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Optimal Source and Relay Design for Multiuser
MIMO AF Relay Communication Systems With
Direct Links and Imperfect Channel Information

Zhiqiang He, Member, IEEE, Xiaonan Zhang, Yunqiang Bi, Weipeng Jiang, and Yue Rong, Senior Member, IEEE

Abstract—In this paper, we propose statistically robust design
for multiuser multiple-input multiple-output (MIMO) relay sys-
tems with direct source-destination links and imperfect chan-
nel state information (CSI). The minimum mean-squared error
(MMSE) of the signal waveform estimation at the destination node
is adopted as the design criterion. We develop two iterative meth-
ods to solve the nonconvex joint source, relay, and receiver opti-
mization problem. Simulation results demonstrate the improved
robustness of the proposed algorithms against CSI errors.

Index Terms—Multiuser, MIMO relay, robust, channel state
information, direct link.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) relay com-
munication has attracted much research interest in

recent years for its advantages in increasing the coverage and
the capacity of wireless networks. In particular, the amplify-
and-forward (AF) relay strategy has been extensively investi-
gated in the literature, as it is simpler to implement than the
other relay strategies.

In [1]–[4], the source and relay precoding matrices of linear
AF MIMO relay systems have been designed under different
criteria. The optimal relay precoding matrix maximizing the
source-destination capacity has been developed in [1] for AF
MIMO relay systems without the direct source-destination link.
In [2], the relay precoding matrix minimizing the mean-squared
error (MSE) of the signal waveform estimation at the destina-
tion node has been developed. A unified framework for joint
source and relay matrices optimizing in linear AF multicarrier
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MIMO relay communication systems has been developed in [3]
under the assumption of a negligible direct source-destination
link. An overview of the transceiver optimization problems for
AF MIMO relay systems can be found in [4].

The direct source-destination link has been ignored in [2] and
[3]. However, the direct signal transmission from source to des-
tination provides a spatial copy of the source signals, and thus,
should be considered in the MIMO relay system design. In [1],
upper and lower bounds on the capacity of AF MIMO systems
have been discussed in the presence of the source-destination
link, and a suboptimal structure of the relay precoding matrix
has been derived. In [5], source and relay precoding matri-
ces design based on a Tomlinson-Harashima precoder has been
studied considering the direct source-destination link. A closed-
form design of the relay precoding matrix has been proposed
in [6]. Relay precoding matrix design based on a modified
power constraint has been proposed in [7]. It has been proven
in [8] that the optimal relay precoding matrix has a gen-
eral beamforming structure for most commonly used objective
functions.

The transceiver designs in [1]–[3] and [5]–[8] require the
exact channel state information (CSI). However, in real commu-
nication systems there is always mismatch between the true and
the estimated CSI, due to channel noise, quantization errors,
and outdated channel estimates. The performance of the algo-
rithms developed assuming the perfect CSI knowledge will
degrade in the presence of such CSI mismatch.

CSI mismatch has been taken into account in the MSE-
based transceiver design [9] for MIMO relay systems. In [10],
statistically robust source and relay matrices design has been
developed considering two imperfect CSI scenarios. In [11], a
joint optimization of relay and destination matrices has been
proposed considering the imperfect CSI at the relay node.
Transceiver optimization for a general multi-hop AF MIMO
relay system with Gaussian distributed channel uncertainties
has been investigated in [12].

Robust transceiver has been developed in [13] for single user
MIMO relay systems considering both the direct link and the
CSI mismatch, where only a single data stream is transmit-
ted. Recently, joint source and relay design algorithms have
been proposed in [14] which support multiple concurrent data
streams and consider both the direct link and the CSI mismatch.

In this paper, we investigate the joint source, relay, and
receiver matrices design for multiuser MIMO relay systems
with direct source-destination links and CSI mismatch. Since
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multiple source precoding matrices are involved, the system
model and the optimization problem are more complicated than
the single user case. To our best knowledge, there is no exist-
ing work on the robust transceiver design for multiuser MIMO
relay networks considering both the direct links and the CSI
mismatch. The works in [14] and [15] can be viewed as special
cases of this paper.

The true CSI of each link is modeled as a Gaussian ran-
dom matrix with the estimated CSI as the mean value and the
well-known Kronecker model is adopted for the covariance of
the CSI mismatch. The MMSE of the signal waveform estima-
tion at the destination node is adopted as our design criterion.
Since the joint source, relay, and receiver matrices optimization
problem is nonconvex, a globally optimal solution is compu-
tationally intractable. We develop two iterative algorithms to
solve the original optimization problem. The key to solve the
nonconvex optimization problem is to convert it to an equiva-
lent non-robust MIMO relay design problem with equivalent
channel, source, relay, and receiver matrices. The effect of
CSI mismatch is shown in the structure of the optimal robust
source and relay matrices. Simulation results demonstrate the
improved robustness of the proposed algorithms against CSI
errors. Interestingly, the computational complexity of the robust
MIMO relay design is in the same order as the non-robust
approach.

For multiuser MIMO relay systems with multiple relay
nodes, the robust source and relay matrices optimization prob-
lems are much more challenging than those in a single-relay
system [14] and [15], due to the block diagonal structure of the
relay precoding matrix and multiple transmission power con-
straints at the relay nodes. However, we show that the proposed
algorithms can be extended to this more general case.

The rest of the paper is organized as follows. In Section II, the
model of a two-hop linear AF multiuser MIMO relay commu-
nication system considering the CSI mismatch and the direct
source-destination links is introduced. The robust source and
relay matrices design algorithms are developed in Section III.
In Section IV, we extend the proposed algorithms to mul-
tiuser MIMO relay systems with multiple relay nodes. In
Section V, we show numerical examples to demonstrate the
improved robustness of the proposed approaches against the
CSI mismatch. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a two-hop multiuser MIMO communication
system as shown in Fig. 1, where K users (node i , i =
1, . . . , K ) transmit information to the destination node (node
d) with the aid of a relay node (node r). The i th user is equipped
with Nsi , i = 1, . . . , K antennas. The relay and destination
nodes are equipped with Nr and Nd antennas, respectively.
Using a half-duplex relay, the communication process is com-
pleted in two time slots. During the first time slot, the Nbi × 1
modulated signal vector si is linearly precoded at the i th user
by the source precoding matrix F1i ∈ C

Nsi ×Nbi . The precoded
signal vector

xi = F1i si (1)

Fig. 1. A Two-Hop Multiuser MIMO Relay Communication System.

is transmitted to the relay node and the destination node. We
denote Nb =∑K

i=1 Nbi as the total number of independent data
streams from all users. The received signal at the relay node can
be written as

yr =
K∑

i=1

H1i xi + nr (2)

where H1i ∈ C
Nr ×Nsi is the MIMO fading channel matrix of

the i th user-relay link, yr and nr are the received signal vec-
tor and the additive Gaussian noise vector at the relay node,
respectively.

The received signal at the destination node at the first time
slot can be written as

yd1 =
K∑

i=1

H3i xi + nd1 (3)

where H3i ∈ C
Nd×Nsi is the MIMO fading channel matrix of

the i th user-destination link, yd1 and nd1 are the received signal
vector and the additive Gaussian noise vector at the destination
node, respectively. Substituting (1) into (2) and (3), we have

yr =
K∑

i=1

H1i F1i si + nr (4)

yd1 =
K∑

i=1

H3i F1i si + nd1. (5)

During the second time slot, the users remain silent and
the relay node multiplies the received signal vector yr by the
relay precoding matrix F2 ∈ C

Nr ×Nr and retransmits the signal
vector

xr = F2yr (6)

to the destination node. The signal vector from the relay node
received at the destination node can be written as

yd2 = H2xr + nd2 (7)

where H2 ∈ C
Nd×Nr is the MIMO fading channel matrix of the

relay-destination link, yd2 and nd2 are the received signal vector
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and the additive Gaussian noise vector at the destination node
at the second time slot, respectively.

