyse
the behaviour of the variance of the Peff with respect to inter-
element spacing. Here, we confine our analysis to two antenna
elements and Rayleigh fading channels with no dominant
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Figure 1. System Model

component. We refer to the spatially uncorrelated 1× 2 SIMO
channel vector as h. As illustrated in [12], for a 2D omni
directional diffuse field, the channel covariance matrix become

CH =

[
1 J0

(
2π
λ d
)

J0
(
2π
λ d
)

1

]
(7)

and the correlated channel vector is given by [6]

y = Φ
1
2 h (8)

where Φ
1
2 Φ

H
2 = CH , J0(.) is the zeroth order Bessel function

of first kind, λ is the wavelength, and d is the inter-element
space. From (7) we can obtain

Φ
1
2 =

[
1 0

J0
(
2π
λ d
) √

1−
(
J0
(
2π
λ d
))2

]
. (9)

The effective power output is given by

Peff = κ2
∣∣yHy

∣∣2
= κ2

(
hHΦ

H
2 Φ

1
2 h
)2
. (10)

Similar to uncorrelated analysis, in order to normalize the
ensemble average,

E{Peff } = 8κ2
{

4 + J2
0

(
2π

λ
d

)(
1− J2

0

(
2π

λ
d

))}
,

we choose

κ =
1√

8
{

4 + J2
0

(
2π
λ d
) (

1− J2
0

(
2π
λ d
))} .
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Figure 2. Fade Reduction with Antenna Arrays

Furthermore, variance of Peff in (10) can be derived as

σ2
p =

a1(J8
0 (m)− J6

0 (m)) + a2J
4
0 (m) + a3J

2
0 (m) + a4

{8 [4 + J2
0 (m) (1− J2

0 (m))]}2
,

(11)
where m = (2π/λ), a1 = 24, a2 = 296, a3 = 3848 and a4 =
1344. Interestingly (11) reflects a sinc shape as depicted in
Fig. 3 where the envelop of the σ2

P decreases as inter-element
spacing increases. Thus, with a inter-element spacing 4.7cm
(in a 2.4 GHz system), we can achieve a minimum variance
for a two element MRC diversity reception system in a rich
scatter Rayleigh fading environment. Moreover, we illustrate
the effect of inter-element space on localization accuracy in
Section IV.

C. Network Operation for Localization

In our proposed positioning prototype, we assume a client-
based localization engine, in which MS first scans the received
signal power from three or more WAPs. This is called the
training phase. Then MS estimates the distance from itself to
each of corresponding WAPs. Finally, MS locates its position
using one of the representative lateration algorithms which are
discussed in next section. This is typically referred to run-
time localization phase. The temporal variability of the position
estimations can be mitigated using an antenna array at the
receiving station.

III. PROPOSED ALGORITHMS

In this section, we present two lateration based algorithms
that are widely used for localization to validate our analysis.
We study both NLS and LLS methods. Also we introduce the
application of Armijo’s rule [13] to effectively solve the NLS
problem that yields converged location estimations.

First, we present the notation for NLS and LLS, and, in
turn, introduce the pertinent mathematical background for
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both localization approaches. Since we consider a client-based
localization approach, WAP and MS (i.e. client) always assume
the roles of transmitter and receiver. We use the notation
s = [x, y]T to represent the variable location parameter vector.
The estimated location of the MS is then referred to as
ŝ = [x̂, ŷ]T . The observed received signal strength from the jth

transmitter at the client is denoted by Prj (dBm). We define the
RSS observation parameter vj(dB) = Prj(d0)− Prj . Further,
we denote the pathloss at a point (x, y) by Lj(s)(dB) =
Prj(d0) − Prj(s). Here, Prj(d0) and Prj(s) are the received
signal levels from jth transmitter at the Fraunhofer distance
and a point (x, y) respectively.

A. Nonlinear Least Squares (NLS)

Given the RSS observation vectors and relative pathlosses
at a point (x, y) with respect to M WAPs, the location of the
wireless node can be estimated by finding ŝ satisfying

ŝ = argmin
s

ε(s) =

M∑
j=1

r2j (s)

 (12)

where the residual rj(s) = vj − Lj(s). In order to solve the
optimization problem (12), we deploy widely used gradient
descent algorithm with the (k + 1)th iteration given by

sk+1 = sk + µkDk,

where µk is the step size, Dk = −∇ε(sk) and sk = [xk, yk]T .
A suitable step size for the (k + 1)th step can be found by
using Armijo’s rule. From (12), the gradient can be derived as

∇ε(sk) =
−20np
ln10

 ∑M
j=1 rj(sk)

(
(xk−xj)

(xk−xj)2+(yk−yj)2

)
∑M
j=1 rj(sk)

(
(yk−yj)

(xk−xj)2+(yk−yj)2

)  .

Define the convex function f(µk) = ε(sk+1) = ε(sk+µkDk).
The estimate of f(µk) can be chosen such that f̂(µk) =
ε(sk)− µkε∇εT (sk)∇ε(sk), where 0 < ε < 1. The step sizes
for each iteration can be decided as for [13];

• Step 0: Set µ0 = µ̄ > 0; set k = 0.
• Step k: If f(µk) ≤ f̂(µk), choose µk as the step size

and stop. Otherwise, take µk+1 = 1
αµk, where α is

chosen such that step size would not be too small (in
our simulations we use α = 2).

However, due to considerable iterations for accurate estima-
tions, the NLS approach is relatively high in computational
complexity.

