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Simplified Algorithms for Optimizing Multiuser
Multi-Hop MIMO Relay Systems

Yue Rong, Senior Member, IEEE

Abstract—In this paper, we address the issue of multiaccess
communication through multi-hop linear non-regenerative relays,
where all users, all relay nodes, and the destination node may
have multiple antennas. Using a linear minimal mean-squared
error (MMSE) receiver at the destination node, we demonstrate
that the optimal amplifying matrix at each relay node can be
viewed as a linear MMSE filter concatenated with another linear
filter. As a consequence, the MSE matrix of the signal waveform
estimation at the destination node is decomposed into the sum
of the MSE matrices at all relay nodes. We show that at a
high signal-to-noise ratio (SNR) environment, this MSE matrix
decomposition significantly simplifies the solution to the problem
of optimizing the source precoding matrices and relay amplifying
matrices. Simulation results show that even at the low to medium
SNR range, the simplified optimization algorithms have only
a marginal performance degradation but a greatly reduced
computational complexity and signalling overhead compared
with the existing optimal iterative algorithm, and thus are of
great interest for practical relay systems.

Index Terms—MIMO relay, multi-hop relay, MMSE, mul-
tiuser.

I. INTRODUCTION

NON-REGENERATIVE multiple-input multiple-output
(MIMO) relay communication systems recently have

attracted much research interest [1]-[7]. For a single-user
multi-hop MIMO relay system with any number of hops, the
optimality of channel diagonalization has been proved in [3].
Based on this diagonalization property, an iterative algorithm
was developed in [3] to optimize the power allocation at all
data streams and all nodes. For a multiuser relay system, the
achievable sum rate has been derived in [4], assuming that
each user is equipped with a single antenna. In [5], the optimal
relay amplifying matrix and source precoding matrices were
developed to maximize the sum source-destination mutual
information of a two-hop multiuser relay system, where the
users and the relay node are equipped with multiple anten-
nas. Recently, a minimal mean-squared error (MMSE)-based
optimal multiuser MIMO relay system has been proposed
[6]. The quality-of-service constraints in a multi-antenna relay
broadcast channel were investigated in [7].

In this paper, we focus on multiaccess communication
through multi-hop linear non-regenerative relays. In contrast
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to [4], we consider a relay system where all users, all relay
nodes, and the destination node may have multiple antennas.
Using a linear MMSE receiver at the destination node, we
show that the optimal amplifying matrix at each relay node
can be viewed as a linear MMSE filter concatenated with
another linear filter. As a consequence, the MSE matrix of
the signal waveform estimation at the destination node can
be decomposed into the sum of the MSE matrices at all relay
nodes. A very useful application of such decomposition is that
it greatly simplifies the source precoding matrices and relay
amplifying matrices optimization problem at a (moderately)
high signal-to-noise ratio (SNR) environment. In particular,
it enables the power allocation optimization to be performed
at each relay node in a distributed manner, which requires
only local channel state information (CSI) knowledge. Thus
the simplified relay algorithms proposed in this paper have a
significant reduction in both the computational complexity and
the signalling overhead compared with the iterative algorithm
developed in [6]. Simulation results show that even at the
low to medium SNR range, the simplified optimization algo-
rithms only slightly increase the MSE of the signal waveform
estimation and the system bit-error-rate (BER), but greatly
reduce the computational complexity (less than the complexity
of carrying out one iteration of the algorithm in [6]). Thus,
the simplified optimization algorithms are of great interest
for practical relay systems. The multiuser multi-hop relay
algorithms developed in this paper can be applied in multi-
hop wireless backhaul networks where high data rate wireless
links need to be established over a long distance with the aid
of fixed relay nodes. Note that multi-hop wireless backhaul
networks are being considered by several industry standards
such as IEEE802.16j [8], [9].

We would like to mention that the decomposition of the
MSE matrix was first discovered in [10] for a single-user
two-hop MIMO relay system. Our paper generalizes [10]
from single-user two-hop MIMO relay system to multiuser
multi-hop MIMO relay systems with any number of hops
and any number of users. Note that due to the introduction
of multiusers and multiple relay nodes, a rigorous proof of
the MSE matrix decomposition for multi-hop MIMO relay
system is much more challenging than that for the two-hop
MIMO channel, and is one contribution of this paper. The
generalization from a single-user two-hop MIMO system to
multiuser multi-hop MIMO relay systems is significant. Note
that although in this paper we focus on uplink multiaccess
systems, the downlink broadcast system can be designed by
exploiting the uplink-downlink duality for multi-hop linear
non-regenerative MIMO relay systems established in [11].
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Fig. 1. Block diagram of an 𝑁𝑢-user 𝐿-hop linear non-regenerative MIMO
relay communication system.

In this paper, for notational convenience, we consider a
narrow band single-carrier system. However, our results can
be straightforwardly generalized to broadband multi-carrier
multi-hop MIMO relay systems as in the case of two-hop
MIMO relay system shown in [2].

The rest of this paper is organized as follows. In Section II,
we introduce the model of a multi-hop linear non-regenerative
multiaccess MIMO relay communication system. The pro-
posed source and relay design algorithms are presented in
Section III. In Section IV, we show some numerical examples.
Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a multiaccess (uplink) system where 𝑁𝑢 users
simultaneously transmit information to a common destination
node equipped with a linear receiver as shown in Fig. 1. Due
to the long source-destination distance, 𝐿 − 1 relay nodes
are applied in serial to relay signals from all users to the
destination node, where the 𝑙th relay node is equipped with
𝑁𝑙 antennas, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿 − 1, and the destination node
has 𝑁𝐿 antennas. The 𝑖th user transmits 𝑀𝑖 independent
data streams using 𝑀𝑖 antennas, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢. We denote
𝑁0 =

∑𝑁𝑢

𝑖=1 𝑀𝑖 as the total number of independent data
streams from all users. For a linear non-regenerative MIMO
relay system, there should be 𝑁0 ≤ min(𝑁1, ⋅ ⋅ ⋅ , 𝑁𝐿), since
otherwise the system can not support 𝑁0 active symbols in
each transmission. Such condition is imposed by the inherent
physical property of the MIMO channel (which is true also
for classical single-hop MIMO communication systems [12]),
but not from our algorithms developed later. In systems with
more than 𝐿− 1 potential relays, relay nodes having enough
number of antennas should be chosen to establish an 𝐿-hop
communication system.

In this paper, we focus on the non-regenerative relay
strategy as in [1]-[7] and [10]-[11] due to the following two
reasons. First, in the non-regenerative strategy, the relay node
only amplifies and retransmits its received signal. Thus, the
complexity of the non-regenerative strategy is much lower than
that of the regenerative strategy. This advantage is particularly
important when all nodes are equipped with multiple antennas,
since decoding multiple data streams involves much more
computational efforts than decoding a single data stream.
Second, for multi-hop relay networks, the delay introduced
by the regenerative strategy due to decoding is much larger
than that of the non-regenerative strategy.

