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Abstract—In this paper, we investigate the channel estimation
problem for two-way multiple-input multiple-output (MIMO)
relay communication systems in frequency-selective fading en-
vironments. We propose a superimposed channel training al-
gorithm to estimate the individual channel state information
(CSI) of the first-hop and second-hop links for two-way MIMO
relay systems with frequency-selective fading channels. In this
algorithm, a relay training sequence is superimposed on the
received signals at the relay node to assist the estimation of the
second-hop channel matrices. The optimal structure of the source
and relay training sequences is derived to minimize the mean-
squared error (MSE) of channel estimation. We also derive the
optimal power allocation between the source and relay training
sequences. Numerical examples are shown to demonstrate the
performance of the proposed algorithm.

Index Terms—Channel estimation, MIMO two-way relay,
frequency-selective fading, superimposed training, MMSE

I. INTRODUCTION

Two-way multiple-input multiple-output (MIMO) relay

communications have attracted great interests recently as they

can provide higher spectral efficiency compared with one-way

relay systems [1]-[4]. In a two-way relay system, two source

nodes exchange their information through relay node(s). The

joint source and relay optimization for two-way MIMO relay

systems has been studied in [2]-[4].

For the two-way MIMO relay systems discussed in [2]-

[4], the knowledge of the instantaneous channel state infor-

mation (CSI) is essential for extracting the source signals at

the destination nodes and the optimization of MIMO relay

systems through precoding matrices design and power alloca-

tion. However, the instantaneous CSI is unknown in practical

wireless relay communication systems, and therefore, needs to

be estimated at the destination nodes. In [5], two-way relay

channel estimation based on the maximum likelihood (ML)

and linear maximum signal-to-noise ratio (SNR) have been

proposed. A superimposed training-based channel estimation

for two-way relay systems has been developed in [6], and has

been extended to two-way MIMO relay systems in [7].

The relay system in [5]-[7] is assumed to have frequency-flat

fading channels, which is only valid for narrowband commu-

nication systems. In this paper, we consider a more general

situation where two-way MIMO relay systems are operating

in frequency-selective fading environments, i.e., there are

multiple paths between each transmit-receive antenna pair. The

estimation of frequency-selective fading channels has been

discussed in [8] for single antenna one-way relay systems. We

develop a superimposed channel training algorithm to estimate

the individual channel matrices of the first-hop and second-hop

links for two-way MIMO relay systems in frequency-selective

fading environments. In particular, the channel training is com-

pleted in two time blocks. In the first time block, both source

nodes transmit their training sequences simultaneously to the

relay node. The relay then amplifies the received signals and

superimposes its own training sequences before broadcasting

the superimposed signals to the destination nodes. The channel

estimation processes are implemented at the destination nodes

to minimize the amount of signal processing at the relay node.

We derive the optimal source and relay training sequences

by minimizing the sum MSE of channel estimation. We

also optimize the power allocation between the source and

relay training sequences at the relay node. The algorithm

developed in this paper generalizes the results in [7] from

frequency-flat fading channel to frequency-selective fading

channels. We would like to note that such extension is non-

trivial as the optimization problem for channel estimation in

frequency-selective two-way MIMO relay systems is much

more complicated than that of frequency-flat relay systems.

II. SYSTEM MODEL

We consider a three-node two-way MIMO relay com-

munication system operating in a frequency-selective fading

environment, where two source nodes, node 1 and node 2,

exchange information through a relay node as shown in Fig. 1.

The source nodes and relay node are equipped with Ns and

Nr antennas, respectively. In this paper, we assume that the

practical half-duplex mode is used for all nodes, i.e., each node

is not able to transmit and receive signals at the same time.

