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Abstract—In this paper, we investigate the transceiver design
for an amplify-and-forward interference multiple-input multiple-
output (MIMO) relay communication system. The minimum
mean-squared error (MMSE) of the signal waveform estimation
is chosen as the design criterion to optimize the source, relay,
and receiver matrices for interference suppression. An iterative
algorithm is proposed to solve the nonconvex source, relay, and
receiver optimization problem. Simulation results demonstrate
that the proposed algorithm outperforms the existing technique
in terms of both MSE and bit-error-rate.

Index Terms—Interference channel, MIMO relay, MSE.

I. INTRODUCTION

Relay aided multiple-input multiple-output (MIMO) com-

munication technology has attracted great research interest

recently [1]-[2]. By incorporating relay nodes in a MIMO

system, the network coverage and reliability can be signif-

icantly improved. In a MIMO relay system, communication

between source nodes and destination nodes can be assisted

by single or multiple relays equipped with multiple antennas.

The relays can either decode-and-forward (DF) or amplify-

and-forward (AF) the relayed signals [3]. In the AF scheme,

the received signals are simply amplified (including a possible

linear transformation) through the relay precoding matrices

before being forwarded to the destination nodes. Therefore,

in general the AF strategy has lower complexity and shorter

processing delay than the DF strategy.

For single-user two-hop MIMO communication systems

with a single relay node, the optimal source and relay precod-

ing matrices have been developed in [4]. For a single-user two-

hop MIMO relay system with multiple parallel relay nodes,

the design of relay precoding matrices has been studied in

[5]. Recent progress on the optimization of AF MIMO relay

systems has been summarized in the tutorial of [2].

For MIMO interference channel, the idea of interference

alignment (IA) [6] was developed for interference suppression

by arranging desired signal and interference into appropriated

signal space. The idea of IA has been applied in interference

MIMO relay system in [7]-[8]. However, there is still no

general solution for IA as a number of conditions must be met.

One main reason is that the number of dimensions required for

IA is very large and it depends on the number of independent

fading channels. This leads to high computational complexity

and infeasibility in practical systems. In [9], an iterative algo-

rithm has been proposed to optimize the source beamforming

vector and the relay precoding matrices to maximize the

signal-to-interference-noise (SINR) at the destination nodes.

In this paper, we investigate the transceiver design for an

AF interference MIMO relay communication system where

multiple source nodes transmit information simultaneously to

the destination nodes with the aid of multiple relay nodes,

and each node is equipped with multiple antennas. We aim

at optimizing the source, relay, and receiver matrices to

suppress the interference and minimize the mean-squared error

(MSE) of the signal waveform estimation at the destination

nodes, subjecting to transmission power conditions at source

and relay nodes. Since the original optimization problem is

nonconvex with matrix variables, we propose an iterative

algorithm. In each iteration of the proposed algorithm, we first

optimize all relay matrices based on the source and receiver

matrices from the previous iteration. Then we optimize all

source matrices using the relay matrices in this iteration and

the receiver matrices from the previous iteration. Finally, the

receiver matrices are updated. Simulation results demonstrate

that the proposed algorithm outperforms the existing technique

in terms of both MSE and bit-error-rate.

Throughout this paper, scalars are denoted with lower or

upper case normal letters, vectors are denoted with bold-

faced lower case letters, and matrices are denoted with bold-

faced upper case letters. Superscripts T , H , and −1 denote

transpose, conjugate transpose and inverse, respectively, tr()
stands for the trace of a matrix, vec() stacks columns of a

matrix on top of each other into a single vector, bd() denotes

a block-diagonal matrix, ⊗ represents the Kronecker product,

E[ ] denotes the statistical expectation, and In stands for the

n× n identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a two-hop interference MIMO relay communi-

cation system where K source-destination pairs communicate

simultaneously with the aid of a network of L distributed relay

nodes as shown in Fig.1. Similar to [9], we ignore the direct

links between source and destination nodes as they undergo

much larger path attenuation compared with the links via

relays. The kth source node and the kth destination node are
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Fig. 1: Block diagram of an interference MIMO relay system.

equipped with Nsk and Ndk antennas, respectively, and the

number of antennas at the lth relay node is Nrl.

