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Optimal Power Schedule for Distributed MIMO Links
Yue Rong, Member, IEEE, and Yingbo Hua, Fellow, IEEE

Abstract—We present an optimal power scheduling scheme to
maximize the throughput of a set of distributed multiple-input
multiple-output (MIMO) wireless links. This scheme exploits
both spatial and temporal freedoms of the source covariance
matrices of all MIMO links. In particular, the source covariance
matrix of each MIMO link is allowed to vary within a block
of time (and/or frequency) slots. This scheme, also referred
to as space-time power scheduling, optimizes an integration
of link scheduling and power control for MIMO links. The
computational problem involved in this scheme is non-convex.
However, a gradient-projection algorithm developed for this
scheme consistently yields a higher capacity than all other
existing schemes.

Index Terms—Network of MIMO links, medium access control,
space-time power scheduling.

I. INTRODUCTION

A MULTIPLE-INPUT multiple-output (MIMO) wireless
link is now well known to provide a much higher

capacity than a single-input single-output (SISO) wireless
link in an environment with rich electromagnetic scattering.
Many coding and modulation techniques for point-to-point
MIMO links have been developed in the past decade. These
advances have now motivated a strong research interest in
networking issues of MIMO links. Some efforts for improving
the network-wise throughput of multiple MIMO links have
been attempted in [1]-[8].

In [1] and [2], iterative beamforming algorithms were pro-
posed to maximize the output signal-to-interference-and-noise
ratio (SINR) at all receivers, or minimize the mean-square
error (MSE) of the signal waveform estimation. However,
for both algorithms, each MIMO link is limited to use only
one data stream. These approaches are strongly suboptimal
as they do not fully exploit the spatial freedom provided
by the multiple antennas at each link. In [3] and [4], the
authors investigated the impact of mutual interferences on the
network capacity of multiple MIMO links under a scheme
where the source covariance matrices of MIMO links are
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Fig. 1. An example of wireless network. Solid circles are source nodes;
Hollow circles are destination nodes. Solid lines are signal streams; Dashed
lines are interference streams.

independent of time. In [5], the source covariance matrix of
each link is selfishly “optimized”. The non-cooperative nature
of this scheme leads to a suboptimal solution known as Nash
equilibrium [6], [9]. In [7], the source covariance matrices
are jointly searched using the projected gradient ascent of the
sum capacity of all MIMO links, which yields a much better
solution than Nash equilibrium. In [8], the asymptotic capacity
of a large wireless networks of MIMO links is investigated.

All of the previously developed schemes are space-only
schemes where the temporal freedom of source covariance
matrices is ignored. In this paper, we propose a space-
time power scheduling scheme where the source covariance
matrices of MIMO links are allowed to be functions of time
and/or frequency. For convenience, we will only refer to
“time” although “frequency” (such as in OFDM systems) can
obviously play the same role. This new scheme will also be
called optimal power schedule (OPS). The utilization of both
temporal and spatial freedom makes it possible to achieve a
higher averaged capacity of a network of MIMO links. The
computational problem involved in the OPS scheme is non-
convex, which we solve by following a gradient projection
(GP) technique [10]. With the GP algorithm, the OPS scheme
consistently yields a higher capacity than all existing schemes
in the literature.

The rest of this paper is organized as follows. In the next
section, a model of distributed MIMO links is introduced. The
proposed OPS scheme and the GP algorithm are developed in
Section III. In Section IV, we show some numerical examples.
The conclusions are drawn in Section V.

II. NETWORK MODEL

We consider a network of L (desired) links sharing a
common time/frequency band. An example of such a network
is shown in Fig. 1. Each link consists of a source node (SN)
and a destination node (DN). Each node has N antennas. The
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vector of the received signal yi at the ith DN and time t can
be written as

yi(t) =
√

ρi

N
Hi,ixi(t) +

L∑
j=1,j �=i

√
βi,j

N
Hi,jxj(t) + ni(t) (1)

where Hi,j , i, j = 1, · · · , L is the N × N channel matrix
between the jth SN and the ith DN, ρi denotes the signal-to-
noise ratio (SNR) of the ith link, βi,j (j �= i) is the nominal
interference-to-noise ratio (INR) of the jth SN to the ith DN,
xi(t) denotes the N × 1 vector of the normalized transmitted
signal from the ith SN, and ni(t) is the N × 1 vector of the
i.i.d. (independent and identically distributed) additive white
Gaussian noise (AWGN) with zero mean and unit covariance
matrix Cni = IN . Here IN denotes an N ×N identity matrix.
The first term in (1) is the signal of interest at the ith DN,
while the second term is the sum of interfering signals from all
other L−1 SNs. We assume that all the normalized transmitted
signals are Gaussian distributed with zero mean vector and
covariance matrix Pi(t) � E

