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ABSTRACT

The symmetric PARAllel FACtor analysis (PARAFAC) model has
found numerous applications in array signal processing and com-
munications. In this paper, we derive the deterministic Cramér-
Rao Bound (CRB) for the symmetric RARAFAC model and illus-
trate the obtained resulis using an example with spatial signature
estimation in sensor arrays.

1. INTRODUCTION AND DATA MODEL

A family of blind array processing algorithms including ESPRIT-
like method [1]-{2], Second Order Blind Identification (SOBI) al-
gorithm [3]-[4] and blind spatial signature estimation method based
on time-varying user power loading [5} exploit the models which
essentially share the same structure called a symmetric PARAFAC
model.

The CRB analysis for the methods based on the symmetric
PARAFAC model is of great interest. In this paper, we derive such
CRB in a closed form and illustrate the obtained results using an
example with spatial signature estimation in sensor arrays.

Let an array of K sensors receive the signals from M narrow-
band sources. The K x 1 snapshot vector of antenna array outputs
can be written as

y(n) = As(n) + v(n) n

whete A = {ay,...,an] is the K x M complex matrix of the
user spaiial signatures, @m = [@1,m,-..,2K,m|" is the K x 1
complex spatial signature of the mth user, s(n) = [s1(n), ...,
sar(n)]7 is the M x 1 complex vector of the user waveforms,
v(n) = [vi(n),. .., vic(n)]T is the K x 1 vector of additive spa-
tially and temporally white complex Gaussian noise, and (-)7 de-
notes the transpose. Assuming that there is a block of N snapshots
available, the model (1) can be written as

Y =AS+V @

where Y = [y(1),...,y(N)]is the K x N array data matrix,
S = {s(1),...,8(N)] is the M x N user waveform matrix, and
V = [v(1},...,v(N)}is the K x N sensor noise matrix.

Assuming that the user signals are uncorrelated with each ot-
her and sensor noise, the array covariance matrix of the received
signals can be written as

R=E{y(n)y"(n)} = AQA" +°I 3)
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where Q = E{s(n)s" (n)}-is the diagonal covariance marrix of
the signal waveforms, o° is the sensor noise variance, I is the
identity matrix, and (-)* denotes the Hermitian transpose.

2. SYMMETRIC PARAFAC MODEL

Ofter, it is required to estimate the matrix A in (2) based on the
observations Y only. In the multiple user case, this is not possible
to do with only one known covariance matrix (3) because the ma-
trix A can be estimated from R only up to an arbitrary unknown
unitary matrix. To provide a unique estimate of A, several covari-
ance matrices have to be used, see [1]-[5].

In this paper, following the approach of [3] with artificial user
power loading, we assume that a set of covariance matrices is ob-
tained by dividing uniformly the whote data block of NV snapshots
into P sub-blocks, each of N, = | ¥ | snapshots, where || de-
notes the largest integer less than z, The transmitted power of each
user is assumed to be fixed within each particular sub-block while
is changed from one sub-block to another. Using such power load-
ing scheme, we obtain that the received snapshots within any pth
sub-block correspond to the following covariance matrix

R(p) = AQ(p)A" + 0”1 “
where Q(p) is the diagonal covariance matrix of the user wave-
forms in the pth sub-blockandp =1,..., P.

In practice, the noise power can be estimated and then sub-
tracted from the covariance matrix (4). Let us stack the P matrices
R(p} o*I,p=1,..., Ptogetherto form a three-way array R.
This three-way array has a symmetry dictated by the symmetry of
the matrices R(p) o>1. The (,{, p)th element of such an array
can be written as

A
Tigp = [R]i1p = Z @imVm ()] m

m=1

)]

where vm (p) = [Q(p)]m.m is the power of the mth user in the
pth sub-block and (-)™ denotes the complex conjugate. Defining
the P x M matrix P as

vi(1) v (1)
F= : : (6)

m(P) var (P)



we have that Q(p) = Dp{ P} forallp=1,..., Pwhere Dp{-} is
the operator that makes a diagonal matrix by selecting the pth row
and putting it on the main diagenal while putting zeros elsewhere.

3. DETERMINISTIC CRAMER-RAO BOUND

The model (1) for the nth sample of the pth sub-block can be
rewritten as

y(pn) = AQV*(p)3(n) + v(n),
n= (p
where 3(n) = [51(n),...,5m ()T = Q Y2(p)s(n) is the vec-
tor of normalized signal waveforms and the normalization is done
s0 that all waveforms have unit powers.