At the 𝑖th user, the 𝑀𝑖 × 1 modulated signal vector s𝑖 is
linearly precoded by the 𝑀𝑖 × 𝑀𝑖 source precoding matrix
B𝑖, and the precoded signal vector u𝑖 = B𝑖s𝑖 is transmitted

to the first relay node. The received signal vector at the first
relay node is given by

y1 =

𝑁𝑢∑
𝑖=1

G𝑖u𝑖 + v1 ≜ H1x1 + v1 (1)

where G𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, is the 𝑁1 × 𝑀𝑖 MIMO channel
matrix between the first relay node and the 𝑖th user, v1 is the
𝑁1× 1 independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN) vector at the first relay node,
x1 = F1s, s ≜

[
s𝑇1 , ⋅ ⋅ ⋅ , s𝑇𝑁𝑢

]𝑇
, and

H1 ≜ [G1, ⋅ ⋅ ⋅ ,G𝑁𝑢 ], F1 ≜ bd(B1, ⋅ ⋅ ⋅ ,B𝑁𝑢). (2)

Here H1 is the equivalent 𝑁1 ×𝑁0 first-hop MIMO channel,
F1 is the equivalent 𝑁0×𝑁0 block diagonal source precoding
matrix, s is an 𝑁0 × 1 vector containing source symbols
from all users, bd(⋅) stands for a block diagonal matrix,
and (⋅)𝑇 denotes matrix (vector) transpose. We assume that
E[ss𝐻 ] = I𝑁0 , where E[⋅] stands for the statistical expectation,
(⋅)𝐻 denotes the Hermitian transpose, and I𝑛 is an 𝑛 × 𝑛
identity matrix.

Due to its simplicity, a linear nonregenerative relay matrix is
used at each relay as in [1]-[7]. The input-output relationship
at the 𝑙th relay nodes is

x𝑙+1 = F𝑙+1y𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1 (3)

where F𝑙+1, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿 − 1, is the 𝑁𝑙 × 𝑁𝑙 amplifying
matrix at the 𝑙th relay node, and y𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1, is the
𝑁𝑙 × 1 signal vector received at the 𝑙th relay node written as

y𝑙 = H𝑙x𝑙 + v𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1 (4)

where H𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿−1, is the 𝑁𝑙×𝑁𝑙−1 MIMO channel
matrix of the 𝑙th hop, and v𝑙 is the i.i.d. AWGN vector at
the 𝑙th relay node. Finally, at the last hop, the signal vector
received at the destination node is given by (4) with 𝑙 = 𝐿.
We assume that all noises are complex circularly symmetric
with zero mean and unit variance. From (1)-(4), we have [3]

y𝑙 = A𝑙s+ v̄𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿
where A𝑙 is the equivalent MIMO channel matrix from the
source to the 𝑙th hop, and v̄𝑙 is the equivalent noise vector
given by [3]

A𝑙=

1⊗
𝑖=𝑙

(H𝑖F𝑖), 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿 (5)

v̄1=v1, v̄𝑙=

𝑙∑
𝑗=2

( 𝑗⊗
𝑖=𝑙

(H𝑖F𝑖)v𝑗−1

)
+v𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. (6)

Here for matrices X𝑖,
⊗𝑘

𝑖=𝑙(X𝑖) ≜ X𝑙 ⋅ ⋅ ⋅X𝑘.
From (6), the covariance matrix of v̄𝑙, C𝑙 = E[v̄𝑙v̄

𝐻
𝑙 ], 𝑙 =

1, ⋅ ⋅ ⋅ , 𝐿, is given by

C1=I𝑁1

C𝑙=

𝑙∑
𝑗=2

( 𝑗⊗
𝑖=𝑙

(H𝑖F𝑖)

𝑙⊗
𝑖=𝑗

(F𝐻
𝑖 H

𝐻
𝑖 )
)
+I𝑁𝑙

, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿.

We would like to mention that the system model in this paper
extends the model of multiuser MIMO relay systems in [4],
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[5], [7] from two hops to multiple hops. Such extension is
important in the case of long source-destination distance where
a two-hop relay is not sufficient and a multi-hop relay is
necessary to establish a reliable source-destination link.

III. PROPOSED SOURCE AND RELAY DESIGN

ALGORITHMS

With a linear receiver at the destination node, the estimated
signal vector is given by ŝ =W𝐻

𝐿 y𝐿, whereW𝐿 is the 𝑁𝐿×
𝑁0 weight matrix. The weight matrix of the linear MMSE
receiver [13] isW𝐿 = (A𝐿A

𝐻
𝐿 +C𝐿)

−1A𝐿 [3], where (⋅)−1

stands for the matrix inversion. Using this MMSE receiver, the
MSE matrix E𝐿 at the destination node is given by [3]

E𝐿 =
(
I𝑁0 +A

𝐻
𝐿C

−1
𝐿 A𝐿

)−1

=

[
I𝑁0 +

𝐿⊗
𝑖=1

(F𝐻
𝑖 H

𝐻
𝑖 )

(
𝐿∑

𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H

𝐻
𝑖 )
)
+ I𝑁𝐿

)−1 1⊗
𝑖=𝐿

(H𝑖F𝑖)

⎤
⎦
−1

. (7)

Let us introduce matrices

D𝑙 ≜ A𝑙A
𝐻
𝑙 +C𝑙 =

𝑙∑
𝑗=1

( 𝑗⊗
𝑖=𝑙

(H𝑖F𝑖)

𝑙⊗
𝑖=𝑗

(F𝐻
𝑖 H

𝐻
𝑖 )
)
+ I𝑁𝑙

𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1. (8)

It can be shown from [3] that the transmission power con-
sumed by the 𝑙th relay node is

tr
(
E
[
x𝑙+1x

𝐻
𝑙+1

])
= tr

(
F𝑙+1D𝑙F

𝐻
𝑙+1

)
, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿−1 (9)

where tr(⋅) denotes matrix trace.
Using (7) and (9), the problem of minimizing the MSE of

the signal waveform estimation at the destination node can be
written as

min
{F𝑙},{B𝑖}

tr
((
I𝑁0 +A

𝐻
𝐿C

−1
𝐿 A𝐿

)−1
)

(10)

s.t. tr
(
F𝑙D𝑙−1F

𝐻
𝑙

) ≤ 𝑝𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (11)

tr(B𝑖B
𝐻
𝑖 ) ≤ 𝑞𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢 (12)

where (11) and (12) are the transmission power constraint
at each relay node and each user, respectively, 𝑝𝑙 and 𝑞𝑖
are the corresponding power budget, {F𝑙} ≜ [F2, ⋅ ⋅ ⋅ ,F𝐿],
and {B𝑖} ≜ [B1, ⋅ ⋅ ⋅ ,B𝑁𝑢 ]. The problem (10)-(12) is non-
convex with matrix variables, and a globally optimal solution
is very difficult to obtain with a reasonable computational
complexity (non-exhaustive searching). In [6], an iterative
procedure was developed to obtain (at least) a locally optimal
solution of the problem (10)-(12), where in each iteration,
the relay amplifying matrices are optimized with fixed source
precoding matrices, and then the source precoding matrices are
updated with the given relay amplifying matrices. However,
the computational complexity and the signalling overhead of
the iterative algorithm is quite high for practical relay systems.
In the following, we propose simplified algorithms to solve
an approximation of the problem (10)-(12). The proposed
algorithms have much smaller computational complexity and
signalling overhead than the iterative algorithm in [6] as
analyzed and shown later.