Using half duplex relay nodes, the communication between

source and destination pairs is completed in two time slots.

At the first time slot, each source node transmits an Nsk × 1
signal vector

xsk = Bksk, k = 1, · · · ,K (1)

to the relay nodes, where sk is the d× 1 information-carrying

symbol vector and Bk is the Nsk×d source precoding matrix.

The received signal vector at the lth relay node is given by

yrl =

K∑

k=1

Hlkxsk + vrl, l = 1, · · · , L (2)

where Hlk is the Nrl×Nsk MIMO channel matrix between the

kth source node and the lth relay node and vrl is the Nrl ×
1 additive white Gaussian noise (AWGN) vector at the lth

relay node with zero mean and covariance matrix E[vrlv
H
rl ] =

σ2

rlINrl
, l = 1, · · · , L.

The received signal vector at the lth relay node is amplified

with the Nrl ×Nrl precoding matrix Fl as

xrl = Flyrl, l = 1, · · · , L. (3)

The precoded signal vector xrl is forwarded to the destination

nodes. The received signal vector at the kth destination node

is given by

ydk =

L∑

l=1

GklFlyrl + vdk, k = 1, · · · ,K (4)

where Gkl is the Ndk ×Nrl MIMO channel matrix between

the lth relay node and the kth destination node and vdk is

the Ndk × 1 AWGN vector at the kth destination node with

zero mean and covariance matrix E[vdkv
H
dk] = σ2

dkINdk
, k =

1, · · · ,K .

Due to their simplicity, linear receivers are used at the

destination nodes to retrieve the transmitted signal. Thus, the

estimated signal vector at the kth destination node can be

written as

ŝk = WH
k ydk, k = 1, · · · ,K (5)

where Wk is the Ndk×d receiver weight matrix. From (1)-(5),

we have

ŝk =WH
k

(
L∑

l=1

GklFl

K∑

m=1

HlmBmsm + v̄dk

)

=WH
k

L∑

l=1

GklFlHlkBksk

︸ ︷︷ ︸

desired signal

+WH
k

L∑

l=1

GklFl

K∑

m=1,m 6=k

HlmBmsm +WH
k v̄dk

︸ ︷︷ ︸

(6)

interference plus noise (7)

where v̄dk ,
∑L

l=1
GklFlvrl + vdk is the total noise at the

kth receiver.

From (1) and (3), the transmission power constraints at the

source and relay nodes can be written as

tr
(
BkB

H
k

)
≤ Psk, k = 1, · · · ,K (8)

tr
(
FlE

[
yrly

H
rl

]
FH

l

)
≤ Prl, l = 1, · · · , L (9)

where Psk and Prl denote the power budget at the kth source

node and the lth relay node, respectively, and E
[
yrly

H
rl

]
=

∑K

m=1
HlmBmBH

mHH
lm+σ2

rlINrl
is the covariance matrix of

the received signal vector at the lth relay node.

In this paper, we aim at optimizing the source precoding

matrices {Bk} , {Bk, k = 1, · · · ,K}, the relay precoding

matrices {Fl} , {Fl, l = 1, · · · , L}, and the receiver weight

matrices {Wk} , {Wk, k = 1, · · · ,K}, to minimize the

sum-MSE of the signal waveform estimation at the destination

nodes under transmission power constraints at the source and

relay nodes. We would like to mention that minimal MSE

(MMSE) is a sensible design criterion based on the links of

MSE to other performance measures in MIMO systems such

as mutual information and SINR [4], [10].