Let us denote hri
n,m =

[

hri
n,m,1, · · · , hri

n,m,Q

]T
as the Q× 1

first-hop multipath channel vector from the mth antenna at

node i to the nth antenna at the relay node, i = 1, 2,

m = 1, · · · , Ns, and n = 1, · · · , Nr, where (·)T denotes

the matrix (vector) transpose and we assume that all channels

have the same number of taps Q. The extension to systems

with different number of channel taps between each transmit

and receive antenna pair is straightforward. In a similar way,
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Fig. 1. Block diagram of a two-way MIMO relay communication system.

hir
m,n =

[

hir
m,n,1, · · · , hir

m,n,Q

]T
is used to denote the Q × 1

second-hop multipath channel vector from the nth antenna at

the relay node to the mth antenna at node i.

The channel estimation process is completed in two time

blocks. In the first time block, source node 1 transmits

an Ns × L training signal matrix S = [s1, s2, · · · , sNs
]T

and source node 2 transmits an Ns × L training matrix

T = [t1, t2, · · · , tNs
]T , respectively, where L > Q is the

length of the training sequence and will be determined later.

Cyclic prefixes of length Lcp ≥ Q are inserted at sm and tn,

m,n = 1, · · · , Ns, to prevent the inter-block interference at

the relay node [9]. The received signal vectors at the relay

node over L time slots after removing the cyclic prefix can be

written as

yr,n =

Ns
∑

m=1

Hr1
n,msm +

Ns
∑

m=1

Hr2
n,mtm + vr,n (1)

where yr,n and vr,n are the L× 1 received signal vector and

noise vector at the nth antenna of the relay node, respec-

tively, Hr1
n,m and Hr2

n,m are L× L circulant channel matrices

whose first columns are given by
[

(hr1
n,m)T ,01×(L−Q)

]T
and

[

(hr2
n,m)T ,01×(L−Q)

]T
, respectively.

In the second time block, the relay node amplifies yr,n,

n = 1, · · · , Nr, and superimposes its own training matrix R =
[r1, r2, · · · , rNr

]T . Thus, the signal vector transmitted by the

nth antenna of the relay node is given by

xr,n =
√
αyr,n + rn, n = 1, · · · , Nr (2)

where α > 0 is the relay amplifying factor. Similarly, a cyclic

prefix is inserted at xr,n prior to the transmission. The received

signal vectors at the source node i, i = 1, 2, after removing

the cyclic prefix are given by

yi,k =

Nr
∑

n=1

Hir
k,nxr,n + vi,k, k = 1, · · · , Ns (3)

where yi,k and vi,k are the L× 1 received signal vector and

noise vector at the kth antenna of node i, respectively, Hir
k,n

is an L × L circulant channel matrix whose first column is
[

(hir
k,n)

T , 01×(L−Q)

]T
.

The main idea of the superimposed channel training algo-

rithm is to exploit R to estimate the second-hop channels

{hir
k,n} , {hir

k,n, i = 1, 2, k = 1, · · · , Ns, n = 1, · · · , Nr},

and then estimate the first-hop channels {hri
n,m} , {hri

n,m, i =
1, 2, n = 1, · · · , Nr,m = 1, · · · , Ns} using S, T, and the

estimated {hir
k,n}. In this paper, we assume that

1) All channel taps are zero-mean circularly symmetric

complex Gaussian (CSCG) random variables.

2) Channel taps associated with the same transmit-receive

antenna pair, as well as different transmit-receive an-

tenna pairs are independent from each other.

3) Channels are assumed to be quasi-static, i.e., the chan-

nels do not change within one cycle of transmission.

4) All noises are independent and identically distributed

(i.i.d.) additive white Gaussian noise (AWGN) with zero

mean and unit variance.

III. MMSE-BASED OPTIMAL TRAINING MATRICES

In this section, we design the optimal training matrices S,

T, R, and the relay amplifying factor α to minimize the MSE

of channel estimation. By substituting (1) and (2) into (3), we

obtain

yi,k =
√
α

Ns
∑

m=1

Nr
∑

n=1

Hir
k,nH

r1
n,msm+

√
α

Ns
∑

m=1

Nr
∑

n=1

Hir
k,nH

r2
n,mtm

+

Nr
∑

n=1

Hir
k,nrn+v̄i,k, k = 1, · · · , Ns (4)

where

v̄i,k ,
√
α

Nr
∑

n=1

Hir
k,nvr,n + vi,k, k = 1, · · · , Ns (5)

is the equivalent noise vector at the kth antenna of node i.