A. Optimal Structure of Relay Amplifying Matrices

By introducing 𝑁𝑙−1 × 𝑁0 matrices T𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, the
following theorem establishes the structure of the optimal relay
amplifying matrices, and demonstrates that the MSE matrix at
the destination node can be decomposed into the sum of the
MSE matrices at all relay nodes.

THEOREM 1: The optimal relay amplifying matrices have
the following structure

F𝑙 = T𝑙A
𝐻
𝑙−1D

−1
𝑙−1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. (13)

Using (13), the MSE matrix at the destination node can be
equivalently decomposed to

E𝐿 =
(
I𝑁0+F

𝐻
1 H

𝐻
1 H1F1

)−1
+

𝐿∑
𝑙=2

(
R−1

𝑙 +T𝐻
𝑙 H

𝐻
𝑙 H𝑙T𝑙

)−1

(14)
where

R𝑙 ≜ A𝐻
𝑙−1D

−1
𝑙−1A𝑙−1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. (15)

PROOF: See Appendix A. □
Interestingly, it can be seen from (13) that the optimal relay

amplifying matrices F𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, can be decomposed into
F𝑙 = T𝑙W

𝐻
𝑙 , where W𝑙 = (A𝑙−1A

𝐻
𝑙−1+C𝑙−1)

−1A𝑙−1, 𝑙 =
2, ⋅ ⋅ ⋅ , 𝐿, is the weight matrix of the linear MMSE filter for
the received signal vector at the (𝑙−1)-th relay node given by
y𝑙−1 = A𝑙−1s+v̄𝑙−1, and the linear filter T𝑙 will be designed
later. The term

(
R−1

𝑙 + T𝐻
𝑙 H

𝐻
𝑙 H𝑙T𝑙

)−1
, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, in

(14) is the increment of the MSE matrix introduced by the
(𝑙 − 1)-th relay node as detailed in Appendix A. It is worth
noting that R𝑙 is in fact the covariance matrix of W𝐻

𝑙 y𝑙−1 as
R𝑙 =W

𝐻
𝑙 E[y𝑙−1y

𝐻
𝑙−1]W𝑙. It can be seen from (14) that the

effect of noise in the first hop is reflected by I𝑁0 in the first
term. As SNR increases, F𝐻

1 H
𝐻
1 H1F1 increases to infinity,

and
(
I𝑁0 +F

𝐻
1 H

𝐻
1 H1F1

)−1
approaches 0𝑁0×𝑁0 . Similarly,

the effect of noise in the 𝑙th hop, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, is reflected
by R𝑙. Interestingly, as SNR increases, R𝑙 approaches I𝑁0 ,
T𝐻

𝑙 H
𝐻
𝑙 H𝑙T𝑙 increases to infinity, and consequently,

(
R−1

𝑙 +

T𝐻
𝑙 H

𝐻
𝑙 H𝑙T𝑙

)−1
approaches 0𝑁0×𝑁0 .

By exploiting (13), the transmission power consumed by
each relay node can be written as

tr
(
F𝑙D𝑙−1F

𝐻
𝑙

)
= tr

(
T𝑙A

𝐻
𝑙−1D

−1
𝑙−1D𝑙−1D

−1
𝑙−1A𝑙−1T

𝐻
𝑙

)
= tr

(
T𝑙R𝑙T

𝐻
𝑙

)
, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. (16)

From (2) we have

tr
((
I𝑁0 + F

𝐻
1 H

𝐻
1 H1F1

)−1
)

= tr

⎛
⎝(I𝑁1 +

𝑁𝑢∑
𝑖=1

G𝑖Q𝑖G
𝐻
𝑖

)−1
⎞
⎠+𝑁0 −𝑁1 (17)

where Q𝑖 ≜ E[u𝑖u
𝐻
𝑖 ] = B𝑖B

𝐻
𝑖 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, is the co-

variance matrix of the signal transmitted by the 𝑖th user. Now
by using (14)-(17), the problem (10)-(12) can be equivalently
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rewritten as

min
{Q𝑖},{T𝑙}

tr

⎛
⎝(I𝑁1 +

𝑁𝑢∑
𝑖=1

G𝑖Q𝑖G
𝐻
𝑖

)−1

+

𝐿∑
𝑙=2

(
R−1

𝑙 +T𝐻
𝑙 H

𝐻
𝑙 H𝑙T𝑙

)−1

)
(18)

s.t. tr
(
T𝑙R𝑙T

𝐻
𝑙

) ≤ 𝑝𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (19)

tr(Q𝑖) ≤ 𝑞𝑖, Q𝑖 ર 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢 (20)

where {T𝑙} ≜ [T2, ⋅ ⋅ ⋅ ,T𝐿], {Q𝑖} ≜ [Q1, ⋅ ⋅ ⋅ ,Q𝑁𝑢 ], and ર
stands for the matrix positive semi-definiteness.

B. Proposed Algorithm 1

Using the matrix inversion lemma (A+BCD)−1 = A−1−
A−1B(DA−1B + C−1)−1DA−1, it can be seen from (15)
that

R𝑙=A
𝐻
𝑙−1

(
C−1

𝑙−1 −C−1
𝑙−1A𝑙−1

(
A𝐻

𝑙−1C
−1
𝑙−1A𝑙−1 + I𝑁0

)−1

×A𝐻
𝑙−1C

−1
𝑙−1

)
A𝑙−1

=A𝐻
𝑙−1C

−1
𝑙−1A𝑙−1

(
A𝐻

𝑙−1C
−1
𝑙−1A𝑙−1+I𝑁0

)−1
, 𝑙=2, ⋅ ⋅ ⋅ , 𝐿.

