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Abstract—In this paper, we develop the optimal source precod-
ing matrix and relay amplifying matrices for non-regenerative
multiple-input multiple-output (MIMO) relay communication
systems with parallel relay nodes using the projected gradient
(PG) approach. We show that the optimal relay amplifying
matrices have a beamforming structure. Exploiting the structure
of relay matrices, an iterative joint source and relay matrices
optimization algorithm is developed to minimize the mean-
squared error (MSE) of the signal waveform estimation at the
destination using the PG approach. The performance of the pro-
posed algorithm is demonstrated through numerical simulations.

Index Terms—MIMO relay, parallel relay network, beamform-
ing, non-regenerative relay, projected gradient.

I. INTRODUCTION

Recently, multiple-input multiple-output (MIMO) relay

communication systems have attracted much research interest

and provided significant improvement in terms of both spectral

efficiency and link reliability [1]-[12]. Many works have stud-

ied the optimal relay amplifying matrix for the source-relay-

destination channel. In [2]-[3], the optimal relay amplifying

matrix maximizing the mutual information (MI) between the

source and destination nodes was derived assuming that the

source covariance matrix is an identity matrix. In [4]-[5], the

optimal relay amplifying matrix was designed to minimize the

mean-squared error (MSE) of the signal waveform estimation

at the destination.

A few research has studied the joint optimization of the

source precoding matrix and the relay amplifying matrix for

the source-relay-destination channel. The MSE-based joint

source and relay matrices design has been investigated in [6]

and [7]. In [8], both the source and relay matrices were jointly

designed to maximize the source-destination MI. In [9]-[10],

source and relay matrices were developed to jointly optimize

a broad class of objective functions. The author of [11]

investigated the joint source and relay optimization for two-

way MIMO relay systems using the projected gradient (PG)

approach. All the works in [1]-[11] considered a single relay

node at each hop. The authors of [12] developed the optimal

relay amplifying matrices with multiple relay nodes. In [13],

the authors proposed a suboptimal source and relay matrices

design for parallel MIMO relay systems by first relaxing the

power constraint at each relay node to the sum relay power

constraints at the output of the second-hop channel, and then

scaling the relay matrices to satisfy the individual relay power

constraints.

In this paper, we propose a jointly optimal source precoding

matrix and relay amplifying matrices design for a two-hop

non-regenerative MIMO relay network with multiple relay

nodes using the PG approach. We show that the optimal

relay amplifying matrices have a beamforming structure. This

result generalizes the optimal source and relay matrices design

from a single relay node case [9] to multiple parallel relay

nodes scenarios. Exploiting the structure of relay matrices, an

iterative joint source and relay matrices optimization algorithm

is developed to minimize the MSE of the signal waveform

estimation. Different to [13], in this paper, we develop the

optimal source and relay matrices by directly considering the

transmission power constraint at each relay node. Simulation

results demonstrate the effectiveness of the proposed iterative

joint source and relay matrices design algorithm with multiple

parallel relay nodes using the PG approach.

II. SYSTEM MODEL

In this section, we introduce the model of a two-hop MIMO

relay communication system consisting of one source node,

K parallel relay nodes, and one destination node as shown in

Fig. 1. We assume that the source and destination nodes have

Ns and Nd antennas, respectively, and each relay node has Nr

antennas. The generalization to systems with different number

of antennas at each relay node is straightforward. Due to its

merit of simplicity, a linear non-regenerative strategy is applied

at each relay node. The communication process between the

source and destination nodes is completed in two time slots. In

the first time slot, the Nb×1 modulated source symbol vector

s is linearly precoded as

x = Bs (1)

where B is an Ns×Nb source precoding matrix. We assume

that the source signal vector satisfies E[ssH ] = INb
, where In

stands for an n×n identity matrix, (·)H is the matrix (vector)

Hermitian transpose, and E[·] denotes statistical expectation.

The precoded vector x is transmitted to K parallel relay nodes.

The Nr × 1 received signal vector at the ith relay node can
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be written as

yr,i = Hsr,ix+ vr,i, i = 1, · · · , K (2)

where Hsr,i is the Nr × Ns MIMO channel matrix between

the source and the ith relay nodes and vr,i is the additive

Gaussian noise vector at the ith relay node.
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Fig. 1. Block diagram of a parallel MIMO relay communication system.