From (7), the MSE of the kth source-destination pair can

be calculated as

MSEk = tr
(

E
[

(ŝk − sk) (ŝk − sk)
H
])

= tr
(

(WH
k H̃k − Id)(W

H
k H̃k − Id)

H

+WH
k CkWk +WH

k ΞkWk

)

, k = 1, · · · ,K (10)

where H̃k is the equivalent MIMO channel matrix of the kth

source-destination pair, Ck = E
[
v̄dkv̄

H
dk

]
and Ξk are the co-

variance matrices of the equivalent noise and the interference

at the kth pair, respectively. They are given respectively as

H̃k =
L∑

l=1

GklFlH̄lk, k = 1, · · · ,K

Ck =E





(
L∑

l=1

GklFlvrl+vdk

)(
L∑

l=1

GklFlvrl+vdk

)H




=

L∑

l=1

σ2

rlGklFlF
H
l GH

kl + σ2

dkINdk
, k = 1, · · · ,K
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Ξk =

L∑

l=1

L∑

n=1

GklFlΞk,l,nF
H
n GH

kn, k = 1, · · · ,K

where H̄lk , HlkBk is the equivalent MIMO channel matrix

between the kth source node and the lth relay node and

Ξk,l,n ,
∑K

m=1,m 6=k H̄lmH̄H
nm, k = 1, · · · ,K , l, n =

1, · · · , L.

From (8)-(10), the optimal source, relay, and receiver ma-

trices design problem can be written as

min
{Wk},{Bk},{Fl}

K∑

k=1

MSEk (11)

s.t. tr
(
BkB

H
k

)
≤Psk, k=1, · · · ,K (12)

tr
(
FlE[yrly

H
rl ]F

H
l

)
≤Prl, l=1, · · · , L.(13)

III. PROPOSED SOURCE, RELAY, AND RECEIVER

MATRICES DESIGN ALGORITHM

The problem (11)-(13) is highly nonconvex with matrix

variables, and a globally optimal solution is intractable to

obtain. In this section, we propose an iterative algorithm to

solve the problem (11)-(13) by optimizing {Wk}, {Bk}, and

{Fl} in an alternating way.

In each iteration of this algorithm, we first optimize {Wk}
based on {Bk} and {Fl} from the previous iteration. Then we

optimize all relay matrices based on {Wk} from the current

iteration and {Bk} from the previous iteration. Finally, we

optimize all source matrices using {Wk} and {Fl} from the

current iteration.

It can be seen from (10) the Wk only affects MSEk. Thus,

with given {Fl} and {Bk}, the optimal linear receiver matrix

which minimizes MSEk in (10) is the well-known MMSE

receiver [11] given by

Wk = (H̃kH̃
H
k +Ck +Ξk)

−1H̃k, k = 1, · · · ,K. (14)

With given receiver matrices {Wk} and source precoding

matrices {Bk}, the sum-MSE SMSE =
∑K

k=1
MSEk can be

rewritten as a function of {Fl} as

SMSE=

K∑

k=1

tr
(( L∑

l=1

ḠklFlH̄lk−Id

)( L∑

l=1

ḠklFlH̄lk−Id

)H

+

L∑

l=1

σ2

rlḠklFlF
H
l ḠH

kl + σ2

dkW
H
k Wk

+

L∑

l=1

L∑

n=1

ḠklFlΞk,l,nF
H
n ḠH

kn

)

(15)

where Ḡkl , WH
k Gkl is the equivalent MIMO channel

matrix between the lth relay node and the kth destination node.

Using the identities of [12]

tr(ATB) = (vec(A))T vec(B) (16)

tr(AHBAC) = (vec(A))H(CT ⊗B)vec(A) (17)

vec(ABC) = (CT ⊗A)vec(B) (18)

the SMSE (15) can be represented as a function of fl ,

vec(Fl), l = 1, · · · , L, as

SMSE

=

K∑

k=1

[
( L∑

l=1

Oklfl − vec(Id)
)H(

L∑

l=1

Oklfl − vec(Id)
)

+

L∑

l=1

fHl Qklfl+

L∑

l=1

L∑

n=1

fHn (Ξ̂T
k,l,n⊗ĜH

knĜkl)fl

]

+t1(19)

where t1 ,
∑K

k=1
σ2

dktr(W
H
k Wk) is independent of fl, l =

1, · · · , L, and for k = 1, · · · ,K , l = 1, · · · , L

Okl = H̄T
lk ⊗ Ḡkl, Qkl = σ2

rlINrl
⊗ (ḠH

klḠkl). (20)

For k = 1, · · · ,K , let us introduce

Ok = [Ok1, Ok2, · · · , OkL]

Qk = bd (Qk1, Qk2, · · · , QkL)

Uk,ln =ΞT
k,l,n⊗ (ḠH

knḠkl)

Uk =






Uk,11 · · · Uk,1L

...
. . .