In the case of (moderately) high SNR where A𝐻
𝑙−1C

−1
𝑙−1A𝑙−1

≫ I𝑁0 , we can approximate R𝑙 as I𝑁0 , 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. In
other words, in such case, the value of Q𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢,
does not affect R𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, and T𝑙 does not affect R𝑗 ,
𝑗 = 𝑙+1, ⋅ ⋅ ⋅ , 𝐿. This fact implies that the objective function
(18) and the constraints in (19) are decoupled with respect to
the variables {Q𝑖} and {T𝑙}. Therefore, the problem (18)-(20)
can be approximated and decomposed into the following relay
amplifying matrix optimization problem for each 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿

min
T𝑙

tr
((
R−1

𝑙 +T𝐻
𝑙 H

𝐻
𝑙 H𝑙T𝑙

)−1
)

(21)

s.t. tr
(
T𝑙R𝑙T

𝐻
𝑙

) ≤ 𝑝𝑙 (22)

and the source covariance matrices optimization problem

min
{Q𝑖}

tr

⎛
⎝
(
I𝑁1 +

𝑁𝑢∑
𝑖=1

G𝑖Q𝑖G
𝐻
𝑖

)−1
⎞
⎠ (23)

s.t. tr(Q𝑖) ≤ 𝑞𝑖, Q𝑖 ર 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢.(24)

In the following, we show that the problem (21)-(22) has a
water-filling solution. Let us introduce the eigenvalue decom-
position (EVD) of H𝐻

𝑙 H𝑙 = V𝑙Λ𝑙V
𝐻
𝑙 and R𝑙 = U𝑙Σ𝑙U

𝐻
𝑙 ,

𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, where the dimensions of V𝑙 and Λ𝑙 are
𝑁𝑙−1×𝑁𝑙−1, the dimensions of U𝑙 and Σ𝑙 are 𝑁0×𝑁0, and
the diagonal elements in Λ𝑙 and Σ𝑙 are sorted in increasing
orders. By introducing T̃𝑙 ≜ T𝑙R

1
2 , the problem (21)-(22)

can be rewritten as

min
T̃𝑙

tr
(
R

1
2

𝑙

(
I𝑁0 + T̃

𝐻
𝑙 H

𝐻
𝑙 H𝑙T̃𝑙

)−1
R

1
2

𝑙

)
(25)

s.t. tr
(
T̃𝑙T̃

𝐻
𝑙

) ≤ 𝑝𝑙. (26)

Using Lemma 2 in Appendix A, the solution to the problem
(25)-(26) in terms of the singular value decomposition (SVD)
of T̃𝑙 is given by T̃𝑙 = V𝑙,1Ω𝑙U

𝐻
𝑙 , where V𝑙,1 contains the

rightmost 𝑁0 columns ofV𝑙. Thus the structure of the optimal
linear filter T𝑙 is given by

T𝑙 = V𝑙,1Δ𝑙U
𝐻
𝑙 , Δ𝑙 = Ω𝑙Σ

− 1
2

𝑙 , 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (27)

where Δ𝑙 is an 𝑁0 ×𝑁0 diagonal matrix that remains to be
optimized.

Interestingly, it can be seen from (27) that at the (𝑙 − 1)-
th relay node, the linear filter T𝑙 first performs beamforming
to the direction of the eigenvectors of R𝑙, then it allocates
power to 𝑁0 streams throughΔ𝑙, and finally beamforms to the
direction of the eigenvectors ofH𝐻

𝑙 H𝑙. Substituting (27) back
into (21)-(22), we find that the matrix-variable optimization
problem (21)-(22) is converted to the following optimal power
loading problem with scalar variables

min
𝛿𝑙,1,⋅⋅⋅ ,𝛿𝑙,𝑁0

𝑁0∑
𝑖=1

1

𝜎−1
𝑙,𝑖 + 𝛿2𝑙,𝑖𝜆𝑙,𝑖

(28)

s.t.

𝑁0∑
𝑖=1

𝛿2𝑙,𝑖𝜎𝑙,𝑖 ≤ 𝑝𝑙 (29)

where 𝛿𝑙,𝑖, 𝜎𝑙,𝑖, 𝜆𝑙,𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁0, denote the 𝑖th diagonal
element of Δ𝑙, Σ𝑙, Λ𝑙, respectively. Using the Lagrange
multiplier method [14], it can be shown that the problem (28)-
(29) has a water-filling solution given by

𝛿2𝑙,𝑖 =
1

𝜆𝑙,𝑖

(√
𝜆𝑙,𝑖

𝜇𝑙 𝜎𝑙,𝑖
− 1

𝜎𝑙,𝑖

)+
, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁0

where (𝑥)+ ≜ max(𝑥, 0), and 𝜇𝑙 > 0 is the Lagrangian
multiplier and the solution to the nonlinear equation of∑𝑁0

𝑖=1
𝜎𝑙,𝑖

𝜆𝑙,𝑖

(√
𝜆𝑙,𝑖

𝜇𝑙 𝜎𝑙,𝑖
− 1

𝜎𝑙,𝑖

)+
= 𝑝𝑙.

Substituting (27) back into (13), the structure of the optimal
relay amplifying matrices is given by

F𝑙 = V𝑙,1Δ𝑙U
𝐻
𝑙 A

𝐻
𝑙−1D

−1
𝑙−1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. (30)

Interestingly, although (30) is derived under a high SNR
assumption, this structure is in fact optimal for the whole SNR
region as stated by the following theorem.

THEOREM 2: The structure of the relay amplifying ma-
trix given in (30) can be equivalently written as F𝑙 =
V𝑙,1Υ𝑙U

𝐻
𝐻𝑙−1,1

, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, which is optimal for multi-hop
MIMO relay systems as proved in [3]. HereΥ𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿,
are 𝑁0 × 𝑁0 diagonal matrices, H1F1 = U𝐻1Γ1V

𝐻
1 , H𝑙 =

U𝐻𝑙
Γ𝑙V

𝐻
𝑙 , 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, are SVDs of H1F1 and H𝑙 with

the diagonal elements of Γ𝑙 sorted in increasing orders, and
U𝐻𝑙,1 contains the rightmost 𝑁0 columns of U𝐻𝑙

.
PROOF: See Appendix B. □
Finally, the source covariance matrices optimization prob-

lem (23)-(24) can be solved as follows. By introducing a
positive semi-definite (PSD) matrix X with X ર (

I𝑁1 +∑𝑁𝑢

𝑖=1G𝑖Q𝑖G
𝐻
𝑖

)−1
and using the Schur complement [14],

the problem (23)-(24) can be converted to the problem of

min
{Q𝑖},X

tr(X) (31)

s.t.

(
X I𝑁1

I𝑁1 I𝑁1 +
∑𝑁𝑢

𝑖=1G𝑖Q𝑖G
𝐻
𝑖

)
ર 0 (32)

tr(Q𝑖) ≤ 𝑞𝑖, Q𝑖 ર 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢.(33)
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TABLE I
PROCEDURE OF OPTIMIZING THE SOURCE AND RELAY MATRICES.

1) Solve the SDP problem (31)-(33) to obtain {Q𝑖}.
2) For 𝑙 = 2 : 𝐿

Compute R𝑙; Solve the problem (21)-(22) to have T𝑙; Obtain F𝑙

as in (13).
End.

