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Precoding Design for MIMO Relay Multicasting
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Abstract—In this paper, we consider a two-hop multicasting
multiple-input multiple-output (MIMO) relay system where one
transmitter multicasts common message to multiple receivers
with the aid of a relay node, and all nodes are equipped with
multiple antennas. Joint transmit and relay precoding design
problems are investigated for multicasting multiple data streams
based on two design criteria. In the first scheme, we aim at
minimizing the maximal mean-squared error (MSE) of the signal
waveform estimation among all receivers subjecting to power
constraints at the transmitter and the relay node. This problem
is highly nonconvex with matrix variables and the exactly optimal
solution is very hard to obtain. We develop an iterative algorithm
to jointly optimize the transmitter, relay, and receiver matrices
through solving convex subproblems. By exploiting the optimal
structure of the relay precoding matrix, we then propose a
low complexity solution which decouples the optimization of
the transmitter and relay matrices under the (moderately) high
first-hop signal-to-noise ratio (SNR) assumption. In the second
scheme, we propose a total transmission power minimization
strategy subjecting to quality-of-service (QoS) constraints. By
using the optimal structure of the relay precoding matrix and the
(moderately) high first-hop SNR assumption, we show that this
problem can be solved using the semidefinite programming (SDP)
technique. Numerical simulations demonstrate the effectiveness
of the proposed algorithms. Interestingly, we show that for
the special case of single data stream multicasting, the relay
precoding matrix optimization problem can be equivalently
converted to the transmit beamforming problem for single-hop
multicasting systems.

Index Terms—MIMO relay, multicasting, precoding.

I. INTRODUCTION

IN many practical communication systems, one transmitter
needs to send common message to a group of receivers

simultaneously. These systems are referred to as multicast
broadcasting or multicasting systems. The broadcasting na-
ture of the wireless channel makes it naturally suitable for
multicasting applications, since a single transmission may
be simultaneously received by a number of users. Recently,
wireless multicasting technology has triggered great interest
among researchers across the world, due to the increasing
demand for mobile applications such as streaming media,
software updates, and location-based services involving group
communications. The increasing popularity of live streaming,
e.g. mobile TV or IPTV has also generated the need for
efficient wireless solutions to support such applications and
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services. However, wireless channel is subject to signal fading.
By exploiting the spatial diversity, multi-antenna techniques
can be applied to combat channel fading [1]. Next generation
wireless standards such as WiMAX 802.16m and 3GPP LTE-
Advanced have already included technologies which enable
better multicasting solutions based on multi-antenna and
beamforming techniques [2].

The problem of designing optimal beamforming vectors for
multicasting is hard in general, mainly due to its nonconvex
nature. The authors in [3] have designed transmit beamformers
for physical layer multicasting using rank relaxations. The
information theoretic capacity of the multi-antenna multicas-
ting channel is studied in [4] with a particular focus on the
scaling of the capacity and achievable rates as the number
of antennas and/or users approaches infinity. The asymptotic
capacity limits of multi-antenna physical layer multicasting
has been studied in [5] based on antenna subset selection.
The effect of channel spatial correlation on the multicasting
capacity has been investigated in [6]. The authors in [7]
investigated transmit precoding design for multi-antenna mul-
ticasting systems where the channel state information (CSI) is
obtained via limited feedback. The authors in [8] considered
transmit covariance design for a secrecy rate maximization
problem under a multicasting scenario, where a multi-antenna
transmitter delivers a common confidential message to multi-
ple single-antenna receivers in the presence of multiple multi-
antenna eavesdroppers.