...

Uk,L1 · · · Uk,LL




 .

Then the SMSE function (19) can be written as a function of

f = [fT
1
, fT

2
, · · · , fTL ]T as

ψ1(f) =

K∑

k=1

[

(Okf − vec(Id))
H(Okf − vec(Id))

+fHQkf + fHUkf
]

+ t1. (21)

By introducing

Dl=

(
K∑

m=1

HlmBmBH
mHH

lm+σ2

rlINr

)T

⊗ INrl
, l = 1, · · · , L

and D̄l = bd (Dl1, Dl2, · · · ,DlL), where Dll = Dl and

Dlj = 0, l 6= j, the relay transmit power constraint in (9) can

be rewritten as

fHD̄lf ≤ Prl, l = 1, · · · , L. (22)

From (21) and (22), the relay matrices optimization problem

can be written as

min
f

ψ1(f) (23)

s.t. fHD̄lf ≤ Prl, l = 1, · · · , L. (24)

The problem (23)-(24) is a quadratically constrained

quadratic programming (QCQP) problem [13], which is a

convex optimization problem and can be efficiently solved by

the interior-point method [13]. The problem (23)-(24) can be

solved by the CVX MATLAB toolbox for disciplined convex

programming [14].
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With given receiver matrices {Wk} and relay matrices

{Fl}, the sum-MSE can be rewritten as a function of {Bk}
as

SMSE

=

K∑

k=1

tr
(( L∑

l=1

ḠklFlHlkBk−Id

)( L∑

l=1

ḠklFlHlkBk−Id

)H

+

L∑

l=1

L∑

n=1

ḠklFl

K∑

m=1,m 6=k

HlmBmBH
mHH

lmFH
n ḠH

kl

)

+ t2 (25)

where t2 ,
∑K

k=1
tr(WH

k CkWk) can be ignored in the

optimization process as it is independent of {Bk}.

Using the identities in (16)-(18), the SMSE function in (25)

can be written as

SMSE

=

K∑

k=1

[

(Skbk − vec(Id))
H(Skbk − vec(Id))

+

K∑

m=1,m 6=k

bH
m

(

Id ⊗

L∑

l=1

L∑

n=1

HH
nmFH

n ḠH
knḠklFlHlm

)

bm

]

+t2

=

K∑

k=1

[

(Skbk−vec(Id))
H(Skbk−vec(Id))+bH

k Tkbk

]

+t2 (26)

where for k = 1, · · · ,K

Sk , Id ⊗

L∑

l=1

ḠklFlHlk

Tk , Id ⊗
K∑

m=1,m 6=k

L∑

l=1

L∑

n=1

HH
nkF

H
n ḠH

mnḠmlFlHlk.

By introducing T , bd(T1,T2, · · · ,TK) and S̄k ,

[Sk1,Sk2, · · · ,SkK ], where Skk = Sk and Ski = 0, i 6= k,

the SMSE function (26) can be written as a function of

b = [bT
1
, bT

2
, · · · ,bT

K ]T as

Φ1(b) =

K∑

k=1

(

S̄kb−vec(Id)
)H(

S̄kb−vec(Id)
)

+bHTb+t2.

(27)

Let us introduce Eij = Id ⊗
(
HH

ijF
H
i FiHij

)
, El =

bd (El1,El2, · · · ,ElK), Ēi = bd
(
Ēi1, Ēi2, · · · , ĒiK

)
, where

Ēii = IdNs
and Ēij = 0, i 6= j. The optimal b can be obtained

by solving the following problem

min
b

Φ1(b) (28)

s.t. bHĒmb ≤ Psm, m = 1, · · · ,K (29)

bHElb ≤ Prl − σ2

rltr(FlF
H
l ), l = 1, · · · , L. (30)

The problem (28)-(30) is a QCQP problem and can be solved

by the CVX MATLAB toolbox [14] for disciplined convex

programming.

The steps of applying the proposed iterative algorithm to

optimize {Bk}, {Fl}, and {Wk} are summarized in Table I,

where the superscript (n) denotes the variable at the nth

TABLE I: Procedure of solving the problem (11)-(13) by the

Proposed Algorithm 1.