The problem (31)-(33) is a convex semi-definite programming
(SDP) problem which can be efficiently solved by the interior-
point method [14]. Then the optimal B𝑖 can be obtained as
B𝑖 = U𝑄,𝑖Λ

1
2

𝑄,𝑖U𝑏, where U𝑄,𝑖Λ𝑄,𝑖U
𝐻
𝑄,𝑖 is the EVD of Q𝑖,

and U𝑏 is an arbitrary 𝑀𝑖 × 𝑀𝑖 unitary matrix. We would
like to mention that when the number of independent data
streams transmitted by the 𝑖th user (defined as 𝑁𝑏,𝑖) is smaller
than the number of transmit antennas 𝑀𝑖, solving the problem
(31)-(33) might yield Q𝑖 whose rank is larger than 𝑁𝑏,𝑖. In
such case, the randomization technique [15] can be applied to
obtain a possibly suboptimal solution of B𝑖 with rank 𝑁𝑏,𝑖.
Nevertheless, in this paper, we focus on 𝑁𝑏,𝑖 = 𝑀𝑖, 𝑖 =
1, ⋅ ⋅ ⋅ , 𝑁𝑢. Thus, B𝑖 obtained through solving the problem
(31)-(33) is optimal.

The procedure of optimizing all source precoding matrices
and relay amplifying matrices is described in Table I. We
would like to mention that in each iteration of the algorithm in
[6], the complexity of updating the source precoding matrices
is similar to that of solving the problem (31)-(33). While at
each iteration of [6], an alternating power loading algorithm
is applied to update the relay amplifying matrices, which has
a higher computational complexity than that of solving the
problem (21)-(22). Therefore, the computational complexity
of carrying out the procedure in Table I is less than that of
each iteration in [6]. Interestingly, the procedure in Table I
can be carried out in a distributed manner where each relay
node performs the necessary optimization procedure locally. In
particular, the first relay node optimizes all source precoding
matrices and sends back B𝑖 to user 𝑖. The first relay node
also computes the optimal F2. Then at the 𝑙th relay node,
𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 − 1, the optimal F𝑙+1 is computed based on
H𝑙+1, C𝑙, and A𝑙. The CSI of H𝑙+1 can be first estimated at
the (𝑙 + 1)-th relay node through channel training [16], and
then fed back to the 𝑙th relay node. The knowledge of C𝑙 and
A𝑙 is forwarded from the (𝑙− 1)-th relay node. Note that due
to its iterative nature, the algorithm in [6] requires centralized
processing. Obviously, compared with the centralized method,
the distributed approach requires much less information ex-
change and signalling overhead among different nodes, and
thus, is preferred in practical relay systems.

C. Proposed Algorithm 2

In this algorithm, the source precoding matrices are opti-
mized by solving the problem (31)-(33). However, since R𝑙

approaches I𝑁0 as SNR increases, at a high SNR environment,
the relay amplifying matrices optimization can be further
simplified by substituting R𝑙 in (21) and (22) with I𝑁0 . Then
we have the following optimization problem for each T𝑙,

𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿
min
T𝑙

tr
((
I𝑁0 +T

𝐻
𝑙 H

𝐻
𝑙 H𝑙T𝑙

)−1
)

(34)

s.t. tr
(
T𝑙T

𝐻
𝑙

) ≤ 𝑝𝑙. (35)

Interestingly, (34) is in fact an upper-bound of (21). Applying
Lemma 2 in Appendix A, the solution to the problem (34)-(35)
is given by

T𝑙 = V𝑙,1Θ𝑙Π, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (36)

where Π can be any 𝑁0 × 𝑁0 unitary matrix, and Θ𝑙 is an
𝑁0 × 𝑁0 diagonal matrix. Substituting (36) back into (34)-
(35), we find that the 𝑖th diagonal element of Θ𝑙 is given by

𝜃𝑙,𝑖 =
[

1
𝜆𝑙,𝑖

(√
𝜆𝑙,𝑖

𝜈𝑙
−1
)+] 1

2

, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁0. Here 𝜈𝑙 > 0 is the

solution to the nonlinear equation of
∑𝑁0

𝑖=1
1

𝜆𝑙,𝑖

(√
𝜆𝑙,𝑖

𝜈𝑙
−1
)+

=
𝑝𝑙.

Compared with the problem (21)-(22), the relay amplifying
matrices designed by the problem (34)-(35) has a smaller
computational complexity, since the latter algorithm does not
need to compute R𝑙 and its SVD. Comparing (36) with (27),
we can choose Π = U𝐻

𝑙 = V𝐻
1 which provides an optimal

structure of F𝑙. 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, as proved in Appendix B.
However, in this case, all relay nodes need to knowV1, which
increases the signalling overhead. For the reason of simplicity,
we choose Π = I𝑁0 . Through numerical simulations in
Section IV, we will see that there is only a negligible increase
in MSE and BER by using Π = I𝑁0 instead of Π = V𝐻

1 .

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
multiuser multi-hop MIMO relay design algorithms through
numerical simulations. We simulate a flat Rayleigh fading
environment where all channel matrices have entries with zero
mean. In particular, the variance of entries in G𝑖 is 1/𝑀𝑖,
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, and the variance of entries in H𝑙 is 1/𝑁𝑙−1,
𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. All noises are complex circularly symmetric
with zero mean and unit variance. We also assume that 𝑝𝑙 = 𝑃 ,
𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, 𝑞𝑖 = 𝑄, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢. We would like to
mention that in order to minimize (10), each user should use its
maximal power 𝑄. In fact, (10) can be equivalently rewritten
as

MSE = tr

((
I𝑁1+Ψ

𝐻
𝑁𝑢∑
𝑖=1

G𝑖B𝑖B
𝐻
𝑖 G

𝐻
𝑖 Ψ

)−1
)
−𝑁1+𝑁0

(37)
where

ΨΨ𝐻 =
𝐿⊗

𝑖=2

(F𝐻
𝑖 H

𝐻
𝑖 )

(
𝐿∑

𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H

𝐻
𝑖 )
)
+ I𝑁𝐿

)−1 2⊗
𝑖=𝐿

(H𝑖F𝑖).

Assuming that the 𝑖th user applies B̃𝑖 with tr(B̃𝑖B̃
𝐻
𝑖 ) = 𝑞𝑖 <

𝑄, obviously, the value of (37) can be reduced by using B𝑖 =
𝛼𝑖B̃𝑖, where 𝛼𝑖 =

√
𝑄/𝑞𝑖 > 1.

All simulation results are averaged over 5000 independent
channel realizations. The CVX convex optimization software
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Fig. 2. MSE versus 𝑃 . Example 1: 𝐿 = 2, 𝑁𝑢 = 2, 𝑀1 = 3, 𝑀2 = 2,
𝑁1 = 8, and 𝑁2 = 7; Example 2: 𝐿 = 3, 𝑁𝑢 = 3, 𝑀 = 2, and 𝑁 = 8.

package [17] is applied to solve the SDP problem (31)-
(33). For all examples, we set 𝑄 = 20dB and compare the
performance of the algorithm described in Table I (denoted
as Proposed Algorithm 1), the algorithm where the relay
amplifying matrices are designed by solving the problem (34)-
(35) using Π = V𝐻

1 (denoted as Proposed Algorithm 2), the
algorithm of solving the problem (34)-(35) with Π = I𝑁0

(denoted as Proposed Algorithm 3), and the optimal iterative
algorithm developed in [6] (denoted as Iterative Algorithm).