B. Linear Least Squares (LLS)

LLS approach linearises the NLS problem by introducing
constraints in the formulation, and obtain a closed-form so-
lution of location estimate [7]. On the other hand, LLS has
got less computational complexity. From the RSS observations
at the jth WAP, we can obtain the range estimate d̂j =
d010vj/(10np), where d̂j is the estimated distance to MS from
the jth WAP. Furthermore, geometrically, a point (x, y) on the
perimeter of a circle with radius dj , and center (xj , yj) satisfies

d2j = (x− xj)2 + (y − yj)2. (13)

However, this exact distance dj and the estimated distance d̂j
may differ owing, for example, to multipath fading, receiver
front-end noise and different environmental clutter. Therefore,
we can write

d̂2j = d2j + ηj (14)

where ηj is the error due to these channel imperfections. Now,
considering the exact distances between MS and access points
1 and i, and from (13), we can write

(x1 − xi)x+ (y1 − yi)y =
1

2

(
(x21 + y21)− (x2i + y2i )− (d21 − d2i )

)
.

(15)

Now, with observations made from M(≥ 3) access points with
estimated radii d̂i and centers (xi, yi), for i = 2, . . . ,M , we
can derive

As + r = b (16)

where

A = 2

 (x1 − x2) (y1 − y2)
...

...
(x1 − xM ) (y1 − yM )


r =

 η2 − η1
...

ηM − η1



b =


|s1|2 − |s2|2 − (d̂1

2
− d̂2

2
)

...

|s1|2 − |sM |2 − (d̂1
2
− ˆdM

2
)

 . (17)
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Figure 4. Localization precision comparison: (a) for LLS lateration (b) for NLS lateration (c) for correlated two channels with NLS (d) between LLS, NLS
and RADAR

Here si = [xi, yi]
T is the location vector of the ith access point

with |si|2 = x2i + y2i , i = 1, . . . ,M . Now we can formulate
the least square framework with residual r = b − As, such
that;

ŝ = argmin
s

{
rT r
}
. (18)

Then, a linear least square estimator for (18) can be
directly obtained by using the closed-form solution [14]:
ŝ =

(
ATA

)−1
ATb. For indoor environments with small

or medium scale networks, LLS approach can yield accept-
able position estimates, however, it may become erroneous
and computationally challenging for indoor environments with
large scale wireless networks.

IV. NUMERICAL EXAMPLES

In this section, we study the effect of using multi-element
antenna arrays at the mobile receivers for positioning im-
provement through numerical simulations. The accuracy of the
positioning engine is defined as the Euclidean distance between
the estimated location and the actual location of the MS
for a given localization attempt. The cumulative distribution
function (CDF) of location accuracy is used for measuring the
precision of the localization system [15].

In the first example, we simulate a Rayleigh fading envi-
ronment where channels are i.i.d circularly complex Gaussian
distributed with zero mean and variance 2. All the transmitters
(i.e. WAPs) transmit a beacon signal every 100ms with 2.4
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TABLE I

MEAN ACCURACIES VS NO. ARRAY ELEMENTS

No. of elements LLS NLS RADAR
1 20.1749m 13.6375m 13.6556m

3 14.1714m 13.4373m 13.6756m

4 11.6452m 11.4292m 11.9462m

6 8.0448m 8.3535m 9.2858m

GHz carrier frequency, and receiver front-end SNR is 20dB.
We simulate MRC diversity reception systems with L = 3, 4
and 6, and positioning estimates are obtained through the LLS
lateration. It can be seen from Fig. 4a that the precision of
the estimates increases as the number of elements on the array
increases. Moreover, 12.13m of an average error reduction can
be achieved by employing six elements on the receiving array
compared to a single antenna receiver.

In the second example, we simulate the same wireless
system using the NLS approach. In this case, an average error
reduction of 5.284m can be achieved by using a six element
antenna array compared to a single antenna receiver. Further-
more, the NLS algorithm outperforms the LLS approach even
for a single antenna receiver as it can be seen from Fig. 4a
and Fig. 4b.

Next, we take the correlation between antenna elements into
consideration and simulate L = 2 MRC systems with various
inter-element spaces using the NLS approach. It can be seen
from Fig. 4c that the positioning performance is relatively high
when the inter-element spacing between two antennas is 4.7cm
at which the variance in (11) is minimum.

Finally, we adopt the well-known RADAR positioning al-
gorithm in [4] to obtain the position estimates. We use the
propagation model that is illustrated in (2) to construct the
fingerprint data base (FDB), and nearest neighbour in signal
space (NNSS) technique for the pattern matching process. In
this case, Eucledian Distance (ED) is used to compare the
observed RSS values at the MS to the fingerprints in the
FDB and then select the one with the best match. Fig. 4d
illustrates the performance comparison between LLS, NLS,
and RADAR for a six element antenna array. Furthermore,
Table I depicts the mean distance errors obtained from all these
three location determination techniques. The results reveal that
the LLS and NLS algorithms provide better outcomes with a
six element antenna array with average accuracies of 8.0448m
and 8.3535m which is an acceptable range for indoor WLAN
environments.

V. CONCLUSION

In this work, we studied the impact of using antenna arrays
at receiving stations on improving the accuracy of the location

estimates which is typically degraded due to multipath fading
in indoor environments with single antenna systems. We simu-
lated a fixed 802.11 indoor multipath propagation environment
and MRC diversity reception systems. We further adapted two
widely used lateration based algorithms to validate our pro-
posal. We theoretically showed the reduction of received signal
strength temporal fluctuations with the deployment of multi-
element antennas. Simulation results confirmed that increasing
the number of elements on the array leads to a considerable
enhancement in localization accuracy.
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