{
xi(t)xH

i (t)
}
, where E{·}

is statistical expectation, and (·)H the Hermitian transpose.
Furthermore, 1

T

∑T
t=1 tr{Pi(t)} = N , where tr{·} is the trace

of a matrix.
Each βi,j measures a nominal INR, which is independent of

Pi(t) but depends on distances between links and the average
transmission power of each link. Even with nonzero βi,j ,
there may exist Pi(t) such that the actual INR is zero or
equivalently all the interfering signals are orthogonal to the
signal of interest over the time window t = 1, 2, ..., T . This
is possible only if T > 1 or N > 1. Such a property under
T > 1 and N = 1 is inherent in the classic time division
multiple access (TDMA). This property under T = 1 and
N > 1 has been exploited in some of the papers reviewed
earlier. But this property under T > 1 and N > 1 has not
been previously utilized. Obviously, if T = 1 and N = 1,
then the nominal INR is always the same as the actual INR.

In the sequel, we make use of the following assumptions.
There is no coding cooperation among different SNs and
DNs. The interfering signals are unknown to the DNs, and
a single-user receiver is used at each DN. The signal power
loss is included in SNR ρi, and nominal INR βi,j . The ith
DN knows Hi,i. The entries of each Hi,j are constant over
a window of T time slots and known to a scheduler. This
assumption is realistic for static (such as mesh) networks.
But for performance evaluation, we assume that over different
windows, the entries of Hi,j are i.i.d. complex Gaussian
with zero mean and unit variance. The i.i.d. condition is
useful for fairness among all links over multiple windows.
For static networks, the i.i.d. condition from one window to
another can be induced purposely by varying the phase of
each transmitting antenna randomly (provided N > 1). The
capacity issue of distributed MIMO links without the channel
knowledge at the SNs (or the scheduler) is addressed in [11].

For given P1(t), · · · ,PL(t), the sum capacity of
all L links at time t can be written as It =∑L

i=1 log2

∣∣IN + ρi

N Hi,iPi(t)HH
i,iRi(t)−1

∣∣ where | · | de-
notes the determinant of a matrix, and Ri(t) =∑L

j=1,j �=i
βi,j

N Hi,jPj(t)HH
i,j + IN .

In the scheme of [5], each link (say link i) measures
Ri(t) based on the previous choice of P1(t), · · · ,PL(t)

and then maximizes the capacity of link i with respect to
Pi(t) alone subject to tr(Pi(t)) = N . With each new
choice of P1(t), · · · ,PL(t), the same process repeats until
convergence. Based on this algorithm, the sum capacity It of
the network typically converges to a value much smaller than
its maximum. The algorithm in [7] searches for the maximum
of It over P1(t), · · · ,PL(t) jointly using the GP algorithm,
which results in much higher values of It.

III. OPTIMAL POWER SCHEDULE

We now consider the network capacity averaged over
the window of T time slots: IA = 1

T

∑T
t=1 It. We will

use the following definition for a stacked matrix P̄: P̄ �[
P̄T

1 , · · · , P̄T
L

]T
with P̄i �

[
PT

i (1), · · · ,PT
i (T )

]T
for i =

1, · · · , L. Here (·)T denotes the matrix transpose. Our new
scheme is the following

max
P̄

IA(P̄) (2)

s.t.
1
T

T∑
t=1

tr{Pi(t)} = N, i = 1, · · · , L (3)

Pi(t) ≥ 0, t = 1, · · · , T ; i = 1, · · · , L . (4)

The scheme in [7] is a special case of the OPS scheme by
setting T = 1. In this paper, we focus on networks with
a symmetric topology such as the circular network in Fig.
1. Hence, no link suffers a fairness problem under the sum
capacity criterion. In a similar way as used in [7], the problem
(2)-(4) can be shown to be a convex problem when nominal
INR βi,j , i, j = 1, · · · , L, j �= i are all sufficiently low.

The choice of T is important. If T = L, the TDMA scheme
where only one link is scheduled to transmit during any time
slot is a feasible (but not necessarily optimal) solution to the
above optimization problem. But the complexity of the opti-
mization problem increases rapidly if both T and L increase.
For large networks, it is often necessary to choose T < L.
But for small networks, T = L is recommended as long as
the computations required are affordable. In Section IV, we
will illustrate the performance of the OPS scheme with respect
to T , which suggests that the benefit from T > L is not
significant if any. In the sequel, we will set T = L unless
mentioned otherwise.