In the second time slot, the source node is silent, while each

relay node transmits the linearly amplified signal vector to the

destination node as

xr,i = Fi yr,i, i = 1, · · · , K (3)

where Fi is the Nr × Nr amplifying matrix at the ith relay

node. The received signal vector at the destination node can

be written as

yd =

K
∑

i=1

Hrd,ixr,i + vd (4)

where Hrd,i is the Nd×Nr MIMO channel matrix between the

ith relay and the destination nodes, vd is the additive Gaussian

noise vector at the destination node.

Substituting (1)-(3) into (4), we have

yd =

K
∑

i=1

(Hrd,iFiHsr,iBs +Hrd,iFivr,i) + vd

=HrdFHsrBs+HrdFvr + vd , H̃s+ ṽ (5)

where Hsr , [HT
sr,1,H

T
sr,2, · · · ,H

T
sr,K ]T is a KNr × Ns

channel matrix between the source node and all relay nodes,

Hrd , [Hrd,1,Hrd,2, · · · ,Hrd,K ] is an Nd × KNr channel

matrix between all relay nodes and the destination node,

F , bd[F1,F2, · · · ,FK ] is the KNr × KNr block diag-

onal equivalent relay matrix, vr ,
[

vT
r,1,v

T
r,2, · · · ,v

T
r,K

]T

is obtained by stacking the noise vectors at all the relays,

H̃ , HrdFHsrB is the effective MIMO channel matrix

of the source-relay-destination link, and ṽ , HrdFvr + vd

is the equivalent noise vector. Here (·)T denotes the matrix

(vector) transpose, bd[·] stands for a block-diagonal matrix.

We assume that all noises are independent and identically

distributed (i.i.d.) Gaussian noise with zero mean and unit

variance. The transmission power consumed by each relay

node (3) can be expressed as

E
[

tr(xr,ix
H
r,i)
]

= tr
(

Fi

[

Hsr,iBBHHH
sr,i + INr

]

FH
i

)

i = 1, · · · , K (6)

where tr(·) stands for the matrix trace.

Using a linear receiver, the estimated signal waveform

vector at the destination node is given by ŝ = WHyd, where

W is an Nd × Nb weight matrix. The MSE of the signal

waveform estimation is given by

MSE= tr
(

E
[

(

ŝ − s
)(

ŝ− s
)H
])

= tr
(

(

WHH̃− INb

)(

WHH̃− INb

)H
+WHC̃W

)

(7)

where C̃ is the equivalent noise covariance matrix given by

C̃ = E
[

ṽṽH
]

= HrdFF
HHH

rd + INd
. The weight matrix W

which minimizes (7) is the Wiener filter and can be written as

W = (H̃H̃H + C̃)−1H̃ (8)

where (·)−1 denotes the matrix inversion. Substituting (8) back

into (7), it can be seen that the MSE is a function of F and B

and can be written as

MSE = tr

(

[

INb
+ H̃HC̃−1H̃

]−1
)

. (9)

III. JOINT SOURCE AND RELAY MATRICES OPTIMIZATION

In this section, we address the joint source and relay

matrices optimization problem for MIMO multi-relay systems

with a linear MMSE receiver at the destination node. In

particular, we show that optimal relay matrices have a general

beamforming structure. Based on (6) and (9), the joint source

and relay matrices optimization problem can be formulated as

min
{Fi},B

tr

(

[

INb
+ H̃HC̃−1H̃

]−1
)

(10)

s.t. tr
(

BBH
)

≤ Ps (11)

tr
(

Fi

[

Hsr,iBBHHH
sr,i + INr

]

FH
i

)

≤ Pr,i

i = 1, · · · , K (12)

where {Fi} , {Fi, i = 1, · · · , L}, (11) is the transmit power

constraint at the source node, while (12) is the power constraint

at each relay node. Here Ps > 0 and Pr,i > 0, i = 1, · · · , K ,

are the corresponding power budget. Obviously, to avoid any

loss of transmission power in the relay system when a linear

receiver is used, there should be Nb ≤ min(Ns, KNr, Nd).
The problem (10)-(12) is nonconvex and a globally optimal

solution of B and {Fi} is difficult to obtain with a reason-

able computational complexity. In this paper, we develop an

iterative algorithm to optimize B and {Fi}. First we show the

optimal structure of {Fi}.
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A. Optimal Structure of Relay Amplifying Matrices

For given source matrix B satisfying (11), the relay matrices

{Fi} are optimized by solving the following problem

min
{Fi}

tr

(

[

INb
+ H̃HC̃−1H̃

]−1
)