In our first example, we simulate a two-hop relay system
with 𝑁𝑢 = 2, 𝑀1 = 3, 𝑀2 = 2, 𝑁1 = 8, and 𝑁2 = 7.
Fig. 2 shows the MSE performance of all algorithms versus
𝑃 , and the system BER yielded by all algorithms with
QPSK constellations are illustrated in Fig. 3 versus 𝑃 . Our
results clearly demonstrate that the Proposed Algorithms 1-
3 only have slightly higher MSE and BER than the Iterative
Algorithm. Note that three proposed algorithms have a much
smaller computational complexity and signalling overhead
than the Iterative Algorithm as analyzed in Subsection III-B.
We also observe from Figs. 2 and 3 that there is a significant
performance improvement for all algorithms when 𝑃 increases
from 20dB to 25dB. The reason is that the MIMO relay
system simulated is under-loaded in terms of data streams
since

∑𝑁𝑢

𝑖=1 𝑀𝑖 = 𝑁0 < 𝑁𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿. In such scenario,
the system has a high spatial diversity order, which overcomes
the saturation effect caused by the fixed 𝑄. In MIMO relay
systems with a low spatial diversity order, one can observe
the saturation effect as 𝑃 increases when 𝑄 is fixed.

We simulate multi-hop (𝐿 ≥ 3) multiuser relay systems in
the following two examples. Since there are many parameters
on the system setup for multi-hop relays, for simplicity, we
consider relay systems where all users have the same number
of antennas (i.e., 𝑀𝑖 = 𝑀 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢) and all relay nodes
and the destination node have the same number of antennas
(i.e., 𝑁𝑙 = 𝑁 , 𝑙 = 1, ⋅ ⋅ ⋅ , 𝑁𝐿). The extension to systems
where different nodes have different number of antennas is
straight-forward. A three-hop (𝐿 = 3) MIMO relay system
is simulated in the second example with 𝑁𝑢 = 3, 𝑀 = 2,
and 𝑁 = 8. Fig. 2 and Fig. 3 show the MSE and BER
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Fig. 3. BER versus 𝑃 . Example 1: 𝐿 = 2, 𝑁𝑢 = 2, 𝑀1 = 3, 𝑀2 = 2,
𝑁1 = 8, and 𝑁2 = 7; Example 2: 𝐿 = 3, 𝑁𝑢 = 3, 𝑀 = 2, and 𝑁 = 8.

comparisons among four algorithms, respectively. It can be
seen that due to the approximation from the problem (21)-(22)
to the problem (34)-(35), the MSE and BER gaps between
the Proposed Algorithm 2, the Proposed Algorithm 3, and
the other two algorithm increase at low to medium 𝑃 . But
the performance of the Proposed Algorithm 1 is very close
to that of the Iterative Algorithm. It can also be observed
from Figs. 2 and 3 that both the MSE and BER values of
Example 1 are lower than those of Example 2, indicating that
the algorithm yielding a lower MSE indeed guarantees a better
BER performance.

In the third example, a five-hop (𝐿 = 5) relay system
is simulated with 𝑁𝑢 = 3, 𝑀 = 2, and 𝑁 = 9. The
MSE and BER comparisons of four algorithms are shown
in Fig. 4 and Fig. 5, respectively. It can be clearly seen
that the Proposed Algorithm 1 yields almost the same BER
as the Iterative Algorithm. It can also be observed from
Figs. 2-5 that there is only a small gap in both the MSE and
BER performance between the Proposed Algorithm 2 and the
Proposed Algorithm 3. The reason is that the performance of
both algorithms depend not only on Π, but also on the power
loading matrix Θ𝑙 in (36). From the fact that the gap between
the Proposed Algorithms 2 and 3 is smaller than that between
the Proposed Algorithms 1 and 2, it shows that the choice of
the power loading matrix plays a more important role than that
of Π. Since both the Proposed Algorithms 2 and 3 use the
same Θ𝑙, the performance gap caused by using different Π is
small. Based on the simulation results and taking into account
the complexity-performance tradeoff, the Proposed Algorithm
1 is most suitable for practical multiuser multi-hop MIMO
relay systems.

V. CONCLUSIONS

We addressed the issue of multiaccess communication
through multi-hop non-regenerative MIMO relays. It has been
shown that the MSE matrix of the signal waveform estimation
at the destination node can be decomposed into the sum of the
MSE matrices at all relay nodes. Simplified source and relay
optimization algorithms have been proposed which greatly
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Fig. 4. MSE versus 𝑃 . Example 3: 𝐿 = 5, 𝑁𝑢 = 3, 𝑀 = 2, 𝑁 = 9.
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Fig. 5. BER versus 𝑃 . Example 3: 𝐿 = 5, 𝑁𝑢 = 3, 𝑀 = 2, 𝑁 = 9.

reduce the computational complexity and signalling overhead
with only a negligible MSE and BER degradation.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we need the following two lemmas.
LEMMA 1 [18, 9.H.1.h]: For two 𝑁 ×𝑁 positive semidef-

inite matrices A and B with eigenvalues 𝜆𝑎,𝑖 and 𝜆𝑏,𝑖,
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 , arranged in the same order, respectively, it
follows that tr(AB) ≥∑𝑁

𝑖=1 𝜆𝑎,𝑖𝜆𝑏,𝑁+1−𝑖.
LEMMA 2: For matrices A, T, H with dimensions of 𝑚×

𝑛, 𝑙 × 𝑚, and 𝑘 × 𝑙, respectively, where 𝑘, 𝑙,𝑚 ≥ 𝑛, 𝑟 ≜
rank(H) ≥ 𝑛, and rank(T) = 𝑛, the solution to the problem
of

min
T

tr
(
A𝐻

(
I𝑚 +T𝐻H𝐻HT

)−1
A
)

s.t. tr
(
TT𝐻

) ≤ 𝑝

(38)
is given by T = Vℎ,1ΛU

𝐻
𝑎 in terms of the SVD of T. Here

H = UℎΣℎV
𝐻
ℎ , A = U𝑎Σ𝑎V

𝐻
𝑎 (39)

are the SVDs of H and A, with dimensions of Uℎ, Σℎ, Vℎ,
U𝑎, Σ𝑎, and V𝑎 being 𝑘× 𝑘, 𝑘× 𝑙, 𝑙× 𝑙, 𝑚× 𝑛, 𝑛× 𝑛, and

𝑛×𝑛, respectively. The diagonal elements of Σℎ and Σ𝑎 are
sorted in increasing orders, and Vℎ,1 contains the rightmost 𝑛
columns of Vℎ.