We now develop an algorithm to find a local optimal
solution to the problem (2)-(4) by following the GP technique
[10]. We have the following constrained optimization problem
maxx f(x) subject to x ∈ X where f(·) is a continuously
differentiable scalar function, and X is a nonempty, closed,
and convex set. The GP algorithm starts at an initial point
x(0). At the kth iteration, x(k) is updated as x(k+1) =
x(k) + δk

(
x̃(k) − x(k)

)
where δk ∈ (0, 1] is a step size and

x̃(k) = proj
[
x(k) + sk∇f

(
x(k)

)]
. Here, proj[·] denotes the

projection onto the feasible set X , and sk is a positive scalar.
Two major parts of the GP algorithm are: the computation

of the gradient of the objective function, and the projection of
the gradient onto a feasible set. The gradient of the objective
function with respect to Pi(t) with T = L can be shown [16]
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to be

Gi(t) = 2
[
∂IA(P̄)
∂Pi(t)

]∗

=
2

LN ln 2
ρiHH

i,iSi(t)−1Hi,i

+
2

LN ln 2

L∑
j=1,j �=i

βj,iHH
j,i

[
Sj(t)−1 − R−1

j (t)
]
Hj,i

where Si(t) = Ri(t) + ρi

N Hi,iPi(t)HH
i,i and (·)∗ denotes the

complex conjugate. Some formula from [12] have been used.
After the gradient is obtained, the covariance matrix Pi(t)

is updated to P̂i(t) by P̂i(t) = Pi(t) + sGi(t) where s
is a scalar. Now we need to project the matrix P̂i(t) onto
the feasible region defined by (3)-(4). In fact, the projection
operation can be seen as searching for a point P̃i(t) in the
region of (3)-(4), which has a minimal Euclidean distance
to the point P̂i(t) [7], [10]. This problem can be further
formulated, for each i, as

min
P̃i(1),··· ,P̃i(L),μ

L∑
t=1

(∥∥∥P̃i(t) − P̂i(t)
∥∥∥2

+ μtr
{
P̃i(t)

})

−μLN (5)

s.t. P̃i(t) ≥ 0, t = 1, · · · , L (6)

where μ is the Lagrangian multiplier. Interestingly, the prob-
lem (5)-(6) can be decomposed into L subproblems. As an
example, the tth subproblem can be written as

min
P̃i(t)

∥∥∥P̃i(t) − P̂i(t)
∥∥∥2

+ μtr
{
P̃i(t)

}
(7)

s.t. P̃i(t) ≥ 0 . (8)

Solving (7) with respect to P̃i(t), we obtain that
P̃i(t) = P̂i(t) − μIN . Now we project the ma-
trix P̃i(t) onto the feasible set (8). Let us denote
P̂i(t) = Ui(t)Λi(t)UH

i (t) as the eigenvalue decom-
position of matrix P̂i(t), where Ui(t) is the eigenvec-
tors matrix, while Λi(t) � diag{λi,1(t), · · · , λi,N (t)} is
the diagonal matrix containing all the eigenvalues. There-
fore, P̃i(t) = Ui(t) [Λi(t) − μIN ]+ UH

i (t) where for
an N × N diagonal matrix X, [X]+ is defined as
[X]+ = diag{max{x1,1, 0}, · · · , max{xN,N , 0}}. The La-
grangian multiplier μ can be obtained by applying (3) to P̃i(t).
We have the following equation

∑N
n=1

∑L
t=1 max{λi,n(t) −

μ, 0} = LN . The left hand side of this equation is a piecewise
linear function and monotonically decreasing with respect to
μ. Thus, it can be easily solved by, for example, the bisection
method [13].

With the above computations of gradient and projection, a
general form of the GP algorithm for the OPS scheme is as
follows, for i = 1, · · · , L and t = 1, · · · , L,

P(k+1)
i (t) = P(k)

i (t) + δk

(
P̃(k)

i (t) − P(k)
i (t)

)
(9)

P̃(k)
i (t) = proj

[
P(k)

i (t) + skG
(k)
i (t)

]
(10)

G(k)
i (t) = ∇

P
(k)
i (t)

IA

(
P̄(k)

)
(11)

where δk and sk denote the step size parameters at the kth
iteration. We choose the step size parameters δk and sk by

the Armijo rule, i.e., sk is a constant through all iterations,
i.e., sk = s, while at the kth iteration, δk is set to be γmk .
Here mk is the minimal nonnegative integer that satisfies the
following inequality

IA(P̄(k+1))−IA(P̄(k)) ≥ σγmktr
{(

Ḡ(k)
)H( ¯̃P(k) − P̄(k)

)}

(12)
where σ and γ are constants. According to [10], usually
σ is chosen close to 0, for example σ ∈ [10−5, 10−1]. A
proper choice of γ is usually from 0.1 to 0.5. The con-
vergence criterion of the GP algorithm can be chosen as
maxabs

{
P̄(k+1) − P̄(k)

} ≤ ε where maxabs{·} denotes the
maximal absolute value of each element of a matrix, and ε is
a positive constant close to 0.