The works in [3]-[8] solved the max-min signal-to-noise ra-
tio (SNR)/rate beamforming problems with the aid of semidef-
inite relaxation (SDR) and rank-one approximation (which is
suboptimal, in general). In [9], a stochastic beamforming strat-
egy is proposed for multi-antenna physical layer multicasting
where the randomization is guided by SDR, but without the
need of rank-one approximation. The authors in [9] adopted
an achievable rate perspective, and showed that the gaps
between the rates of the proposed stochastic beamformers and
the optimal multicasting capacity are no greater than 0.8314
bps/Hz. The fundamental limit of the max-min beamforming
is that as the number of users grows to infinity, the achievable
rate decreases to zero [4]. To cure this problem, a joint beam-
forming and admission control problem has been considered
in [10] and [11], where a subset of users is selected so that
certain quality-of-service (QoS) requirements can be satisfied.
An iterative transmit beamforming strategy has been proposed
in [11] for multiple cochannel multicasting groups to minimize
the total power transmitted by the antenna array subjecting
to signal-to-interference-plus-noise ratio (SINR) constraints at
the receivers. It has been shown that the problem can be
approximated by a second-order cone programming (SOCP)
problem which does not require rank relaxations.

1536-1276/13$31.00 c© 2013 IEEE



KHANDAKER and RONG: PRECODING DESIGN FOR MIMO RELAY MULTICASTING 3545

While the works in [3]-[11] investigated multicasting sys-
tems with single-antenna receivers, recently multi-antenna
receivers have been considered for multicasting systems [12]-
[14]. In particular, coordinated beamforming techniques have
been investigated in [12] to facilitate physical layer multicas-
ting with multi-antenna receivers, and a generalized form of
block diagonalization has been proposed to make orthogo-
nal transmissions to distinct multicasting antenna groups. In
[13], non-iterative nearly optimal transmit beamformers are
designed for wireless link layer multicasting with real-valued
channels, and for complex-valued channels an upper-bound on
the multicasting rate is derived. The scaling of the achievable
rate for increasing number of users is investigated in [14] for
multiple-input multiple-output (MIMO) multicasting where
the transmission is coded at the application layer over a
number of channel realizations.

The above works [2]-[14] considered single-hop multi-
casting systems. However, in the case of long transmitter-
receiver distance, relay node(s) is necessary to efficiently
combat the pathloss of wireless channel. The concept of
multiuser peer-to-peer relay network has been generalized to
that of a multi-group multicasting relay network in [15] and
a distributed beamforming algorithm is proposed to minimize
the total relay power where each node is equipped with a
single antenna. In [16], the authors investigated multicast
scheduling with multiple sessions and multiple channels where
the base station may multicast data in two sessions using
MIMO simultaneously through the same channel leading to
a higher multicasting rate than single-session transmissions,
and the users are allowed to cooperatively help each other on
orthogonal channels. The authors in [17] studied the lower-
bound for the outage probability of cooperative multi-antenna
multicasting schemes based on the amplify-and-forward (AF)
strategy where the users are equipped with a single antenna.

In this paper, we consider a two-hop multicasting MIMO
relay system where one transmitter multicasts common mes-
sage to multiple receivers with the aid of a relay node. The
transmitter, relay node, and receivers are all equipped with
multiple antennas. To the best of our knowledge, such two-hop
multicasting MIMO relay system has not been investigated in
existing works. For the sake of the implementation simplicity,
we choose the AF relaying strategy. We consider the joint
transmit and relay precoding design problem based on two
criteria. In the first scheme, we aim at minimizing the maximal
mean-squared error (MSE) of the signal waveform estimation
among all receivers subjecting to power constraints at the
transmitter and the relay node. This problem is highly non-
convex with matrix variables and the exactly optimal solution
is very hard to obtain. We develop an iterative algorithm to
jointly optimize the transmitter, relay, and receiver matrices
through solving convex subproblems. By exploiting the opti-
mal structure of the relay precoding matrix, we then propose
a low complexity solution which decouples the optimization
of the transmitter and relay matrices under the (moderately)
high first-hop SNR assumption. In order to facilitate low-
power transmissions, in the second scheme, we propose a
total transmission power minimization strategy subjecting to
QoS constraints in terms of the MSE of the signal waveform
estimation at each receiver. By using the optimal structure of

. . .
.

.

.B
1 sN . . .