Hence, the observations in the pih sub-block satisfy the fol-
lowing model

DNs+1,...,pNs (D)

y(p,n) ~ CN(u(p,n),a’2I) (8)

where
AQ(pEn), m=(p

The unknown parameters of the model (7) are all the entries of
A, the dxagonal elements of Q(p) (p = 1, ..., P) and the noise
power o2, Note, however, that the latter parameter is decoupled
with the other parameters in the Fisher Infonnanon Matrix (FIM)
[6]. Therefore, without loss of generality, o2 can be excluded from
the vector of unknown parameters.

A delicate point regarding the CRB is the inherent permutation
and scale ambiguity. To derive a meaningful CRB, we assume that
the first row of A is normalized to [1, .. ., 1]1x as (this removes the
scaling ambiguity), and the first row of P is known and consists
of distinct elements (which resolves the permutation ambiguity).
Then, the 2(K  1)M x 1 real vector of the unknown parameters
is given by

wip,n) = )N, +1,...,pN.  (9)

a=[agT,...,a?<]T (10)

Im{a}T}" andax = [ax.s,...
1)M x 1 vector of nuisance parameters can be ex-

where aer = [Re{@x}”,
The (P
pressed as

¢ =0p(2),....p(P)" an

where p(p) is the pth row of the matrix P.
Using (10) and (1 1), the (2(K DM + (P
vector of unknown parameters can be written as

1})M) x 1 real

s ak.M]T-

8=Ia", {"" (12
THEOREM: The (2{(K 1M +(P DAM)x(2(K 1)M+
(P 1)M)FIM is given by
[ Jaz.az 0
) Jo b2 Jopipy
0 Jax.ax
T
Ja b2 52502 0
L JL s 0 Ja(Pypep)
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where
Jﬂz,ﬂz = “'ZJQK;QK
_ _3 Re{THT} Im{THT} 13
= Im{r#Y} Re{xHr) | ¥
T = HRA{(GE) G} (14
Japlp) = %(IK 1®F(P))I:I(P) (15)
[ f(1) Far(l)
T=| (16)
L Fi(P) o Fu(P)
[ hia(p) his1(p)
Gp) = S : a7
| hxa(p) R, (p)
=« _ [ Re{Fi(p)} Im{F7(p)}
Fe) = [Im{F”(p)} Re(F* ()} } a8
F(p) = [£1(),.-.. Fa(p)] 19
Hp) = [H;p),.... Hic(®)]” 20)
Hy(p) = { f}ﬁ%gz%i ] @1)
Hi(p) = [Bea(p)- .- b, ()] (22)
fn®) = [Vem@limllp DN+ 1),
AP (pNs)] (3)
h - — ak,mgm((p l)Ns+1)
k.m(p) [ W) ;
T
ak,mgm(pNs) 24
T2 om(p) } @4

and @ denotes the Kronecker matrix product.
The (K 1)M x (K 1)M spatial signature-related block
of the CRB matrix is given in the closed form as

CRBg.o = [Ju,a %Z Ix 1® F(p)H(p)

1

BTk 1®ﬁ(p))”} 25)

x [Re(G"m)ap)] H”

where the upper-left block of the FIM can be expressed as

Re{YTH#T}
Im{YHY}

Im{YHr}

2
Joa=7lx 18 [ Re(T¥T)

] {26)

PROOF: The (I, k)th element of the FIM is given by [6}

2
FIMz‘k - 07
pNs H
Op” (p.n) Bu(p n)
X Z 5 Re(—ael apn) an
=(p 1)Ns+1



Using (9) along with (27), we have

5—%‘% = Vo P)im(n)e 28)

a‘m—’kz} = jvum(p)im{n)es (29)
Bu(p,n) . al,mgm(n) aK,mgm(n) "
) [wum(p)’ 3 um(p)] ©o

where ey, is the veclor containing one in the kth position and zeros
elsewhere.
Using (28) and (29) along with (27) we obtain that

JRG{% mbRelan ) = Fim{ag o} Imiay )

pNs
Z Y R Vi (0

p=1 n=(p 11N;+1

)

= } (3D
where £, = [f2(1),.... fL(P)".
m m m
Similarly,
Jim{ak,m}-ﬂe(ak,z} = JRE(ﬂk,m}Jm{ﬂk.l}
2
= —lm{gng} SN
Therefore,
JRefar} Refary} = Jim{ar}im{ar)
Re{¢'¢, ) Re{€ €5}
== : :
Re{'ﬁffﬁl} Re{‘EfIEM}
= —%Re{rh’r} (33)
o
and
Jlm{ak},Re{ak} = JRe{cxk},Im{ak}
Im{&{lsl} Im{f‘qum}
= 3 : :
Im{ﬁi\Hfﬁx} Im{gﬁﬁm}
2
= ?Im{THT} (34)