Since both Hir
k,n and Hri

n,m are circulant matrices, (4) can be

rewritten by exploiting the property of circulant matrix as

yi,k =
√
α

Ns
∑

m=1

[

C2Q−1(sm)

Nr
∑

n=1

hir
k,n∗hr1

n,m

]

+
√
α

Ns
∑

m=1

[

C2Q−1(tm)

Nr
∑

n=1

hir
k,n∗hr2

n,m

]

+

Nr
∑

n=1

CQ(rn)h
ir
k,n + v̄i,k

=
√
αΦ(s)di1

k +
√
αΦ(t)di2

k +Φ(r)dir
k + v̄i,k

k = 1, · · · , Ns (6)

where CQ(s) represents an L × Q column-wise circulant

matrix taking s as the first column, a ∗ b denotes the linear

convolution between vectors a and b, and

Φ(s), [C2Q−1(s1),C2Q−1(s2), · · · ,C2Q−1(sNs
)] (7)

Φ(t), [C2Q−1(t1),C2Q−1(t2), · · · ,C2Q−1(tNs
)] (8)

Φ(r), [CQ(r1),CQ(r2), · · · ,CQ(rNr
)] (9)

di1
k ,





(

Nr
∑

n=1

hir
k,n∗hr1

n,1

)T

, · · · ,
(

Nr
∑

n=1

hir
k,n∗hr1

n,Ns

)T




T

(10)
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di2
k ,





(

Nr
∑

n=1

hir
k,n∗hr2

n,1

)T

, · · · ,
(

Nr
∑

n=1

hir
k,n∗hr2

n,Ns

)T




T

(11)

dir
k ,

[

(hir
k,1)

T , (hir
k,2)

T , · · · , (hir
k,Nr

)T
]T

. (12)

Here di1
k in (10) and di2

k in (11) can be viewed as the

compound channel from all antennas of node 1 and node 2

to the kth antenna at node i, respectively, and dir
k in (12) is

the channel from all antennas of the relay node to the kth

antennas at node i.

By introducing

A, [
√
αΦ(s),

√
αΦ(t),Φ(r)] ∈ CL×((4Q−2)Ns+QNr)(13)

xi,k ,
[

(di1
k )T , (di2

k )T , (dir
k )T

]T
, k = 1, · · · , Ns (14)

we can rewrite (6) as

yi,k = Axi,k + v̄i,k, k = 1, · · · , Ns. (15)

Here xi,k in (14) is the vector of unknowns that need to be

estimated at node i.

Due to its simplicity, a linear MMSE estimator is applied

at node i to estimate xi,k as

x̂i,k = WH
i,kyi,k, k = 1, · · · , Ns, i = 1, 2 (16)

where x̂i,k denotes an estimation of xi,k, (·)H denotes the

matrix (vector) Hermitian transpose, and Wi,k is the weight

matrix given by

Wi,k =
(

ACi,k
x AH +C

i,k
v̄

)

−1

ACi,k
x

i = 1, 2, k = 1, · · · , Ns. (17)

Here, (·)−1 denotes the matrix inversion. As a linear estimator

is used, we can see from (13) that the length of the training

sequences should satisfy L ≥ (4Q− 2)Ns +QNr.

A. Structure of Optimal Training Sequences

Based on (15)-(17), the sum MSE of channel estimation at

two nodes can be written as

MSE=

2
∑

i=1

Ns
∑

k=1

tr
(

E
[

(x̂i,k − xi,k)(x̂i,k − xi,k)
H
])

=

2
∑

i=1

Ns
∑

k=1

tr

(

[

(

Ci,k
x

)

−1
+AH

(

C
i,k
v̄

)

−1
A
]

−1
)

(18)

where tr(·) denotes the matrix trace, Ci,k
x = E

[

xi,kx
H
i,k

]

is

the covariance matrix of xi,k, and C
i,k
v̄ = E

[

v̄i,kv̄
H
i,k

]

is the

noise covariance matrix. Here E[·] stands for the statistical

expectation.