Substituting (4) and (6) into (7), we obtain

yd2 = H2F2

K∑
i=1

H1i F1i si + H2F2nr + nd2

= [H2F2H11F11, . . . , H2F2H1KF1K ]s+H2F2nr+nd2 (8)

where s = [sT
1 , . . . , sT

K ]T , and (·)T stands for the matrix (vec-
tor) transpose.

Combining (5) and (8), the signal received at the destination

over two time slots y = [yT
d2, yT

d1

]T
can be written as

y =
[

H2F2H11F11, . . . , H2F2H1K F1K

H31F11, . . . , H3K F1K

]
s +

[
H2F2nr + nd2

nd1

]
= Gs + v (9)

where G �
[

H2F2H11F11, . . . , H2F2H1K F1K

H31F11, . . . , H3K F1K

]
is the equiva-

lent MIMO channel matrix between the source and destination

nodes, and v �
[

H2F2nr + nd2
nd1

]
is the equivalent noise vec-

tor. We assume that all noises are independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN) with
zero mean and unit variance.

In the case of CSI mismatch, the true channel matrices can
be modeled as the well-known Gaussian-Kronecker model as in
[9] and [14]

H j ∼ CN(H̄ j ,� j ⊗ � j ), j = 1i, 2, 3i , i = 1, . . . , K
(10)

where H̄ j is the estimated channel matrix, � j and � j denote
the covariance matrix of channel estimation error seen from
the transmitter side and the receiver side, respectively, and ⊗
stands for the matrix Kronecker product. From (10), we have
H j = H̄ j + A� j Hw j A

H
� j

, where A� j A
H
� j

= � j , A� j A
H
� j

=
�T

j , Hw j is a Gaussian random matrix with i.i.d. zero mean
and unit variance entries and is the unknown part in the CSI
mismatch. Here, (·)H denotes the matrix (vector) Hermitian
transpose.

In practice, the knowledge of H2 and H3i , i = 1, . . . , K , can
be obtained at the destination node through channel training, the
CSI of H1i , i = 1, . . . , K , can be first obtained at the relay node
through channel training and then forwarded to the destination
node. In this way, the destination node obtains all CSI required.
Then the destination node performs the transceiver optimization
and sends the optimized F1i to the i th source node and F2 to the
relay node.

Using a linear receiver, the estimated source signal vector at
the destination node is given by

ŝ = WH y (11)

where W is the 2Nd × Nb receive weight matrix. From (9)
and (11), the MSE matrix of the signal waveform estimation

at the destination node is a function of W, {F1i } � {F1i , i =
1, . . . , K }, and F2 as

E(W, {F1i }, F2) = E
[
(ŝ − s)(ŝ − s)H

]
= (WH G − INb)(W

H G − INb )
H + WH CvW

= WH AW − WH G − GH W + INb (12)

where E[·] stands for the statistical expectation with respect to
signal and noise, Im denotes an m × m identity matrix, A =
GGH + Cv, and

Cv = E[vvH ] =
[

H2F2FH
2 HH

2 +INd 0
0 INd

]
(13)

is the noise covariance matrix. To obtain (12), we assume that
E[ssH ] = INb .

Since the exact CSI is not available at all nodes, there can
be a great performance degradation if the estimated channel
matrices are simply used to optimize (12), due to the mis-
match between H j and H̄ j , j = 1i, 2, 3i, i = 1, . . . , K . Taking
the CSI mismatch into account, we consider the statistical
expectation of E, which is given by

EH [E(W, {F1i }, F2)] = WH ĀW − WH Ḡ − ḠH W + INb

(14)

where EH [·] stands for the statistical expectation with respect
to the channel matrices, Ā � EH [A], and Ḡ � EH [G].

Since {H1i } and H2 are statistically independent, from (9)
and (10), we have

Ḡ =
[

H̄2F2H̄11F11, . . . , H̄2F2H̄1K F1K

H̄31F11, . . . , H̄3K F1K

]
Ā = EH [GGH ] + EH2 [Cv]. (15)

Using (13) and the following identity from [16]

EH

[
Hi XHH

i

]
= H̄i XH̄H

i + tr(X�T
i )�i (16)

where tr(·) denotes the matrix trace, we obtain

EH2 [Cv] =
[

EH2 [H2F2FH
2 HH

2 ]+INd 0
0 INd

]
= C̄v +

[
tr(F2FH

2 �T
2 )�2 0

0 0

]
. (17)

Here

C̄v =
[

H̄2F2FH
2 H̄H

2 +INd 0
0 INd

]
.

From (10) and (16), we obtain that

EH1i ,H2

(
H2F2

K∑
i=1

(
H1i F1i FH

1i HH
1i

)
FH

2 HH
2

)

= EH2

(
H2F2

K∑
i=1

EH1i

(
H1i F1i FH

1i HH
1i

)
FH

2 HH
2

)

= EH2

(
H2F2

K∑
i=1

(
H̄1i F1i FH

1i H̄H
1i + α1i�1i

)
FH

2 HH
2

)
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= H̄2F2

K∑
i=1

(
H̄1i F1i FH

1i H̄H
1i + α1i�1i

)
FH

2 H̄H
2

+ tr

(
F2

K∑
i=1

(
H̄1i F1i FH

1i H̄H
1i + α1i�1i

)
FH

2 �T
2

)
�2 (18)

where

α1i � tr
(

F1i FH
1i �

T
1i

)
, i = 1, . . . , K . (19)

From (9) and (18), we obtain that

EH [GGH ] = ḠḠH +[∑K
i=1 α1i H̄2F2�1i FH

2 H̄H
2 + β�2 0

0
∑K

i=1 α3i�3i

]
(20)

where

α3i � tr
(

F1i FH
1i �

T
3i

)
, i = 1, . . . , K

β � tr

(
F2

K∑
i=1

(
H̄1i F1i FH

1i H̄H
1i + α1i�1i

)
FH

2 �T
2

)
. (21)

Substituting (17) and (20) back into (15), we have

Ā = ḠḠH + C̄v + R (22)

where

R =
[∑K

i=1α1i H̄2F2�1i FH
2 H̄H

2 +α2�2 0
0

∑K
i=1α3i�3i

]
(23)

α2 = β + tr
(

F2FH
2 �T

2

)
. (24)

It can be seen from (14) that the CSI mismatch is consid-
ered by (23). If the perfect CSI is available, i.e., H j = H̄ j

and � j = 0, j = 1i, 2, 3i, i = 1, . . . , K , from (23) and (24),
there is αi = 0, i = 1, 2, 3, and R = 0, then the MSE matrix
(14) becomes (12). Therefore, (14) generalizes the MSE matrix
from the perfect CSI case to the practical scenario with CSI
mismatch.

The transmission power consumed by the i th user and
the relay node can be written as tr(F1i FH

1i ) and tr(
F2

(∑K
i=1H1i F1i FH

1i HH
1i + INr

)
FH

2

)
, respectively. However,

since the true {H1i } is unknown, we consider the averaged
transmission power at the relay node, which is given by

EH

[
tr

(
F2

(
K∑

i=1

H1i F1i FH
1i HH

1i + INr

)
FH

2

)]

= tr

(
F2

(
K∑

i=1

(H̄1i F1i FH
1i H̄H

1i + α1i�1i ) + INr

)
FH

2

)
.