PROOF: Let us introduce the EVD of

T𝐻H𝐻HT = [U𝑥̄ U𝑥] bd
(
0(𝑚−𝑛)×(𝑚−𝑛),Λ𝑥

)
[U𝑥̄ U𝑥]

𝐻

(40)
where the dimensions of U𝑥̄, U𝑥, and Λ𝑥 are 𝑚× (𝑚− 𝑛),
𝑚×𝑛, and 𝑛×𝑛, respectively, 0𝑝×𝑚 denotes a 𝑝×𝑚 matrix
with all zero entries. Substituting (39) and (40) into (38), the
objective function in (38) can be written as

tr
(
Σ𝑎U

𝐻
𝑎

(
U𝑥(I𝑛 +Λ𝑥)

−1U𝐻
𝑥 +U𝑥̄U

𝐻
𝑥̄

)
U𝑎Σ𝑎

)
. (41)

From Lemma 1 we know that (41) is minimized if the
diagonal elements of Λ𝑥 are sorted in increasing order, and
U𝐻

𝑥 U𝑎 = Φ𝑛, where Φ𝑛 stands for an arbitrary 𝑛 × 𝑛
diagonal matrix with unit-norm main diagonal elements, i.e.,
∣[Φ𝑛]𝑖,𝑖∣ = 1, [Φ𝑛]𝑖,𝑗 = 0, 𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛, 𝑖 ∕= 𝑗. Without
affecting the objective function in (38), we choose U𝑥 = U𝑎.
It will be seen later on that the power constraint in (38) is
invariant to U𝑥.

From (40) we have

HT = V𝑥Λ
1
2
𝑥U

𝐻
𝑎 (42)

where V𝑥 is a 𝑘×𝑛 (semi)-unitary matrix with V𝐻
𝑥 V𝑥 = I𝑛.

Substituting the SVD of H in (39) into (42) and left multi-
plying by U𝐻

ℎ on both sides, we have[
0(𝑘−𝑟)×(𝑙−𝑟) 0(𝑘−𝑟)×𝑟

0𝑟×(𝑙−𝑟) Σℎ,𝑟

]
T̂ =

[
U𝐻

ℎ,𝑟

U𝐻
ℎ,𝑟

]
V𝑥Λ

1
2
𝑥U

𝐻
𝑎 (43)

where T̂ = V𝐻
ℎ T, Σℎ,𝑟 is a 𝑟× 𝑟 diagonal matrix containing

the nonzero singular values of H, and Uℎ,𝑟 and Uℎ,𝑟 contain
columns of Uℎ associated with the zero and nonzero singular
values of H, respectively. If 𝑘 = 𝑙 = 𝑟, (43) holds if and only
if

T̂ = Σ−1
ℎ,𝑟U

𝐻
ℎ,𝑟V𝑥Λ

1
2
𝑥U

𝐻
𝑎 . (44)

If 𝑙 > 𝑘 = 𝑟, then (43) holds if and only if[
0𝑟×(𝑙−𝑟) Σℎ,𝑟

]
T̂ = U𝐻

ℎ,𝑟V𝑥Λ
1
2
𝑥U

𝐻
𝑎 . (45)

Finally, if 𝑘 > 𝑟 and 𝑙 > 𝑟, (43) is true if and only if
U𝐻

ℎ,𝑟V𝑥 = 0(𝑘−𝑟)×𝑛 and (45) holds.
From (45), we see that in the latter two cases, there are

many solutions for T̂. We should choose T̂ that tr(T̂T̂𝐻) =
tr(TT𝐻) is minimized. Such T̂ is the minimum norm solution
given by

T̂ =
[
0𝑟×(𝑙−𝑟) Σ−1

ℎ,𝑟

]𝑇
U𝐻

ℎ,𝑟V𝑥Λ
1
2
𝑥U

𝐻
𝑎 . (46)

Interestingly, both (44) and (46) lead to the same transmission
power, given by

tr
(
TT𝐻

)
= tr

(
Λ

1
2
𝑥V

𝐻
𝑥 Uℎ,𝑟Σ

−2
ℎ,𝑟U

𝐻
ℎ,𝑟V𝑥Λ

1
2
𝑥

)
. (47)

Obviously, (47) is invariant to U𝑥. Using Lemma 1, we know
that (47) is minimized by U𝐻

ℎ,𝑟V𝑥 = Φ𝑟. Without loss of
generality, we choose V𝑥 = Uℎ,𝑟. From (44) and (46), we

find that T = Vℎ,1Σ
−1
ℎ,𝑟Λ

1
2
𝑥U𝐻

𝑎 . Thus, we prove the optimal

structure of T with Λ = Σ−1
ℎ,𝑟Λ

1
2
𝑥 . □
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Now we start to prove Theorem 1. The MSE matrix (7) can
be rewritten as

E𝐿= I𝑁0 −A𝐻
𝐿−1F

𝐻
𝐿H

𝐻
𝐿

(
H𝐿F𝐿D𝐿−1F

𝐻
𝐿H

𝐻
𝐿 + I𝑁𝐿

)−1

×H𝐿F𝐿A𝐿−1 (48)

= I𝑁0 −A𝐻
𝐿−1

[
D−1

𝐿−1 −
(
D𝐿−1F

𝐻
𝐿H

𝐻
𝐿H𝐿F𝐿D𝐿−1

+D𝐿−1

)−1
]
A𝐿−1 (49)

=
(
I𝑁0 +A

𝐻
𝐿−1C

−1
𝐿−1A𝐿−1

)−1
+A𝐻

𝐿−1

×(D𝐿−1F
𝐻
𝐿H

𝐻
𝐿H𝐿F𝐿D𝐿−1 +D𝐿−1

)−1
A𝐿−1 (50)

where the matrix inversion lemma is used to obtain (48)
and (50), and the identity B𝐻(BCB𝐻 + I)−1B = C−1 −
(CB𝐻BC+C)−1 is applied to get (49). Interestingly, the first
term in (50) is the MSE matrix associated with a MIMO relay
constituted by the first 𝐿 − 1 hops of the original relay, and
the second term in (50) is the increment of the MSE matrix
introduced by the last-hop of the original relay. Moreover,
since the first term in (50) is irrelevant to F𝐿, the optimization
problem in (10)-(12) for F𝐿 can be equivalently written as

min
F𝐿

tr
(
A𝐻

𝐿−1

(
D𝐿−1F

𝐻
𝐿H

𝐻
𝐿H𝐿F𝐿D𝐿−1+D𝐿−1

)−1
A𝐿−1

)
(51)

s.t. tr
(
F𝐿D𝐿−1F

𝐻
𝐿

) ≤ 𝑝𝐿. (52)

By introducing F̃𝐿 = F𝐿D
1
2

𝐿−1, the problem (51)-(52) can be
rewritten as

min
F̃𝐿

tr
(
A𝐻

𝐿−1D
− 1

2

𝐿−1

(
F̃𝐻

𝐿H
𝐻
𝐿H𝐿F̃𝐿+I𝐿−1

)−1
D

− 1
2

𝐿−1A𝐿−1

)
(53)

s.t. tr
(
F̃𝐿F̃

𝐻
𝐿

) ≤ 𝑝𝐿. (54)