From (5), we have

C
i,k
v̄ =



α

Nr
∑

n=1

Q
∑

j=1

σir
k,n,j + 1



IL, i=1, 2, k=1, · · · , Ns

where σir
k,n,j = E

[

hir
k,n,j

(

hir
k,n,j

)

∗
]

is the variance of hir
k,n,j ,

j = 1, · · · , Q, (·)∗ denotes complex conjugate, and In stands

for the n×n identity matrix. Based on (10)-(12) and (14), we

obtain that Ci,k
x = bd

[

Ck
i1,C

k
i2,C

k
ir

]

, where bd[·] represents

a block diagonal matrix and

Ck
ij =E

[

d
ij
k (d

ij
k )

H
]

=bd
[

C
ij
k,1, · · · ,C

ij
k,Ns

]

, j=1, 2 (19)

Ck
ir =E

[

dir
k (dir

k )H
]

=bd
[

Cir
k,1, · · · ,Cir

k,Nr

]

. (20)

By introducing σir
k,n =

[

σir
k,n,1, · · · , σir

k,n,Q

]T
and σrj

n,m =
[

σ
rj
n,m,1, · · · , σrj

n,m,Q

]T
, where σrj

n,m,p = E
[

hrj
n,m,p

(

hrj
n,m,p

)

∗
]

is the variance of hrj
n,m,p, j=1, 2, p=1, · · · , Q, we obtain

C
ij
k,m =E





(

Nr
∑

n=1

hir
k,n∗hrj

n,m

)(

Nr
∑

n=1

hir
k,n∗hrj

n,m

)H




=

Nr
∑

n=1

diag
[

σir
k,n∗σrj

n,m

]

, j=1, 2, m=1, · · · , Ns

Cir
k,n =E

[

hir
k,n(h

ir
k,n)

H
]

=diag
[

σir
k,n,1, · · · , σir

k,n,Q

]

, n = 1, · · · , Nr.

Here diag[x] stands for a diagonal matrix taking x as the

diagonal elements.

The transmission power constraints at the source nodes are

given by

Ns
∑

m=1

sHmsm ≤ P1,

Ns
∑

m=1

tHmtm ≤ P2 (21)

where P1 and P2 are the transmission power available at

source nodes 1 and 2, respectively. From (1) and (2), the

transmission power constraint at the relay node is given by

Nr
∑

n=1

E
[

tr
(

xr,nx
H
r,n

)

]

=

Nr
∑

n=1

(

αtr

(

Ns
∑

m=1

(

CQ(sm)Dr1
n,mCH

Q (sm)

+CQ(tm)Dr2
n,mCH

Q (tm)
)

+ IL
)

+ rHn rn
)

≤ Pr (22)

where Dri
n,m , diag

[

σri
n,m,1, · · · , σri

n,m,Q

]

, i = 1, 2, and Pr is

the transmission power available at the relay node.

The following theorem establishes the optimal structure

of S, T, and R that minimize (18) subjected to the power

constraints in (21) and (22).

THEOREM 1: The optimal training matrices S, T, and R

satisfy the following equations for all m,n = 1, · · · , Ns, and

p = 1, · · · , Nr

CH
2Q−1(sm)C2Q−1(sm) = βmI2Q−1

CH
2Q−1(tn)C2Q−1(tn) = γnI2Q−1

CH
Q (rp)CQ(rp) = δpIQ (23)

CH
2Q−1(sm)C2Q−1(tn) = 0

CH
2Q−1(sm)CQ(rp) = 0

CH
2Q−1(tn)CQ(rp) = 0 (24)

where βm = sHmsm, γn = tHn tn, and δp = rHp rp.
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PROOF: The MSE in (18) can be rewritten as

MSE=

2
∑

i=1

Ns
∑

k=1

tr

















Ck
i1 0 0

0 Ck
i2 0

0 0 Ck
ir





−1

+ ηi,k





√
αΦH(s)√
αΦH(t)
ΦH(r)





×
(√

αΦ(s),
√
αΦ(t), Φ(r)

)]

−1
)

(25)

where ηi,k,
(

α
∑Nr

n=1

∑Q

j=1σ
ir
k,n,j+1

)

−1

, for i=1, 2, and k=

1,· · ·, Ns.