(25)

From (14) and (25), the robust source, relay, and destination
matrices optimization problem can be written as

min
W,{F1i },F2

tr(EH [E(W, {F1i }, F2)]) (26)

s.t. tr

(
F2

(
K∑

i=1

(H̄1i F1i FH
1i H̄H

1i +α1i�1i )+INr

)
FH

2

)
≤ Pr

(27)

tr
(

F1i FH
1i

)
≤ Psi , i = 1, . . . , K (28)

where Psi and Pr are the transmission power available at the i th
user and the relay node, respectively. The problem (26)–(28) is
nonconvex with matrix variables.

III. PROPOSED ROBUST MIMO RELAY DESIGN

ALGORITHMS

In this section, we develop two iterative algorithms namely
the Tri-Step and the Bi-Step algorithms to optimize the source,
relay, and receive matrices. In the Tri-Step algorithm, the
source, relay, and receive matrices are optimized iteratively
through solving convex sub-problems. For the Bi-Step algo-
rithm, the optimal receive matrix is substituted into the objec-
tive function, so we obtain an optimization problem only with
the source and relay matrices. Then, the source and relay
matrices are optimized alternatingly and the receive matrix is
calculated after the convergence of the algorithm.

By introducing P1 �
∑K

i=1α1i�1i + INr , P2 � α2�2 + INd ,
and P3 �

∑K
i=1α3i�3i + INd , (14) can be rewritten as

EH [E(W, {F1i }, F2)] = [WH
1 WH

2

]
ZMZ

[
W1W2

]
− [WH

1 WH
2

]
ZZ−1Ḡ − ḠH Z−1Z

[
W1
W2

]
+ INb (29)

where Z � bd

(
P

1
2
2 , P

1
2
3

)
, W1 and W2 contain the first and

the last Nd rows of W, respectively, and M is given by (30),
shown at the bottom of the page. Here bd(·) stands for a block
diagonal matrix and (·)−1 denotes the matrix inversion.

By introducing W̃H
1 � WH

1 P
1
2
2 , W̃H

2 � WH
2 P

1
2
3 ,

H̃2 � P
− 1

2
2 H̄2, H̃1i � P

− 1
2

1 H̄1i , H̃3i � P
− 1

2
3 H̄3i , i = 1, . . . , K ,

and F̃2 � F2P
1
2
1 , (29) can be rewritten as

EH [E(W̃, {F1i }, F̃2)] = [ W̃H
1 W̃H

2

]
(G̃G̃H + C̃v)

[
W̃1

W̃2

]

− [ W̃H
1 W̃H

2

]
G̃ − G̃H

[
W̃1

W̃2

]
+ INb

= (W̃H G̃ − INb)(W̃
H G̃ − INb)

H + W̃H C̃vW̃ (31)

M=
⎡⎢⎣ P

− 1
2

2 H̄2F2P
1
2
1

(
P

− 1
2

1

∑K
i=1H̄1i F1i FH

1i H̄H
1i P

− 1
2

1 +INr

)
P

1
2
1 FH

2 H̄H
2 P

− 1
2

2 +INd P
− 1

2
2 H̄2F2

∑K
i=1H̄1i F1i FH

1i H̄H
3i P

− 1
2

3

P
− 1

2
3

∑K
i=1H̄3i F1i FH

1i H̄H
1i FH

2 H̄H
2 P

− 1
2

2 P
− 1

2
3

∑K
i=1H̄3i F1i FH

1i H̄H
3i P

− 1
2

3 +INd

⎤⎥⎦ (30)
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where

G̃ =
[

H̃2F̃2H̃11F11, . . . , H̃2F̃2H̃1K F1K

H̃31F11, . . . , H̃3K F1K

]
, W̃ =

[
W̃1

W̃2

]
C̃v =

[
H̃2F̃2F̃H

2 H̃H
2 +INd 0

0 INd

]
.

Using (31), the optimization problem (26)–(28) can be equiv-
alently rewritten as

min
W̃,{F1i },F̃2

tr(EH [E(W̃, {F1i }, F̃2)]) (32)

s.t. tr

(
F̃2

(
K∑

i=1

H̃1i F1i FH
1i H̃H

1i + INr

)
F̃H

2

)
≤ Pr (33)

tr
(

F1i FH
1i

)
≤ Psi , i = 1, . . . , K (34)

where the variable substitution of F̃2 and H̃1i , i = 1, . . . , K ,
is used to rewrite the power constraint (27) at the relay node to
obtain (33). It is worth noting that the robust precoding matrices
design problem (26)–(28) for multiuser MIMO relay systems
with imperfect CSI is converted to the problem (32)–(34) for an
equivalent multiuser MIMO relay system with direct links and
perfect CSI, where the channel matrices are H̃2, H̃1i , H̃3i , i =
1, . . . , K , the source precoding matrices are F1i , i = 1, . . . , K ,
the relay precoding matrix is F̃2, and the receive matrix is W̃.

A. The Tri-Step Algorithm

The problem (32)–(34) is nonconvex with matrix variables
and the globally optimal solution is difficult to obtain. In the
following, we develop a Tri-Step iterative approach to solve the
problem (32)–(34).

Firstly, with given {F1i } and F̃2, the weight matrix W̃ mini-
mizing (32) is the famous Wiener filter [17] (MMSE receiver)
given by

W̃ = (G̃G̃H + C̃v)
−1G̃. (35)

Secondly, with given W̃ and {F1i }, F̃2 can be updated by
solving the following problem

min
F̃2

tr
((

H̆2F̃2H̆1−�
) (

H̆2F̃2H̆1−�
)H+H̆2F̃2F̃H

2 H̆H
2

+ W̃H
1 W̃1 + W̃H

2 W̃2

)
(36)

s.t. tr
(

F̃2

(
H̆1H̆H

1 + INr

)
F̃H

2

)
≤ Pr (37)

where H̆1 �
[
H̃11F11, . . . , H̃1K F1K

]
, H̆2 � W̃H

1 H̃2, � �
INb − W̃H

2 H̆3, H̆3 �
[
H̃31F11, . . . , H̃3K F1K

]
.

Using the Lagrange multiplier method, we can solve the
problem (36)–(37) and obtain F̃2 as

F̃2 = H̆H
2

(
H̆2H̆H

2 + μINb

)−1
�H̆H

1

(
H̆1H̆H

1 + INr

)−1
(38)

where μ ≥ 0 is the Lagrangian multiplier and can be found
from the following complementary slackness condition

μ
(

tr
(

F̃2

(
H̆1H̆H

1 + INr

)
F̃H

2

)
− Pr

)
= 0. (39)

Assuming that μ = 0, from (38) we have

F̃2 = H̆H
2

(
H̆2H̆H

2

)−1
�H̆H

1

(
H̆1H̆H

1 + INr

)−1
. (40)

If F̃2 in (40) satisfies the power constraint (37), then (40) is
the solution to the problem (36)–(37). Otherwise, there must be
μ > 0 such that

tr
(

F̃2(H̆1H̆H
1 + INr )F̃

H
2

)
= Pr . (41)

In this case, μ can be obtained by substituting (38) into (41) and
solving the following nonlinear equation

tr

(
H̆H

2

(
H̆2H̆H

2 + μINb

)−1
�H̆H

1

(
H̆1H̆H

1 + INr

)−1

× H̆1�
H
(

H̆2H̆H
2 + μINb

)−1
H̆2

)
= Pr . (42)

By introducing the singular value decomposition (SVD) of

H̆2 = U2�2VH
2 (43)

we obtain from (42) that

tr

(
�2

(
�2

2 + μINb

)−1
UH

2 �H̆H
1

(
H̆1H̆H

1 + INr

)−1

× H̆1�
H U2

(
�2

2 + μINb

)−1
�2

)
= Pr . (44)

Denoting � � UH
2 �H̆H

1 (H̆1H̆H
1 + INr )

−1H̆1�
H U2, (44) can

be equivalently written as

Nb∑
i=1

λ2
i γi

(λ2
i + μ)

2
= Pr (45)

where λi and γi are the i th main diagonal elements of �2 and
� respectively. Since the left-hand side of (45) is monotonically
decreasing with respect to μ, the bisection method [18] can be
applied to solve (45) to obtain μ.