Let us introduce the following EVD and SVD: H𝐻
𝐿H𝐿 =

V𝐿Λ𝐿V
𝐻
𝐿 , D

− 1
2

𝐿−1A𝐿−1 = U𝑑Λ𝑑V
𝐻
𝑑 , where Λ𝐿 and V𝐿

are 𝑁𝐿−1×𝑁𝐿−1 matrices, the dimension ofU𝑑, Λ𝑑, V𝑑 are
𝑁𝐿−1×𝑁0, 𝑁0×𝑁0, 𝑁0×𝑁0, respectively, and the diagonal
elements of Λ𝐿 and Λ𝑑 are sorted in increasing order. It can
be seen from Lemma 2 that the SVD of the optimal F̃𝐿 in
(53)-(54) is given by F̃𝐿 = V𝐿,1Λ𝑓U

𝐻
𝑑 , where Λ𝑓 is the

𝑁0 × 𝑁0 diagonal singular value matrix, and V𝐿,1 contains
the rightmost 𝑁0 columns of V𝐿. With simple manipulations,
we obtain

F̃𝐿 = V𝐿,1Λ𝑓Λ
−1
𝑑 V

𝐻
𝑑 V𝑑Λ𝑑U

𝐻
𝑑 = T𝐿A

𝐻
𝐿−1D

− 1
2

𝐿−1

where T𝐿 ≜ V𝐿,1Λ𝑓Λ
−1
𝑑 V

𝐻
𝑑 . Therefore, we have F𝐿 =

T𝐿A
𝐻
𝐿−1D

−1
𝐿−1.

Now by using the matrix inversion lemma, the second term
in (50) can be written as

A𝐻
𝐿−1

(
A𝐿−1T

𝐻
𝐿H

𝐻
𝐿H𝐿T𝐿A

𝐻
𝐿−1 +D𝐿−1

)−1
A𝐿−1

= A𝐻
𝐿−1

[
D−1

𝐿−1 −D−1
𝐿−1A𝐿−1

(
A𝐻

𝐿−1D
−1
𝐿−1A𝐿−1

+(T𝐻
𝐿H

𝐻
𝐿H𝐿T𝐿)

−1
)−1
A𝐻

𝐿−1D
−1
𝐿−1

]
A𝐿−1

=
[
T𝐻

𝐿H
𝐻
𝐿H𝐿T𝐿 +

(
A𝐻

𝐿−1D
−1
𝐿−1A𝐿−1

)−1
]−1

. (55)

Substituting (55) back into (50) and using (15), we obtain

E𝐿 = E𝐿−1 +
(
T𝐻

𝐿H
𝐻
𝐿H𝐿T𝐿 +R−1

𝐿

)−1
(56)

where E𝐿−1 =
(
I𝑁0 + A𝐻

𝐿−1C
−1
𝐿−1A𝐿−1

)−1
is the MSE

matrix at the (𝐿 − 1)-th hop. Similar to (50)-(56), we can
show that the optimal F𝑙 is given by F𝑙 = T𝑙A

𝐻
𝑙−1D

−1
𝑙−1,

𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿− 1, and

E𝑙=E𝑙−1+
(
T𝐻

𝑙 H
𝐻
𝑙 H𝑙T𝑙 +R

−1
𝑙

)−1
, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿− 1.(57)

E1=
(
I𝑁0 +A

𝐻
1 C

−1
1 A1

)−1
=
(
I𝑁0 + F

𝐻
1 H

𝐻
1 H1F1

)−1
.(58)

By combining (56)-(58), we have E𝐿 =
(
I𝑁0 + F

𝐻
1 H

𝐻
1 H1

F1

)−1
+
∑𝐿

𝑙=2

(
R−1

𝑙 +T𝐻
𝑙 H

𝐻
𝑙 H𝑙T𝑙

)−1
.

APPENDIX B
PROOF OF THEOREM 2

The proof is conducted through mathematical induction.
First, for 𝑙 = 1, we have A1 = H1F1, D1 = H1F1F

𝐻
1 H

𝐻
1 +

I𝑁1 , and R2 = F𝐻
1 H

𝐻
1 (H1F1F

𝐻
1 H

𝐻
1 + I𝑁1)

−1H1F1. By
using H1F1 = U𝐻1Γ1V

𝐻
1 , we obtain that U2 = V1,

A𝐻
1 D

−1
1 = V1Γ1,1(Γ

2
1,1 + I𝑁0)

−1U𝐻
𝐻1,1

, where Γ1,1 is an
𝑁0 × 𝑁0 diagonal matrix containing the nonzero singular
values ofH1F1. Thus from (30) we have F2 = V2,1Υ2U

𝐻
𝐻1,1

,
where Υ2 ≜Δ2Γ1,1(Γ

2
1,1 + I𝑁0)

−1 is an 𝑁0 ×𝑁0 diagonal
matrix. The optimality of the structure of such F2 has been
proven in [3] for multi-hop MIMO relay systems.

Second, assuming that for 𝑙 ≥ 2, the optimal F𝑗

given in (30) can be written as F𝑗 = V𝑗,1Υ𝑗U
𝐻
𝐻𝑗−1,1

,
𝑗 = 2, ⋅ ⋅ ⋅ , 𝑙, we now show that F𝑙+1 in (30) can be
written as F𝑙+1 = V𝑙+1,1Υ𝑙+1U

𝐻
𝐻𝑙,1

. In fact, from
(5) we can write A𝑙 = U𝐻𝑙,1

⊗2
𝑖=𝑙(Γ𝑖,1Υ𝑖)Γ1,1V

𝐻
1 ,

where Γ𝑖,1 is an 𝑁0 × 𝑁0 diagonal matrix containing
the largest 𝑁0 singular values of H𝑖. Then from (8) we
have D𝑙 = U𝐻𝑙,1

∑𝑙
𝑗=1

(⊗𝑗
𝑖=𝑙(Γ

2
𝑖,1Υ

2
𝑖 )Γ

2
1,1

)
U𝐻

𝐻𝑙,1
+

I𝑁𝑙
, from (15) we get R𝑙+1 =

V1

⊗2
𝑖=𝑙(Γ

2
𝑖,1Υ

2
𝑖 )Γ

2
1,1

(∑𝑙
𝑗=1

(⊗𝑗
𝑖=𝑙(Γ

2
𝑖,1Υ

2
𝑖 )Γ

2
1,1

)
+

I𝑁0

)−1
V𝐻

1 , and thus U𝑙+1 = V1. Finally, from (30) we
have F𝑙+1 = V𝑙+1,1Υ𝑙+1U

𝐻
𝐻𝑙,1

, where

Υ𝑙+1 =Δ𝑙+1

2⊗
𝑖=𝑙

(Γ𝑖,1Υ𝑖)Γ1,1

×
⎛
⎝ 𝑙∑

𝑗=1

( 𝑗⊗
𝑖=𝑙

(Γ2
𝑖,1Υ

2
𝑖 )Γ

2
1,1

)
+ I𝑁0

⎞
⎠
−1

.

Therefore, based on the principle of mathematical induction,
we have F𝑙 = V𝑙,1Υ𝑙U

𝐻
𝐻𝑙−1,1

, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿.
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