It can be seen that (25) is minimized only if all off-diagonal

matrices of the second term are zero, i.e.,

ΦH(s)Φ(t) =0 ΦH(s)Φ(r) =0 ΦH(r)Φ(t) =0. (26)

Based on (7)-(9) and (26), we have that for m,n = 1, · · · , Ns,

p = 1, · · · , Nr

CH
2Q−1(sm)C2Q−1(tn) = 0

CH
2Q−1(sm)CQ(rp) = 0

CH
2Q−1(tn)CQ(rp) = 0.

Using (26), MSE in (25) can be written as

MSE=

2
∑

i=1

Ns
∑

k=1

tr
(

[(

Ck
i1

)

−1
+ αηi,kΦ

H(s)Φ(s)
]

−1

+
[(

Ck
i2

)

−1
+ αηi,kΦ

H(t)Φ(t)
]

−1

+
[(

Ck
ir

)

−1
+ ηi,kΦ

H(r)Φ(r)
]

−1
)

. (27)

Since from (19) and (20), Ck
i1, Ck

i2, and Ck
ir are all diagonal,

to minimize (27), ΦH(s)Φ(s), ΦH(t)Φ(t), and ΦH(r)Φ(r)
must be diagonal, and together with (7)-(9), we have

CH
2Q−1(sm)C2Q−1(sm) = Ds,m

CH
2Q−1(tn)C2Q−1(tn) = Dt,n

CH
Q (rp)CQ(rp) = Dr,p

where Ds,m and Dt,n are (2Q − 1) × (2Q − 1) diagonal

matrices, while Dr,p is a Q×Q diagonal matrix.

It is worth noting that tr
(

CQ(sm)Dr1
n,mCH

Q (sm)
)

in the

constraint (22) is minimized if CH
Q (sm)CQ(sm) is diagonal

and its diagonal elements are in the inverse order to that of

Dr1
n,m [10]. Similarly, the term of tr

(

CQ(tm)Dr2
n,mCH

Q (tm)
)

in (22) is minimized if CH
Q (tm)CQ(tm) is diagonal and its

diagonal elements are in the inverse order to that of Dr2
n,m.

Considering the circulant structure of C2Q−1(sm),
C2Q−1(tn), and CQ(rp), we have

Ds,m = βmI2Q−1, Dt,n = γnI2Q−1, Dr,p = δpIQ.

where sHmsm = βm, tHn tn = γn, and rHp rp = δp. �

B. Optimal Power Loading

Applying Theorem 1, the MSE function in (18) can be

written as

MSE=

2
∑

i=1

Ns
∑

k=1

tr

(

Ns
∑

m=1

[(

Ci1
k,m

)

−1
+ αβmηi,kI2Q−1

]

−1

+

Ns
∑

m=1

[(

Ci2
k,m

)

−1
+ αγmηi,kI2Q−1

]

−1

+

Nr
∑

n=1

[(

Cir
k,n

)

−1
+ δnηi,kIQ

]

−1

)

. (28)

Let us denote c
ij
k,m,q ,

[(

C
ij
k,m

)

−1]

q,q
, cirk,n,p ,

[(

Cir
k,n

)

−1]

p,p
, and κi,m ,

∑Nr

n=1

∑Q

q=1 σ
ri
n,m,q , i = 1, 2,

the optimization problem can be equivalently rewritten as the

following problem in scalar variables

min
β,γ,δ,α

Ns
∑

m=1

Ns
∑

k=1

2Q−1
∑

q=1

2
∑

i=1

(

1

ci1k,m,q+αβmηi,k
+

1

ci2k,m,q+αγmηi,k

)

+

Nr
∑

n=1

Ns
∑

k=1

Q
∑

p=1

2
∑

i=1

1

cirk,n,p + δnηi,k
(29)

s.t.