Thirdly, with given W̃ and F̃2, we show that the problem
(32)–(34) can be cast as a quadratically constrained quadratic
programming (QCQP) problem [18] to optimize {F1i }. Let us
introduce D1i � W̃H

1 H̃2F̃2H̃1i + W̃H
2 H̃3i , i = 1, . . . , K , and

D̃1i as a matrix containing the (
∑i−1

j=1 Nbj + 1)th to the

(
∑i

j=1 Nbj )th rows of D1i . By using the identity of tr(CT D) =
(vec(C))T vec(D) and vec(CD) = (I ⊗ C)vec(D) [19], where
vec(X) stands for a column vector obtained by stacking all
columns of X on top of each other, (32) can be rewritten as

tr

((
W̃H

1 H̃2F̃2H̆1 + W̃H
2 H̆3 − INb

) (
W̃H

1 H̃2F̃2H̆1

+W̃H
2 H̆3 − INb

)H
)

+ t1

= tr
((

[D11F11, . . . , D1K F1K ] − INb

)
×([D11F11, . . . , D1K F1K ] − INb

)H
)

+ t1

=
K∑

i=1

(
tr
(

D1i F1i FH
1i DH

1i

)
−tr

(
D̃1i F1i

)−tr
(

FH
1i D̃H

1i

))
+ t2

=
K∑

i=1

(
fH
1i

(
INsi⊗

(
DH

1i D1i

))
f1i

−vec
(

D̃H
1i

)H
f1i −fH

1i vec
(

D̃H
1i

))
+ t2
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TABLE I
PROCEDURE OF THE TRI-STEP ALGORITHM

= fH
1 ϒ1f1 − dH

1 f1 − fH
1 d1 + t2

=
(

fH
1 ϒ

1
2
1 − dH

1 ϒ
− 1

2
1

)(
ϒ

1
2
1 f1 − ϒ

− 1
2

1 d1

)
+ t3 (46)

where

t1 � tr
(

W̃H C̃vW̃
)

, t2 � t1+ Nb,

f1 �
[
fH
11, . . . , fH

1K

]H
, t3 � t2− dH

1 ϒ−1
1 d1,

f1i � vec(F1i ), d1 �
[

vec
(

D̃H
11

)H
, . . . , vec

(
D̃H

1K

)H
]H

,

ϒ1 � bd(INS1 ⊗ (DH
1i D1i ), . . . , INSK ⊗ (DH

1K D1K )).

Note that we can ignore t3 while optimizing f1 with given W̃
and F̃2, since it does not depend on the optimization variable f1.
By introducing D2i � F̃2H̃1i , i = 1, . . . , K , the relay transmit
power constraint in (33) can be rewritten as

fH
1 ϒ2f1 + tr

(
F̃2F̃H

2

)
≤ Pr (47)

where ϒ2 � bd(INS1 ⊗ (DH
21D21), . . . , INSK ⊗ (DH

2K D2K )).
Using (46) and (47), the problem (32)–(34) can be equivalently
rewritten as the following QCQP problem

min
f1

(
fH
1 ϒ

1
2
1 − dH

1 ϒ
− 1

2
1

)(
ϒ

1
2
1 f1 − ϒ

− 1
2

1 d1

)
(48)

s.t. fH
1 ϒ2f1 ≤ Pr − tr

(
F̃2F̃H

2

)
(49)

fH
1 Ĩi f1 ≤ Psi , i = 1, . . . , K (50)

where Ĩi � bd(Ĩi1, . . . , Ĩi K), with Ĩi i = INsi Nbi and Ĩi j = 0,

j = 1, . . . , K , j �= i . The problem (48)–(50) can be efficiently
solved by the disciplined convex programming toolbox CVX
[20].

The procedure of applying the Tri-Step iterative algorithm
to solve the problem (32)–(34) is listed in Table I, where the
superscript (n) denotes the number of iterations, ε is a small
positive number close to zero, and mse(n)

1 stands for the value
of (32) at the nth iteration.

B. The Bi-Step Algorithm

By substituting (35) back into (31), we have

E0({F1i }, F̃2) = INb − G̃H
(

G̃G̃H + C̃v

)−1
G̃ (51)

where E0 stands for the MSE matrix when a linear MMSE
receiver is used at the destination. The source and relay matrices
optimization problem can be written as

min
{F1i },F̃2

tr
(
E0
({F1i }, F̃2

))
(52)

s.t. tr
(

F̃2

(
H̆1H̆H

1 + INr

)
F̃H

2

)
≤ Pr (53)

tr
(

F1i FH
1i

)
≤ Psi , i = 1, . . . , K . (54)

The problem (52)–(54) is nonconvex with matrix variables and
the globally optimal solution is difficult to obtain. In the fol-
lowing, we develop an iterative approach to solve the problem
(52)–(54).

It can be shown similar to [6] that for given source precoding
matrices {F1i }, the optimal F̃2 as the solution to the problem
(52)–(54) has the structure of

F̃2 = TL (55)

where T is an Nr × Nb matrix that remains to be optimized,
and

L = (H̆H
1 H̆1 + Q)−1H̆H

1 , Q = H̆H
3 H̆3 + INb .

Let us introduce a positive semi-definite (PSD) matrix � =
L(H̆1Q−1H̆H

1 + INr )L
H and its eigenvalue decomposition

(EVD)

� = Uω�ωUH
ω (56)

where �ω is the diagonal eigenvalue matrix with eigenvalues
λω,k , k = 1, . . . , Nb, arranged in descending order. Let us also
introduce the EVD of

H̃H
2 H̃2 = Uh�hUH

h (57)

where �h is the diagonal eigenvalue matrix with eigenvalues
λh,k , k = 1, . . . , Nr , arranged in descending order.

Based on the result in [6], T has the structure of

T = Uh,1	UH
ω (58)

where Uh,1 contains the leftmost Nb columns of Uh , 	 is a
diagonal matrix and the solution to the following problem

min
	

tr

((
	H �h,1	 + �−1

ω

)−1
)

(59)

s.t. tr(	Rω	H ) ≤ Pr . (60)

Here Rω � UH
ω L(H̆1H̆H

1 + INr )L
H Uω and �h,1 contains the

largest Nb diagonal elements of �h . The problem (59)–(60) can
be efficiently solved by the Lagrange multiplier method as

|δk |2 = 1

λω,kλh,k

⎛⎝√λ2
ω,kλh,k

γ Rk
− 1

⎞⎠+

, k = 1, . . . , Nb

where δk is the kth main diagonal element of 	, (x)+ �
max(x, 0), Rk � [Rω]k,k , and γ > 0 is the Lagrangian multi-
plier and the solution to the following nonlinear equation
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Nb∑
k=1

Rk

λω,kλh,k

⎛⎝√λ2
ω,kλh,k

γ Rk
− 1

⎞⎠+

= Pr .