The above algorithm can be implemented in a distributed
fashion where each link searches for its optimal source co-
variance matrix (concurrently with other links) based on the
previous source covariance matrices obtained by other links.
This algorithm requires additional communications among
links for each update. But at convergence, the result is very
close to that of the above centralized algorithm [16].

IV. NUMERICAL EXAMPLES

In this section, we present simulation results to compare
the proposed OPS scheme with the following schemes: the
scheme in [5] referred to as the DI scheme, the scheme in [7]
referred to as the YB scheme, the classic TDMA scheme,
the half spectrum reuse scheme in [15] referred to as the
BEH scheme, and a zero interference (ZI) scheme. The DI,
YB and TDMA schemes have been mentioned before. The
BEH scheme first divides the network into two sets of L/2
links where each set has the maximum spacing between links.
The BEH scheme then applies the DI scheme to each of the
two sets within half of the total available spectrum. The ZI
scheme is the same as the OPS scheme except in addition that
all links are forced to be active in each slot and the actual
interference between links within each time slot is forced to
be zero. We will only consider the ZI scheme for two links,
two slots and two antennas on each node. In this case, the
additional constraint on the source covariance matrices for the
ZI scheme is that Pi(t) = pi(t)vi(t)vH

i (t), i = 1, 2, where
‖v1(t)‖ = ‖v2(t)‖ = 1, vH

1 (t)HH
1,1H1,2v2(t) = 0, and

vH
2 (t)HH

2,2H2,1v1(t) = 0. The above two equations ensure
zero actual interference between the two links in each time
slot.

Before the simulation results are presented, it is useful to
mention the following expectations based on the principles of
each scheme: 1) The proposed OPS scheme should yield the
highest capacity in all situations. 2) The YB scheme should
yield the same capacity as the OPS scheme if the nominal
INR are very small. For example, when all links are far apart
from each other, all links can be treated as independent of
each other. 3) The DI scheme should also yield the same
capacity as the OPS scheme if the nominal INR are very small.
Without interference, the DI scheme is also optimal. 4) The
TDMA scheme should yield a higher capacity than the YB
and DI schemes when the nominal INR are very high because
TDMA causes zero actual interference among links. 5) The
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Fig. 2. Expected sum capacity versus L the number of active links. N = 2
and T = L.

BEH scheme is a mixture of the TDMA and DI schemes, and
so should be its performance. 6) The ZI scheme may or may
not be better than the TDMA scheme although both yield zero
actual interference in each slot.

We define an expected sum capacity as Cmean =
EH{IA(P̄)} where H denotes the set of all realizations of the
matrices Hi,j , i, j = 1, · · · , L. To compute the expectation
or distribution of the sum capacity of all active links under
each scheme, we use 1000 independent channel realizations.
For each channel realization (corresponding to each window
of T time slots), a random initial condition for the source
covariance matrices was used to start the computation of
the OPS, DI, YB schemes. For the OPS and YB schemes,
the following parameters are applied in the GP algorithms:
s = 1, σ = 0.1, γ = 0.5, and ε = 0.01.

First, we consider four possible sets of symmetric MIMO
links on the circular network shown in Fig. 1, i.e., L =
2, 3, 4, 6. Let r denote the radius of the circle. It can be
easily calculated that the distance between the SN and the
DN of each MIMO link is d0 = 2r sin (π/M), and the
distances between a DN and an interfering SN is dk =
2r sin (θk/2), k = 1, · · · , L − 1, where θk is the angle cor-
responding to the arc between one DN and its kth interfering
SN. We assume that all SNs transmit with the same power
PT . Then, the SNR of each MIMO link can be written as
ρi = PT

d α
0

= PT

(2r)α(sin π/M)α = P̃T

(sin π/M)α for i = 1, · · · , L

where P̃T � PT /(2r)α is a normalized transmission power
(also a normalized SNR), and α denotes the path loss exponent
and is set to be α = 3. Similarly, the nominal INR of
each MIMO link can be calculated as βi,j = P̃T /d̃α

k with
d̃k = sin(θk/2) for k = (j − i)modL , i, j = 1, · · · , L, and
j �= i.