(13)

s.t. tr
(

Fi

[

Hsr,iBBHHH
sr,i + INr

]

FH
i

)

≤ Pr,i

i = 1, · · · , K. (14)

Let us introduce the following singular value decompositions

(SVDs) for i = 1, · · · , K

Hsr,iB = Us,iΛs,iV
H
s,i, Hrd,i = Ur,iΛr,iV

H
r,i (15)

where Λs,i and Λr,i are Rs,i × Rs,i and Rr,i × Rr,i di-

agonal matrices, respectively. Here Rs,i , rank(Hsr,iB),
Rr,i , rank(Hrd,i), i = 1, · · · , K , and rank(·) denotes

the rank of a matrix. Based on the definition of matrix rank,

Rs,i ≤ min(Nr, Nb) and Rr,i ≤ min(Nr, Nd). The following

theorem states the structure of the optimal {Fi}.

THEOREM 1: Using the SVDs of (15), the optimal structure

of Fi as the solution to the problem (13)-(14) is given by

Fi = Vr,iAiU
H
s,i, i = 1, · · · , K (16)

where Ai is an Rr,i ×Rs,i matrix, i = 1, · · · , K .

The remaining task is to find the optimal Ai, i = 1, · · · , K .

From (16), we can equivalently rewrite the optimization prob-

lem (13)-(14) as

min
{Ai}

tr

([

INb
+

K
∑

i=1

Vs,iΛs,iA
H
i Λr,iU

H
r,i

×

(

K
∑

i=1

Ur,iΛr,iAiA
H
i Λr,iU

H
r,i + INd

)−1

×

K
∑

i=1

Ur,iΛr,iAiΛs,iV
H
s,i

]−1


 (17)

s.t. tr
(

Ai(Λ
2
s,i + IRs,i

)AH
i

)

≤ Pr,i, i = 1, · · · , K.(18)

Both the problem (13)-(14) and the problem (17)-(18) have

matrix optimization variables. However, in the former prob-

lem, the optimization variable Fi is an Nr×Nr matrix, while

the dimension of Ai is Rr,i × Rs,i, which may be smaller

than that of Fi. Thus, solving the problem (17)-(18) has a

smaller computational complexity than solving the problem

(13)-(14). In general, the problem (17)-(18) is nonconvex

and a globally optimal solution is difficult to obtain with

a reasonable computational complexity. Fortunately, we can

resort to numerical methods, such as the projected gradient

algorithm [14] to find (at least) a locally optimal solution of

(17)-(18).

Let us define the objective function in (17) as f(Ai). Its

gradient ∇f(Ai) with respect to Ai, i = 1, · · · , K , can be

calculated by using results on derivatives of matrices in [16]

as

∇f(Ai) = 2
(

RH
i MH

i (EiS
H
i +DH

i )−RH
i G−H

i EiS
H
i

)

(19)

TABLE I
PROCEDURE OF APPLYING THE PROJECTED GRADIENT ALGORITHM TO

SOLVE THE PROBLEM (17)-(18)

1) Initialize the algorithm at a feasible A
(0)
i

for i = 1, · · · , K; Set
n = 0.

2) For i = 1, · · · ,K ,

Compute the gradient of (17) ∇f(A
(n)
i

);

Project Ã
(n)
i

= A
(n)
i

− sn∇f(A
(n)
i

) to obtain Ā
(n)
i

;

Update Ai with A
(n+1)
i

= A
(n)
i

+ δn(Ā
(n)
i

−A
(n)
i

).

3) If max ‖A
(n+1)
i

−A
(n)
i

‖ ≤ ε, then end.
Otherwise, let n := n+ 1 and go to step 2).

where Mi , G−1
i EiE

H
i G−1

i , Ri , Ur,iΛr,i, Si , Λs,iV
H
s,i,

Di , AH
i Λr,iU

H
r,i, Ei , Zi+Ur,iΛr,iAiΛs,iV

H
s,i, and Gi ,

EiE
H
i +Ki, i = 1, · · · , K .

In each iteration of the PG algorithm, we first obtain Ãi =
Ai− sn∇f(Ai) by moving Ai one step towards the negative

gradient direction of f(Ai), where sn > 0 is the step size.