We would like to mention that to obtain the exact solution
of the relay precoding matrix in (55), 	 in (58) should be
considered as a general matrix. However, by limiting 	 to be
diagonal, a closed-form solution of the relay precoding matrix
with a low computational complexity can be obtained similar
to [6]. Obviously, such diagonality constraint may degrade the
performance of the Bi-Step algorithm. We would like to note
that such performance-complexity tradeoff is very useful for
practical multiuser MIMO relay communication systems.

Now we start to optimize the source precoding matri-
ces {F1i }. Using the matrix inversion lemma, (51) can be
rewritten as

tr
(
E0
({F1i }, F̃2

)) = tr

((
INb + G̃H C̃−1

v G̃
)−1
)

= tr

((
I2Nd + G̃G̃H C̃−1

v

)−1
)

+ Nb − 2Nd

= tr

⎛⎝(I2Nd +
K∑

i=1


 i Bi

H
i

)−1⎞⎠+ Nb − 2Nd (61)

where 
 i � C̃
− 1

2
v

[
H̃2F̃2H̃1i

H̃3i

]
and Bi � F1i FH

1i , i = 1, . . . ,

K . From (61), for given relay precoding matrix F̃2, {Bi } �
{Bi , i = 1, . . . , K } are optimized by solving the following
problem

min{Bi }
tr

⎛⎝(I2Nd +
K∑

i=1


 i Bi

H
i

)−1⎞⎠ (62)

s.t.
K∑

i=1

tr
(

Bi H̃H
1i F̃H

2 F̃2H̃1i

)
≤ Pr − tr

(
F̃2F̃H

2

)
(63)

tr(Bi ) ≤ Psi , Bi � 0, i = 1, . . . , K . (64)

Let us introduce a PSD matrix X with X �
(I2Nd +∑K

i=1 
 i Bi

H
i )−1, where A � B means A − B

is a PSD matrix. The problem (62)–(64) can be equivalently
converted to the following convex semi-definite programming
(SDP) problem by using the Schur complement

min
X,{Bi }

tr(X) (65)

s.t.

(
X I2Nd

I2Nd I2Nd +∑K
i=1 
 i Bi


H
i

)
� 0 (66)

K∑
i=1

tr(Bi H̃H
1i F̃H

2 F̃2H̃1i ) ≤ Pr − tr(F̃2F̃H
2 ) (67)

tr(Bi ) ≤ Psi , Bi � 0, i = 1, . . . , K . (68)

The problem (65)–(68) can be efficiently solved by the interior-
point method [18]. Using the EVD of Bi = Ubi�bi UH

bi , we have

F1i = Ubi�
1
2
bi .

The procedure of using the Bi-Step iterative algorithm to
solve the problem (52)–(54) is listed in Table II, where mse(n)

2
stands for the value of (52) at the nth iteration.

TABLE II
PROCEDURE OF THE BI-STEP ALGORITHM

IV. EXTENSION TO MULTIUSER MIMO RELAY SYSTEMS

WITH MULTIPLE RELAY NODES

In this section, we extend the proposed Tri-Step and Bi-Step
algorithms to multiuser MIMO relay systems with direct links
and multiple relay nodes.

A. System Model

We consider a system with K users, L relay nodes, and one
destination. The signal vector received at the lth relay node at
the first time slot is

yrl =
K∑

i=1

H1li F1i si + nrl , l = 1, . . . , L (69)

where H1li ∈ C
Nrl×Nsi is the MIMO channel matrix between

the lth relay node and the i th user, nrl is the noise vector at the
lth relay. The signal vector received at the destination through
the direct links at the first time slot is the same as (5).

The signal transmitted by the lth relay node at the second
time slot is

xrl = F2lyrl , l = 1, . . . , L (70)

where F2l ∈ C
Nrl×Nrl is the precoding matrix at the lth relay

node. The signal received at the destination node through L
relay nodes at the second time slot is

yd2 =
L∑

l=1

H2lxrl + nd2. (71)

From (69)–(71), we have

yd2 = H2F2H1F1s + H2F2nr + nd2 (72)

where H2 = [H21, . . . , H2L ], F2 = bd(F21, . . . , F2L),

H1 =
⎛⎜⎝ H111 . . . H11K

...
. . .

...

H1L1 . . . H1L K

⎞⎟⎠, F1 = bd(F11, . . . , F1K ), and

nr = [nT
r1, . . . , nT

r L ]T .
From (5) and (72), the received signals over two time slots

are

y=
[

yd2
yd1

]
=
[

H2F2H1
H3

]
F1s +

[
H2F2nr +nd2

nd1

]
=Gs + v

(73)

where G �
[

H2F2H1
H3

]
F1 is the equivalent MIMO chan-

nel matrix between the source and destination nodes,
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H3 = [H31, . . . , H3K ], and v �
[

H2F2nr + nd2
nd1

]
is the

equivalent noise vector. It can be seen from (73) that in sys-
tems with multiple relay nodes, F2 is a block diagonal matrix.
This is different to the single-relay system, where there is no
constraint on the structure of F2.

As systems with one relay node, the MSE of the signal
waveform estimation at the destination is given by

MSE = tr((WH G − INb)(W
H G − INb )

H+WH CvW) (74)

where Cv = E[vvH ] is the noise covariance matrix.
We assume the true channel matrices are H j ∼

CN(H̄ j ,� j ⊗ � j ), j = 1li, 2l, 3i , l = 1, . . . , L ,i =
1, . . . , K . Now we work out EH [WH AW − WH G − GH W +
INb ], where

A = GGH + Cv

=
(

B H2F2H1F1FH
1 HH

3
H3F1FH

1 HH
1 FH

2 HH
2 H3F1FH

1 HH
3 + INd

)
and B = H2F2H1F1FH

1 HH
1 FH

2 HH
2 + H2F2FH

2 HH
2 + INd .

According to (16), we have

EH

[
H2F2H1F1FH

1 HH
1 FH

2 HH
2

]
= EH

[
K∑

k=1

(
L∑

l=1

H2lF2lH1lkF1k

)(
L∑

l=1

FH
1kHH

1lkFH
2l HH

2l

)]

=
K∑

i=1

(
L∑

l=1

H̄2lF2lH̄1li F1i

)(
L∑

l=1

FH
1i H̄H

1li F
H
2l H̄H

2l

)

+
K∑

i=1

L∑
l=1

α1li H̄2lF2l�1li FH
2l H̄H

2l +
L∑

l=1

βl�2l (75)

where βl = tr
(

F2l
∑K

i=1(H̄1li F1i FH
1i H̄H

1li +α1li�1li )FH
2l �

T
2l

)
,

α1li = tr(F1i FH
1i �

T
1li ). And we obtain that

EH [H2F2FH
2 HH

2 ] = EH

[
L∑

l=1

H2lF2lFH
2l HH

2l

]

=
L∑

l=1

H̄2lF2lFH
2l H̄H

2l +
L∑

l=1

tr(F2lFH
2l �

T
2l)�2l (76)

EH [H3F1FH
1 HH

3 ] = EH

[
K∑

i=1

H3i F1i FH
1i HH

3i

]

=
K∑

i=1

H̄3i F1i FH
1i H̄H

3i +
K∑

i=1

α3i�3i (77)

where α3i = tr
(
F1i FH

1i �
T
3i

)
. Let us introduce P1l =∑K

i=1 α1li

�1li + INrl , P2 =∑L
l=1 α2l�2l + INd , P3 =∑K

i=1 α3i�3i +
INd , H̃1li = P

− 1
2

1l H̄1li and F̃2l = F2lP
1
2
1l , where α2l = βl + tr(

F2lFH
2l �

T
2l

)=tr
(

F2l

(∑K
k=1 H̄1lkF1kFH

1kH̄H
1lk+P1l

)
FH

2l �
T
2l

)
.