1) Initialize the algorithm with
{

F
(0)
l

}

and
{

B
(0)
k

}

satisfying (8) and
(9); Set n = 0.

2) Obtain
{

W
(n+1)
k

}

based on (14) with fixed
{

F
(n)
l

}

and
{

B
(n)
k

}

.

3) Update {F
(n+1)
l

} through solving the problem (23)-(24) with given
{

B
(n)
k

}

and
{

W
(n+1)
k

}

.

4) Update {B
(n+1)
k

} by solving the problem (28)-(30) with fixed
{

F
(n+1)
l

}

and
{

W
(n+1)
k

}

.

5) If SMSE(n) − SMSE(n+1) ≤ ε, then end.
Otherwise, let n := n+ 1 and go to Step 2.

iteration, and ε is a small positive number up to which

convergence is acceptable. Since all subproblems (11), (23)-

(24), and (28)-(30) are convex, the solution to each subproblem

is optimal. Thus, the value of the objective function (11)

decreases after each iteration. Moreover, the objective function

is lower bounded by at least zero. Therefore, the iterative

algorithm converges to (at least) a locally optimal solution.

IV. NUMERICAL EXAMPLES

In this section, we illustrate the performance of the proposed

algorithm through numerical simulations. All channel matrices

have independent and identically distributed (i.i.d.) complex

Gaussian entries with zero-mean and unit variance. The noises

are i.i.d. Gaussian with zero mean and unit variance. The

QPSK constellations are used to modulate the source symbols.

For the sake of simplicity, we assume that all nodes have

three antennas, i.e., Nsk = Ndk = Nrl = 3, k = 1, · · · ,K ,

l = 1, · · · , L, all source nodes have the same power budget

as Psk = Ps = 15dB, k = 1, · · · ,K , and all relay nodes have

the same power budget as Prl = P , l = 1, · · · , L. For all

simulation examples, there are K = 3 source-destination pairs,

and the simulation results are averaged over 105 independent

channel realizations. Unless explicitly mentioned, we assume

that there are L = 5 relay nodes in the interference MIMO

relay system. As a benchmark, we compare the performance

of the proposed algorithm with the naive AF algorithm with

the source and relay precoding matrices are scaled identity

matrices.

In the first example, we study the performance of the

proposed algorithm at different number of iterations. Fig. 2

shows the BER performance of the proposed algorithm at dif-

ferent number of iterations for the first source-destination pair

(k = 1). It can be seen from Fig. 2 that the proposed algorithm

yields a much smaller BER than the naive AF algorithm, since

the source and relay precoding matrices are not optimized

in the naive AF algorithm. It can also be observed from

Fig. 2 that the system BER reduces with increasing number

of iterations. During simulations, we observed that after 20

iterations, the decreasing of the SMSE objective function is

negligible. Thus, we suggest that only 20 iterations are needed

to achieve good performance.

For this example, the BER of each source-destination pair

versus P at 10 iterations is shown in Fig. 3. It can be seen
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Fig. 2: Example 1: BER versus P at different number of iterations.
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Fig. 3: Example 1: BER versus P for each source-destination pair.

that all three source-destination pairs achieve almost identical

BER, indicating that the proposed algorithm is fair to all links.

In the second example, we study the performance of the

proposed algorithm with different number of relay nodes.

Fig. 4 shows the BER performance of the proposed algorithm

at 10 iterations with L = 5 and L = 10. It can be seen that

by increasing the number of relay nodes, the system spatial

diversity is increased, and thus, a better BER performance is

achieved. In particular, we observe that a 10dB gain is obtained

at the BER of 10−3 by increasing L from 5 to 10.

V. CONCLUSION

We have investigated transceiver design for interference

MIMO relay systems based on the MMSE criterion. An

iterative algorithm has been developed to jointly optimize the

source, relay, and receiver matrices under power constrains

at each source node and relay node. Numerical simulation

results show that this algorithm converges quickly after a few

iterations and has better BER performance than the existing

technique.
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Fig. 4: Example 2: BER versus P for different L.
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