Since Ãi might not satisfy the constraint (18), we need to

project it onto the set given by (18). The projected matrix

Āi is obtained by minimizing the Frobenius norm of Āi−Ãi

(according to [14]) subjecting to (18), which can be formulated

as the the following optimization problem

min
Āi

tr
(

(Āi − Ãi)(Āi − Ãi)
H
)

(20)

s.t.tr
(

Āi(Λ
2
s,i + IRs,i

)ĀH
i

)

≤ Pr,i. (21)

Obviously, if tr
(

Ãi(Λ
2
s,i + IRs,i

)ÃH
i

)

≤ Pr,i, then Āi =

Ãi. Otherwise, the solution to the problem (20)-(21) can be

obtained by using the Lagrange multiplier method, and the

solution is given by

Āi = Ãi

[

(λ + 1)IRs,i
+ λΛ2

s,i

]−1

where λ > 0 is the solution to the nonlinear equation of

tr
(

Ãi

[

(λ+ 1)IRs,i
+ λΛ2

s,i

]−1
(Λ2

s,i + IRs,i
)

×
[

(λ + 1)IRs,i
+ λΛ2

s,i

]−1
ÃH

i

)

= Pr,i. (22)

Equation (22) can be efficiently solved by the bisection method

[14].

The procedure of the PG algorithm is listed in Table I, where

(·)(n) dentes the variable at the nth iteration, δn and sn are the

step size parameters at the nth iteration, ‖·‖ denotes the max-

imum among the absolute value of all elements in the matrix,

and ε is a positive constant close to 0. The step size parameters

δn and sn are determined by the Armijo rule [14], i.e., sn = s
is a constant through all iterations, while at the nth iteration, δn
is set to be γmn . Here mn is the minimal nonnegative integer

that satisfies the following inequality f(A
(n+1)
i )−f(A

(n)
i ) ≤

αγmntr
(

(∇f(A
(n)
i ))H(Ā

(n)
i −A

(n)
i )
)

, where α and γ are

constants. According to [14], usually α is chosen close to 0,

for example α ∈[10−5, 10−1], while a proper choice of γ is

normally from 0.1 to 0.5.
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TABLE II
PROCEDURE OF SOLVING THE PROBLEM (10)-(12)

1) Initialize the algorithm at a feasible B
(0) satisfying constraint (11);

Set m = 0.
2) For fixed B(m), obtain {Fi}(m) by solving the problem (17)-(18)

using the PG algorithm.
3) Update B(m+1) by solving the problem (26)-(29) with known

{Fi}(m) .

4) If ‖B(m+1) −B
(m)‖ ≤ ε, then end.

Otherwise, let m := m+ 1 and go to step 2).

B. Optimal Source Precoding Matrix

With fixed {Fi}, the source precoding matrix B is opti-

mized by solving the following problem

min
B

tr
(

[

INb
+BHΨB

]−1
)

(23)

s.t. tr
(

BBH
)

≤ Ps, (24)

tr
(

FiHsr,iBBHHH
sr,iF

H
i

)

≤ P̆r,i, i = 1, · · · , K(25)

where Ψ , HH
srF

HHH
rd(HrdFF

HHH
rd + INd

)−1HrdFHsr,

and P̆r,i ,Pr,i − tr(FiF
H
i ), i = 1, · · · , K . Let us introduce

Ω,BBH , and a positive semi-definite (PSD) matrix X with

X � (INs
+ Ψ

1

2ΩΨ
1

2 )−1, where A � B means that A −
B is a PSD matrix. By using the Schur complement [15],

the problem (23)-(25) can be equivalently converted to the

following problem

min
X,Ω

tr (X) (26)

s.t.

(

X INs

INs
INs

+Ψ
1

2ΩΨ
1

2

)

� 0, (27)

tr
(

Ω) ≤ Ps, Ω � 0, (28)

tr
(

FiHsr,iΩHH
sr,iF

H
i

)

≤ P̆r,i, i = 1, · · · , K. (29)

The problem (26)-(29) is a convex semi-definite programming

(SDP) problem which can be efficiently solved by the interior-

point method [15]. Let us introduce the eigenvalue decompo-

sition (EVD) of Ω = UΩΛΩU
H
Ω . Then from Ω = BBH , we

have B = UΩΛ
1

2

Ω.

Now the original joint source and relay optimization prob-

lem (10)-(12) can be solved by an iterative algorithm as

shown in Table II, where (·)(m) dentes the variable at the

mth iteration. This algorithm is first initialized at a random

feasible B satisfying (11). At each iteration, we first update

{Fi} with fixed B and then update B with fixed {Fi}. Note

that the conditional updates of each matrix may either decrease

or maintain but cannot increase the objective function (10).