We have from (75)–(77) that

EH

[
H2F2H1F1FH

1 HH
1 FH

2 HH
2 + H2F2FH

2 HH
2 + INd

]
=

K∑
i=1

(
L∑

l=1

H̄2l F̃2lH̃1li F1i

)(
L∑

l=1

FH
1i H̃H

1li F̃
H
2l H̄H

2l

)

+
L∑

l=1

H̄2l F̃2l F̃H
2l H̄H

2l + P2

= H̄2F̃2H̃1F1FH
1 H̃H

1 F̃H
2 H̄H

2 + H̄2F̃2F̃H
2 H̄H

2 + P2 (78)

EH [H3F1FH
1 HH

3 + INd ] = H̄3F1FH
1 H̄H

3 + P3 (79)

where H̄2 = [H̄21, . . . , H̄2L
]
, F̃2 = bd

(
F̃21, . . . , F̃2L

)
, H̃1 =⎛⎜⎝ H̃111 . . . H̃11K

...
. . .

...

H̃1L1 . . . H̃1L K

⎞⎟⎠, and H̄3 = [H̄31, . . . , H̄3K
]
.

From (78) and (79) we have

EH [A] =
(

B̃ H̄2F̃2H̃1F1FH
1 H̄H

3
H̄3F1FH

1 H̃H
1 F̃H

2 H̄H
2 H̄3F1FH

1 H̄H
3 + P3

)
= Z(G̃G̃H + C̃v)ZH (80)

where B̃ = H̄2F̃2H̃1F1FH
1 H̃H

1 F̃H
2 H̄H

2 + H̄2F̃2F̃H
2 H̄H

2 + P2,

Z = bd(P
1
2
2 , P

1
2
3 ), H̃2 = P

− 1
2

2 H̄2, H̃3 = P
− 1

2
3 H̄3, and

G̃ =
[

H̃2F̃2H̃1

H̃3

]
F1, C̃v =

(
H̃2F̃2F̃H

2 H̃H
2 + INd 0

0 INd

)
.

From (80), the expectation of the MSE in (74) can be written as

EH [ MSE] = tr

(
[WH

1 , WH
2 ]Z

(
G̃G̃H +C̃v

)
ZH
[
WH

1 , WH
2

]H

−
[
WH

1 , WH
2

]
ZZ−1G̃ − G̃H Z−1Z

[
WH

1 , WH
2

]H + INd

)
= tr

((
W̃H G̃ − INd

) (
W̃H G̃ − INd

)H + W̃H C̃vW̃
)

(81)

where W̃ = [W̃H
1 , W̃H

2

]H
, W̃1 = P

1
2
2 W1, and W̃2 = P

1
2
3 W2.

The power consumption at the lth relay node is

EH

[
tr

(
F2l

(
K∑

i=1

H1i F1i FH
1i HH

1i + INrl

)
FH

2l

)]

= tr

(
F̃2l

(
K∑

i=1

H̃1i F1i FH
1i H̃H

1i + INrl

)
F̃H

2l

)
. (82)

From (81) and (82), the optimization problem can be written as

min
W̃,F1,F̃2

EH [ MSE] (83)

s.t. tr
(

F1i FH
1i

)
≤ Psi , i = 1, . . . , K (84)

tr

(
F̃2l

(
K∑

i=1

H̃1i F1i FH
1i H̃H

1i + INrl

)
F̃H

2l

)
≤ Prl ,

l = 1, . . . , L . (85)

Note that constraints in (85) and the block diagonal structure of
F̃2 make the problem (83)–(85) more challenging than that in
single-relay system [14], [15].
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B. The Tri-Step Algorithm

We can iteratively update W̃, F1, and F̃2 using the Tri-Step
algorithm. Updating W̃ is similar to that in the single-relay sys-
tem (35). To update a particular F̃2l , we keep W̃, F1, and F̃2 j ,
j = 1, . . . , L , j �= l fixed. Then EH [ MSE] can be rewritten as
follows

EH [ MSE]

= tr

((
W̃H G̃ − INd

) (
W̃H G̃ − INd

)H + W̃H C̃vW̃
)

= tr

⎛⎝(Ĥ2l F̃2lĤ1l −�l)(Ĥ2l F̃2lĤ1l −�l)
H+Ĥ2l F̃2l F̃H

2l ĤH
2l

+
L∑

i=1,i �=l

Ĥ2i F̃2i F̃H
2i ĤH

2i + W̃H
1 W̃1 + W̃H

2 W̃2

⎞⎠ (86)

where Ĥ1l = [ H̃1l1F11 , . . . , H̃1l K F1K ], Ĥ2l = W̃H
1 H̃2l

Ĥ3 = [ H̃31F11, . . . , H̃3K F1K
]
, and �l = INd −∑L

i=1,i �=l

Ĥ2i F̃2i Ĥ1i − W̃H
2 Ĥ3.

Thus, the problem of optimizing F̃2l becomes

min
F̃2l

tr
((

Ĥ2l F̃2lĤ1l − �l
) (

Ĥ2l F̃2lĤ1l − �l
)H

+Ĥ2l F̃2l F̃H
2l ĤH

2l

)
(87)

s.t. tr
(

F̃2l

(
Ĥ1lĤH

1l + INl

)
F̃H

2l

)
≤ Prl . (88)

The problem (87)–(88) is similar to the problem (36)–
(37). Thus, F̃2l , l = 1, . . . , L , can be optimized by using the
Lagrange multiplier method. After we update all F̃2l , we obtain
F̃2 = bd(F̃21, . . . , F̃2L).

Updating F1 is similar to that in single-relay systems.
The difference is that D1i �

∑L
l=1 W̃H

1 H̃2l F̃2lH̃1li + W̃H
2 H̃3i

instead, and the power constraint (49) is extended to L power
constraints as

fH
1 ϒ2l f1 ≤ Prl − tr

(
F̃2l F̃H

2l

)
, l = 1, . . . , L

where ϒ2l � bd
(
INs1 ⊗(D2l1DH

2l1

)
, . . . , INsK ⊗(D2l K DH

2l K

))
and D2li � F̃2lH̃1li . The problem (83)–(85) becomes

min
f1

(
fH
1 ϒ

1
2
1 − dH

1 ϒ
− 1

2
1

)(
ϒ

1
2
1 f1 − ϒ

− 1
2

1 d1

)
(89)

s.t. fH
1 ϒ2l f1 ≤ Prl − tr

(
F̃2l F̃H

2l

)
, l = 1, . . . , L (90)

fH
1 Ĩi f1 ≤ Psi , i = 1, . . . , K (91)

which is still a QCQP problem and can be efficiently solved by
the disciplined convex programming toolbox CVX [20].