Using (33) and (34), we obtain (13). Note that the right-hand side
of {13) does not depend on the index k. Hence,

Jaﬂ:ClZ O
Ju,a =
0 JC‘K:“‘K
2 Re{Y7Y} Im{T?Y}
=2 ® v} Refrfr) |©¥
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Next, using (30) along with (27) wecan writeforp=2,..., P
andm,{=1,..., M
(o8| s = o)
pNs - * -
(armEm(n))" ax !Sz(ﬂ)}

x Re —_—t
n—(p21)N5+1 ICZ; { 2+/vm(p) 2y/vi(p)
2

= —Relen(re(n)} (36)

where cn(p) = [RTm(p) R o (p)]7. Stacking all M* ele-

ments given by (36) in one matrix we haveforp=2,..., P
2
Jo@rem = —
Re{cf (p)e1(p)} Re{ef (p)enm (p)}
x : :
Re{ci(p)e1(p)} Re{cf(plen(p)}
2 .
= SRe(G(R)G() &
Finally, using {28), (29), and (30) along with (27) we can write
forp=2,..Pk=2,... ,K,andm,[=1,....M
2
[(Tretar p)]me = 22
pNs
1 \/vm
X Z = m(n)ag, ;s;(n)}
n=(p 1)Ng+1 { 2 Ve
2
= ;Re{f:l (p)hr(p)} (3%)
2
[(Vimiesy o]y = 72
pNs
1 m
x > Re { i3 B (a, m(n)}
n=(p 1)Ngk1 vi(p)
2
= SIm{fn @)} (39
Collectingall (K 1)M? elements given by (38) and (K 1)A®
elements given by (39) in one matrix, we obtain forp = 2,.. ., P
[ Re{F*"(p)H(p}} ]
fm{FH(p)Hz(p)}
Tait) = = : (40
{ Re{F" (p) HK(P)} ]
Im{F" (p)H k (p)}
Observing that
Re{F"(p)H(p)} ] B E
=F(p)H 41
| tnirs s} | = F@H @
we can further simplify (40) to
2 - -
Jasw = 73 (Ix 1@ F(p)) Aw) “2)
Also, note that
Jastm = Ipw.a {43)
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Fig. 1. CRB and RMSE versus V.

Using (35), (37), (42) and (43) we obtain the expressions {13)-
(24).

Computing the CRB for # requires the inverse of the (2(K
DM+(P DMYx(2(K 1)M+(P 1}M)FIM matrix. Our
objective is to obtain the CRB associated with the vector parameter
« only, avoiding the inverse of the full FIM matrix. Exploiting the
fact that the lower-right sub-block of the FIM is a block-diagonal
matrix and using the partitioned matrix inversion lemma (see [6],
p. 572), after some algebra we obtain (25)-(26) and the proof is
complete.

4. SIMULATIONS

In order to test the derived CRB we consider a simple example
with spatial signature estimation of a single user and assume that
the BPSK signal impinges on the linear array of 4 sensors and un-
known geometry from # =  50° relative to the broadside direc-
tion. It is well known that in the single-user case, a single covari-
ance matrix is sufficient to guarantee the uniqueness of the spatial
signature estimate which is given by the principal eigenvector of
the sample covariance matrix R.

We compare the Root-Mean-Square Error (RMSE) perform-
ance of such a principal eigenvector-based estimator with the de-
rived CRB. The RMSE is computed as

L
1
N =,| == 7 2
RMSE = 77 3o 160)  alt

where L = 100 is the number of independent simulation runs and
a(l) is the estimate of a obtained in the I/th run. Note that the
scaling ambiguity is eliminated by normalizing @(!) with respect
to the first (reference} sensor. The CRB is computed as

CRB=\/

Figure 1 displays the RMSE and the CRB versus the num-
ber of snapshots /¥ for the Signal-to-Noise Ratio (SNR) equal to
10 dB. Figure 2 shows the same quantities versus the SNR for
N = 100.

1
1

I Tr{CRBa.}
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Fig. 2. CRB and RMSE versus SNR,

It can be seen that the principal eigenvector-based spatial sig-
nature estimator approaches CRB at high SNR. This validates our
CRB analysis.

5. CONCLUSIONS

The closed-form expressions for the deterministic CRB for the
symmetric PARAFAC model have been derived. The simulation
example with blind spatial signature estimation illustrates and val-
idates our CRB analysis.
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