Fig. 2 shows the expected sum capacity Cmean for all
schemes versus the number L (= T ) of active links at
P̃T = 20dB and N = 2. The BEH scheme is not included
at L = 3 due to the half spectrum reuse constraint. Cmean

using the DI and BEH schemes are almost independent of L.
For the YB scheme, Cmean drops when L becomes relatively
large. This is because the transmission power of each link in
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Fig. 3. Expected sum capacity versus nominal INR. N = 2 and T = L = 2.
In this case (L = 2), the BEH scheme is equivalent to TDMA.

the YB scheme is fixed in a single time slot. And when L
become large, so does the actual interference among all links.
For the TDMA and OPS schemes, Cmean is monotonically
increasing with L. As expected, the proposed OPS scheme
has the largest Cmean for all values of L.

For the rest of the simulation examples, we assume that ρi =
20dB, i = 1, · · · , L, and βi,j = INR, i, j = 1, · · · , L, j �= i.
This assumption does not necessarily correspond to the cir-
cular network. By INR, we will mean nominal INR unless
specified otherwise.

Fig. 3 shows Cmean versus INR for T = L = 2 and N = 2.
Since L = 2, the BEH scheme (not shown) is equivalent to the
TDMA scheme. Shown in this figure, the OPS scheme and the
YB scheme yield similar Cmean for all values of INR. This is
because under T = L = N = 2, there is not enough freedom
for the OPS scheme to be significantly different from the YB
scheme. It is shown in [16] that as INR becomes infinity,
the optimal power schedule can be achieved only if each of
concurrent links in a slot transmits no more than N − 1 data
streams. Under T = L = N = 2, for almost all channel
realizations, each of the two schemes activates two links in
each time slot at any INR. And at high INR, each link for both
schemes transmits effectively one data stream. Comparing
the TDMA and ZI schemes which both cause zero actual
interference between links in each time slot, the latter has a
higher Cmean than the former. However, both TDMA and ZI
schemes have smaller Cmean than the OPS scheme. The curve
for the DI scheme is unusual, which decreases first and then
increases later as INR increases. This is a strange phenomenon
of the Nash equilibrium reached by the DI scheme.

Fig. 4 shows Cmean versus INR for T = L = 6 and N = 2.
Due to half spectrum reuse, the BEH method yields a much
smaller Cmean than the DI, YB, and OPS schemes at low
INR. For all schemes except TDMA, Cmean decreases as INR
increases. When INR is very high, the DI, BEH, and YB
schemes have smaller Cmean than TDMA. Due to a larger
L (unlike L = 2 in Fig. 3), the OPS scheme now yields a
much higher capacity than the YB scheme.

The cumulative distribution of the sum capacity of each
of the tested schemes is plotted in Fig. 5 where SNR=20dB,
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Fig. 4. Expected sum capacity versus nominal INR. N = 2 and T = L = 6.
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Fig. 5. Cumulative distribution of the sum capacity. N = 2 and T = L = 6.

INR=15dB, N = 2 and T = L = 6.
Finally, Fig. 6 shows Cmean versus T where L = 6,

SNR=20dB and INR=20dB, which illustrates the effect of T
on the performance of the OPS scheme. We see that when
T = 6, Cmean achieves approximately its peak value. The
slight drop from the value for T = 5 in Fig. 6 could be due
to local minima achieved by the OPS scheme.

V. CONCLUSIONS

We have presented a novel scheme for medium access in
wireless network of MIMO links where the source covariance
matrix of each active MIMO link is treated as a function of
time and/or frequency within any given time/frequency band
and the network capacity averaged over the time/frequency
band is maximized jointly over the source covariance matrices
of all active MIMO links. The optimal solution to this scheme
is difficult to guarantee because of the non-convex nature of
this scheme. However, for all cases that we have considered,
the gradient projection (GP) based algorithm developed in
this paper has consistently yielded higher capacity than all
other schemes considered. The solution provided by the GP
algorithm in general depends on the initial condition used
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Fig. 6. Expected sum capacity versus T . N = 2, L = 6.

for the search. But by using multiple initial conditions and
multiple searches, the optimal solution to this scheme can be
found with increased probability. Any of the existing schemes
such as TDMA can also be used as the initial condition for the
search. Further research to reduce the complexity of the search
algorithm and to gain a better understanding of the optimal
power schedule under this scheme is important.
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