C. The Bi-Step Algorithm

We can iteratively update F1 and F̃2 using the Bi-Step algo-
rithm. The optimal W̃ is obtained after the convergence of F1

and F̃2 as W̃ = (G̃G̃H + C̃v
)−1

G̃. We use the following tech-
nique to handle the power constraints in (85). Considering the
power of the signal vector y = H̃2xr at the destination node,
where xr = [xT

r1, . . . , xT
r L ]T , we have

tr
(

E
[(

H̃2xr
) (

H̃2xr
)H
])

= tr
(

H̃2F̃2

(
H̃1F1FH

1 H̃H
1 + INr

)
F̃H

2 H̃H
2

)
(92)

where Nr =∑L
l=1 Nrl . Note that using the identity of

tr(AB) ≤ tr(A)tr(B), we have

tr
(

E
[(

H̃2xr
) (

H̃2xr
)H
])

= tr
(

H̃2 E
[
xr xH

r

]
H̃H

2

)
≤ tr

(
H̃2H̃H

2

)
tr
(

E
[
xr xH

r

])
. (93)

Since tr
(
E
[
xr xH

r

]) =∑L
l=1 tr

(
E
[
xrlxH

rl

]) ≤∑L
l=1 Prl ,

together with (93), we have

tr
(

F̂2

(
H̃1F1FH

1 H̃H
1 + INr

)
F̂H

2

)
≤

L∑
l=1

Prl tr
(

H̃2H̃H
2

)
(94)

where F̂2 = H̃2F̃2. The received signal in (73) can be written as

y =
[

yd1
yd2

]
=
[

F̂2H̃1

H̃3

]
F1s +

[
F̂2nr + nd2

nd1

]
. (95)

Now we can use the Bi-Step algorithm to design F̂2 and F1 in
the system of (95), where we can treat the second-hop chan-
nel as “identity matrix”. In particular, with fixed F1, we only
have the power constraint (94), and we can write the structure
of F̂2 = TL according to (55).

Similar to (61), to update the source precoding matrices
{F1i }, (83) can be written as

tr
(
E0
(
F1, F̃2

))
= tr

⎛⎝(I2Nd +
K∑

i=1


 i Bi
 i
H

)−1⎞⎠+ Nb − 2Nd (96)

where 
 i = C
− 1

2
v

[∑L
l=1 F̂2lH̃1li

H̃3i

]
and Bi � F1i FH

1i , i =
1, . . . , K . Thus, Bi can be optimized by solving the following
problem

min{Bi }
tr

⎛⎝(I2Nd +
K∑

i=1


 i Bi
 i
H

)−1⎞⎠ (97)

s.t.
K∑

k=1

tr

⎛⎝B1k

(
L∑

l=1

F̂2lH̃lk

)H ( L∑
l=1

F̂2lH̃lk

)⎞⎠
≤

L∑
l=1

Prl tr
(

H̃2H̃H
2

)
− tr

(
F̂2F̂H

2

)
(98)

tr(Bi ) ≤ Psi , Bi � 0, i = 1, . . . , K (99)

which is similar to the problem (62)-(64) and can be equiv-
alently converted to an SDP problem by using the Schur
complement.
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V. NUMERICAL EXAMPLES

In this section, we study the performance of the pro-
posed robust source and relay precoding matrices design
algorithms for multiuser MIMO relay systems with direct
source-destination links and imperfect CSI through numerical
simulations. For simplicity, we consider a system with two
users, where all nodes are equipped with multiple antennas.
The extension to systems with K > 2 users is straight-forward.
We simulate a flat Rayleigh fading environment. For nota-
tional simplicity, we show the setup of channel matrices in a
single-relay relay, which can be easily extended to systems with
multiple relay nodes. The estimated channel matrices H̄1i , H̄2,
and H̄3i have i.i.d. complex Gaussian entries with zero-mean
and variances σ 2

1i , σ 2
2 , and σ 2

3i , i = 1, . . . , K , respectively. All
noises are i.i.d. AWGN with zero mean and unit variance. We
define

SNR1i �
σ 2

1i Psi

Nr
, SNR2 �

σ 2
2 P2

Nd
,

SNR3i �
σ 2

3i Psi

Nd
, i = 1, . . . , K

as the signal-to-noise ratio (SNR) for the source i-relay,
relay-destination, and source i-destination links, respectively.
For simplicity, we assume Nb1 = Nb2 = Ns1 = Ns2 = 2, Nr =
4, Nd = 4 and the same SNR for the source-relay links and the
relay-destination link, i.e., SNR11 = SNR12 = SNR2 = SNR,
throughout the simulations. Due to a larger pass loss, we set
SNR31 = SNR32 = SNR − �SNR. QPSK constellations are

used to modulate the source symbols. All simulation results are
averaged over 1000 independent channel realizations.

We simulate a multiuser MIMO relay system where the
channel estimation error at the transmitter side is uncor-
related, i.e., �1i = �3i = σ 2

e INsi , i = 1, . . . , K and �2 =
σ 2

e INr , where σ 2
e measures the variance of the channel esti-

mation error. We obtain from (19), (21), and (24) that for
this case, α1i = α3i = σ 2

e tr(F1i FH
1i ), i = 1, . . . , K , and α2 =

σ 2
e tr
(

F2

(∑K
i=1(H̄1i F1i FH

1i H̄H
1i + α1i�1i ) + INr

)
FH

2

)
. It can

be shown similar to [10] that tr(E0({F1i }, F̃2)) decreases with
respect to α1i , α2, and α3i , i = 1, . . . , K . Therefore, consider-
ing the power constraints (27) and (28), the optimal solution
occurs at α1i = α3i = σ 2

e Psi , i = 1, . . . , K , and α2 = σ 2
e P2.

The covariance matrix of channel estimation error at the
receiver side is set as

�1i =

⎡⎢⎢⎣
1 φ1i φ2

1i φ3
1i

φ1i 1 φ1i φ2
1i

φ2
1i φ1i 1 φ1i

φ3
1i φ2

1i φ1i 1

⎤⎥⎥⎦ ,�2 = �3i =

⎡⎢⎢⎣
1 φ2 φ2

2 φ3
2

φ2 1 φ2 φ2
2

φ2
2 φ2 1 φ2

φ3
2 φ2

2 φ2 1

⎤⎥⎥⎦
In the simulations, we choose φ1i = φ2 = 0.45, i = 1, 2.

We compare the performance of the following five sys-
tems: (1) The nonrobust design using the pseudo match-
and-forward (PMF) algorithm; (2) The proposed robust
design using the Bi-Step algorithm; (3) The proposed
robust design with the Tri-Step algorithm; (4) The Bi-
Step algorithm with the exact CSI knowledge; (5) The Tri-
Step algorithm with the exact CSI knowledge. In the PMF

Fig. 2. Example 1: BER versus SNR, σ 2
e = 0.01, �SNR = 10 dB.

Fig. 3. Example 2: BER versus SNR, σ 2
e = 0.001, �SNR = 20 dB.

algorithm, the MMSE receiver is deployed at the destina-
tion node, and we set F1i = √

Psi/Nsi INsi , i = 1, . . . , K ,

and F2 =
√

Pr/tr((H̄1H̄2)H (H̄1H̄H
1 + INr )H̄1H̄2)(H̄1H̄2)

H ,

where H̄1 � [H̄11F11, . . . , H̄1K F1K ]. For the robust design, the
initialization of the Tri-Step and Bi-Step algorithms is listed in
Table I and Table II, respectively.