Ns
∑

m=1

βm ≤ P1 (30)

Ns
∑

m=1

γm ≤ P2 (31)

α

(

Ns
∑

m=1

κ1,mβm+

Ns
∑

m=1

κ2,mγm

)

+

Nr
∑

n=1

δn + αLNr≤Pr(32)

α > 0, βm ≥ 0, γm ≥ 0, m = 1, · · · , Ns (33)

δn ≥ 0, n = 1, · · · , Nr (34)

where β , [β1, · · · , βNs
]T , γ , [γ1, · · · , γNs

]T , δ ,

[δ1, · · · , δNr
]T .

Given that ci1k,m,q , ci2k,m,q , cirk,m,q, and ηi,k are known vari-

ables with fixed α, it can be observed that the fractions in

the objective function (29) are monotonically decreasing and

convex function with respect to βm, γm, and δn. Moreover,

when α is fixed, the constraints in (30)-(34) are linear in-

equality constraints. Therefore, with fixed α, the problem (29)-

(34) with respect to βm, γm, and δn is a convex optimization

problem where the optimal βm, γm, and δn can be efficiently

obtained through the Karush-Kuhn-Tucker (KKT) optimality

conditions [11].

When α is not fixed, i.e., α is an optimization variable, the

problem (29)-(34) as a whole is not a convex optimization

problem. However, it can be shown that (29) is a unimodal

function of α. Due to space limit, the proof is omitted. For

a unimodal function, the minimum value can be efficiently

found by the golden section search (GSS) [12] technique.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the pro-

posed superimposed channel training algorithm for two-way
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Fig. 2. NMSE versus P for different α with N = 2 and Q = 4.

MIMO relay systems operating in frequency-selective fading

environments through numerical simulations. We consider a

three-node two-way MIMO relay system where all nodes are

equipped with the same number of antennas, i.e., Ns = Nr =
N . For simplicity, we assume that all nodes have the same

transmission power Pi = P , i = 1, 2, r, and all channel taps

have unit variances. We use the shortest length of training

sequence possible with L = (5Q − 2)N . For all scenarios,

the normalized MSE (NMSE) of channel estimation at nodes

1 and 2 are computed.

In the first example, we investigate the performance of the

superimposed channel training algorithm for different α. Fig. 2

shows the NMSE of the proposed algorithm versus P with

different α when N = 2 and Q = 4. The optimal α curve

is obtained by applying the GSS technique on the proposed

superimposed channel training algorithm to obtain the optimal

α for different P . It can be observed from Fig. 2 that the

optimal α curve consistently has the lowest MSE level for

all P . This proves that the GSS technique is able to obtain

the optimal α at different P efficiently. Note that the starting

point for the curves associated with α = 0.06 and α = 0.1 is

at P = 10dB, as these values of α have exceeded the upper

bound limit of the α for P = 5dB.

In the second example, we study the performance of the

proposed superimposed channel training algorithm when the

optimal α is used under different simulation parameters.

Fig. 3 demonstrates the NMSE performance of the proposed

algorithm versus P for different N , and Q = 6. As expected,

when the number of antennas increases, the NMSE of channel

estimation at both sides also increases as there are more

unknowns to be estimated.

V. CONCLUSIONS

We have developed a superimposed channel training algo-

rithm for two-way MIMO relay communication systems in

frequency-selective fading environments. The proposed algo-

rithm can efficiently estimate the individual CSI for frequency-

selective two-way MIMO relay systems. We also derived the
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Fig. 3. NMSE versus P for different N with Q = 6.

optimal structure of the training sequences that minimize

the MSE of the channel estimation and optimize the power

allocation between these training sequences.
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