Monotonic convergence of {Fi} and B towards (at least) a

locally optimal solution follows directly from this observation.

IV. SIMULATIONS

In this section, we study the performance of the pro-

posed jointly optimal source and relay matrices design for

MIMO multi-relay systems with linear MMSE receiver. All

simulations are conducted in a flat Rayleigh fading envi-

ronment where the channel matrices have zero-mean entries

with variances σ2
s/Ns and σ2

r/(KNr) for Hsr and Hrd,

respectively. For the sake of simplicity, we assume Pr,i = Pr,

i = 1, · · · , K . The BPSK constellations are used to modulate

the source symbols, and all noises are i.i.d. Gaussian with zero

mean and unit variance. We define SNRs = σ2
sPsKNr/Ns

and SNRr = σ2
rPrNd/(KNr) as the signal-to-noise ratio

(SNR) for the source-relay link and the relay-destination link,

respectively. We transmit 1000Ns randomly generated bits

in each channel realization, and all simulation results are

averaged over 200 channel realizations. In all simulations, the

MMSE linear receiver in (8) is employed at destination for

symbol detection.
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Fig. 2. Example 1. Normalized MSE versus SNRs with K = 3, Ns =
Nr = Nd = 3, SNRr = 20dB.
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Fig. 3. Example 1. Normalized MSE versus SNRr with K = 3, Ns =
Nr = Nd = 3, SNRs = 20dB.

In the first example, a MIMO relay system with K = 3
relay nodes and Ns = Nr = Nd = 3 is simulated. We com-

pare the normalized MSE performance of the proposed joint

source and relay optimization algorithm using the projected

gradient (JSR-PG) algorithm in Table II, the optimal relay-only

algorithm using the projected gradient (ORO-PG) algorithm in

Table I, where the source precoding matrix is a scaled identity

matrix, and the naive amplify-and-forward (NAF) algorithm,

where the source matrix and all relay precoding matrices are
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scaled identity matrices. Fig. 2 shows the normalized MSE of

all algorithms versus SNRs for SNRr = 20 dB. While Fig. 3

demonstrates the normalized MSE of all algorithms versus

SNRr for SNRs fixed at 20 dB. It can be seen from Figs. 2

and 3 that the JSR-PG and ORO-PG algorithms have a better

performance than the NAF algorithm over the whole SNRs

and SNRr range. Moreover, the proposed JSR-PG algorithm

yields the lowest MSE among all three algorithms.

In the second example, we compare the BER performance

of the proposed JSR-PG algorithm in Table II, the ORO-PG

algorithm in Table I, the suboptimal source and relay matrices

design in [13], and the NAF algorithm. Fig. 4 displays the

system BER versus SNRs for a MIMO relay system with K =
3 relay nodes, Ns = Nr = Nd = 3, and fixed SNRr at 20 dB.

It can be seen from Fig. 4 that the propose JSR-PG algorithm

has a better BER performance than existing algorithms over

the whole SNRs range.
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Fig. 4. Example 2. BER versus SNRs with K = 3, Ns = Nr = Nd = 3,
SNRr = 20dB.
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Fig. 5. Example 3. BER versus SNRs for different K , K = 3, Ns = Nr =
Nd = 3, SNRr = 20dB.

In the third example, we study the effect of the number of

relay nodes to the system BER performance using the JSR-

PG and ORO-PG algorithms. Fig. 5 displays the system BER

versus SNRs with K = 2, 3, and 5 for fixed SNRr at 20

dB and Ns = Nr = Nd = 3. It can be seen that at BER =

10−2, for both the ORO-PG algorithm and JSR-PG algorithm,

we can achieve approximately 3-dB gain by increasing from

K = 2 to K = 5. It can also be seen that the performance

gain of the JSR-PG algorithm over the ORO-PG algorithm

increases with the increasing number of relay nodes.

V. CONCLUSIONS

In this paper, we have derived the general structure of the

optimal relay amplifying matrices for linear non-regenerative

MIMO relay communication systems with multiple relay

nodes using the projected gradient approach. The proposed

source and relay matrices minimize the MSE of the signal

waveform estimation. Simulation results demonstrate that the

proposed algorithm has improved MSE and BER performance

compared with existing techniques.
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