In the first example, we simulate the scenario where
�SNR = 10 dB and σ 2

e = 0.01. The BER performance of the
above algorithms is shown in Fig. 2. It can be seen that the
proposed robust Bi-Step and Tri-Step algorithms outperform
the PMF algorithm, indicating the gain of the robust gain.
For both the proposed robust design and the system with the
exact CSI, the Tri-Step algorithm performs better than the Bi-
Step algorithm especially at high SNR. This is because of the
approximation of 	 in (58) to be diagonal.

In the second example, we compare the BER and MSE
performance of all algorithms with �SNR = 20 dB and σ 2

e =
0.001. The simulation results are illustrated in Figs. 3 and 4. It
can be seen from Fig. 3 that by considering the CSI mismatch,
the proposed robust algorithms significantly improve the sys-
tem BER performance compared with the PMF algorithm. In
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Fig. 4. Example 2: MSE versus SNR, σ 2
e = 0.001, �SNR = 20 dB.

Fig. 5. Example 3: BER versus SNR, σ 2
e = 0.01, �SNR = 30 dB.

fact, the BER yielded by the robust algorithms is very close to
that of the system with the exact CSI. This verifies the impor-
tance of considering the direct links and the CSI mismatch in
the transceiver design. Interestingly, it can be seen from Fig. 4
that both the robust algorithms and the system with the exact
CSI have almost identical MSE.

In the third example, the BER and MSE performance of the
five algorithms tested with �SNR = 30 dB and σ 2

e = 0.01 is
shown in Figs. 5 and 6. By comparing Fig. 5 with Fig. 2, we can
see that the gap between the robust algorithms and the system
with the exact CSI knowledge increases with �SNR, indicating
the impact of pathloss of the direct links on the system perfor-
mance in the case of CSI mismatch. Moreover, it can be seen
from Fig. 6 that the MSE performance of the Bi-Step algorithm
is very close to that of the Tri-Step algorithm for both systems
with CSI mismatch and the perfect CSI.

In the fourth simulation example, we compare the BER and
MSE performance of the above algorithms with �SNR = 20
dB and different σ 2

e as 0.1, 0.01, and 0.001, respectively. We
can observe from Figs. 7 and 8 that as expected, the proposed
robust algorithms have a better performance as σ 2

e decreases.
At σ 2

e = 0.001, the BER and MSE performance of the robust

Fig. 6. Example 3: MSE versus SNR, σ 2
e = 0.01, �SNR = 30 dB.

Fig. 7. Example 4: BER versus SNR, �SNR = 20 dB.

Fig. 8. Example 4: MSE versus SNR, �SNR = 20 dB.

algorithms is very close to that of the system with the exact
CSI. Interestingly, it can also been seen that as σ 2

e decreases, the
gap between the BER performance of the Tri-Step and Bi-Step
algorithms increases at high SNR.
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Fig. 9. Example 5: MSE versus SNR, �SNR = 20 dB.

In the fifth simulation example, we compare the MSE per-
formance of the Bi-Step and Tri-Step algorithms in multi-relay
systems, where σ 2

e is set as 0.1, 0.01, 0.001 respectively, and
�SNR is fixed to 20 dB. We assume there are L = 2 relay
nodes equipped with Nr1 = Nr2 = 2 antennas. The other simu-
lation parameters are similar to those in the single-relay system.
The MSE performance of the proposed algorithms is shown in
Fig. 9. Comparing Fig. 8 with Fig. 9, it can be clearly seen that
by incorporating multiple relay nodes, the system MSE can be
greatly reduced.

In the next example, we compare the performance of the
robust Bi-Step algorithm with the non-robust Bi-Step algo-
rithm, where the source and relay matrices are designed by the
Bi-Step algorithm, but using only the estimated channel matri-
ces without considering the robust design. Figs. 10 and 11 show
the performance comparison with σ 2

e = 0.01 and σ 2
e = 0.001,

respectively. It can be seen that the robust Bi-Step algorithm
outperforms the non-robust Bi-Step algorithm for both σ 2

e =
0.01 and σ 2

e = 0.001. This verifies the benefit of the proposed
design which is robust against CSI imperfection. Interestingly,
it can be seen from Figs. 10 and 11 that for σ 2

e = 0.01, the PMF
approach performs better than the non-robust Bi-Step algo-
rithm. When σ 2

e = 0.001, the PMF approach yields a smaller
MSE than the non-robust Bi-Step algorithm at high SNR.
Therefore, the performance of the non-robust Bi-Step algorithm
is comparable or even worse than that of the PMF approach.
Thus, it is sensible to compare the performance of the proposed
algorithms with the PMF approach.

Finally, we compare the computational complexity of the Tri-
Step and Bi-Step algorithms. In each iteration of the Tri-Step
algorithm, updating W̃, F̃2, and {F1i } involves matrix inversion
(35), matrix SVD (43), and solving the QCQP problem (48)–
(50). Thus, the per iteration computational complexity order of
the Tri-Step algorithm is O((

∑K
i=1 N 2

si )
3), which is the com-

plexity of solving the QCQP problem (48)–(50) [21]. Similarly,
updating F̃2 and {F1i } in each iteration of the Bi-Step algorithm
involves matrix EVDs (56), (57), and solving the SDP problem
(65)–(68). Thus, the Bi-Step algorithm has a per iteration com-
plexity order of O((

∑K
i=1 N 2

si )
3.5), which is the complexity of

Fig. 10. Example 6: MSE versus SNR, �SNR = 20 dB, σ 2
e = 0.01.

Fig. 11. Example 6: MSE versus SNR, �SNR = 20 dB, σ 2
e = 0.001.

TABLE III
AVERAGE NUMBER OF ITERATIONS REQUIRED TILL CONVERGENCE

BY THE PROPOSED ALGORITHMS

solving the SDP problem (65)–(68) [21]. Therefore, the Bi-Step
algorithm has a higher per-iteration complexity than the Tri-
Step algorithm. Interestingly, the robust Tri-Step and Bi-Step
algorithms have a similar computational complexity order to
their counterparts in non-robust transceiver design for multiuser
MIMO relay systems without the direct links [15].

The overall complexity of two algorithms also depends on
their convergence speed. Table III shows the average number
of iterations required by the proposed Tri-Step and Bi-Step
algorithms till convergence with Nb1 = Nb2 = Ns1 = Ns2 = 2,
Nr = Nd = 4, �SNR = 20 dB, and σ 2

e = 0.01. Both algorithms
are required to converge up to ε = 10−3. It can be seen from
Table III that the number of iterations required by the Tri-
Step algorithm increases much faster with SNR than that of the
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Bi-Step algorithm. This can be explained as follows. In the Tri-
Step algorithm, both {F1i } and F̃2 need to be initialized, and
matrices {F1i }, F̃2, and W̃ are optimized in each iteration, while
for the Bi-Step algorithm, only {F1i } need to be initialized, and
only matrices {F1i } and F̃2 need to be updated in each iteration.
Therefore, the Bi-Step algorithm converges faster.

VI. CONCLUSION

We have investigated the optimal source, relay, and receiver
matrices design for multiuser AF MIMO relay communication
systems with direct source-destination links and imperfect CSI.
Two iterative algorithms have been developed to design the sta-
tistically robust source and relay matrices for the commonly
used MMSE criteria. Simulation results show an improved
robustness of the proposed algorithms against CSI mismatch.
This paper generalizes the multiuser MIMO relay design with
direct links to the practical scenario of imperfect CSI knowl-
edge.
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