F
1 rN

H

rv
1G

LG

d,1v

d,Lv

d,Ly

d,1y
. . .1 dN

. . .1 dN

Fig. 1. Block diagram of a two-hop multicasting MIMO relay system.

the relay precoding matrix and the (moderately) high first-
hop SNR assumption, we show that this problem can be
solved using the semidefinite programming (SDP) technique.
Numerical simulations demonstrate the effectiveness of the
proposed algorithms. Note that both algorithms support mul-
ticasting multiple data streams in contrast to the existing
single data stream multicasting schemes [2]-[16]. Interestingly,
we show that for the special case of single data stream
multicasting, the relay precoding matrix optimization problem
can be equivalently converted to the transmit beamforming
problem for single-hop multicasting systems. In this paper,
for notational convenience, we consider a narrow-band single-
carrier system. However, our results can be straightforwardly
generalized to each subcarrier of a broadband multi-carrier
multicasting MIMO relay system.

The rest of this paper is organized as follows. In Section II,
the system model of a two-hop multicasting MIMO relay
network is introduced. The joint transmit and relay precoding
matrices design algorithms are developed in Section III for
the general case of multiple data streams multicasting. In
Section IV, we study the joint transmit and relay beamforming
for single data stream multicasting through two-hop MIMO
relay systems. Section V shows the simulation results which
justify the significance of the proposed algorithms under
various scenarios. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a two-hop MIMO multicasting system with L
receivers as illustrated in Fig. 1. The transmitter and the relay
node are equipped with Ns and Nr antennas, respectively. For
the sake of notational simplicity, we assume that each receiver
has Nd antennas. The algorithms developed in this paper can
be straightforwardly extended to multicasting systems where
receivers have different number of antennas. The transmitter
multicasts its information-carrying symbols to all receivers
with the aid of a relay node. The direct links between the
transmitter and the receivers are not considered since we
assume that these direct links undergo much larger path
attenuations compared with the links via the relay node.

We assume that the relay node works in half-duplex mode.
Thus the communication between the transmitter and re-
ceivers is accomplished in two time slots. In the first time
slot, the transmitter linearly precodes an Nb × 1 (Nb ≤
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min(Ns, Nr, Nd)) modulated signal vector s (common mes-
sage to all receivers) by an Ns × Nb precoding matrix B
and transmits the precoded vector x = Bs to the relay node.
We assume that E[ssH] = INb

, where E[·] denotes statistical
expectation, (·)H stands for the matrix Hermitian transpose,
and In is an n×n identity matrix. The received signal vector
at the relay node is given by

yr = HBs+ vr (1)

where H is the Nr ×Ns MIMO channel matrix between the
transmitter and the relay node, yr and vr are the Nr × 1
received signal and additive Gaussian noise vectors introduced
at the relay node, respectively.

In the second time slot, the transmitter remains silent and
the relay node multiplies (linearly precodes) the received
signal vector yr by an Nr × Nr relay precoding matrix F
and multicasts the precoded signal vector

xr = Fyr (2)

to all L receivers. From (1) and (2), the received signal vector
at the ith receiver can be written as

yd,i = GiF (HBs+ vr) + vd,i � Ais+ ni, i = 1, · · · , L
(3)

where Gi is the Nd × Nr MIMO channel matrix between
the relay node and the ith receiver and vd,i is the additive
Gaussian noise vector at the ith receiver. Here Ai � GiFHB
is the equivalent MIMO channel between the transmitter and
the ith receiver, and ni � GiFvr + vd,i is the equivalent
noise vector at the ith receiver. All noises are independent and
identically distributed (i.i.d.) complex circularly symmetric
Gaussian noise with zero mean and unit variance.

We assume that all channels are quasi-static, i.e., the
channel matrices H and Gi, i = 1, · · · , L, are constant
throughout a block of transmission. In practice, the CSI
of Gi, i = 1, · · · , L, can be obtained at the ith receiver
through standard training methods. The relay node can have
the CSI of H through channel training, and obtain the CSI
of Gi, i = 1, · · · , L, by a feedback from the ith receiver.
The quasi-static channel model is valid in practice when the
mobility among all communicating nodes is relatively slow.
Therefore, we can obtain the necessary CSI with a reasonably
high precision during the channel training period. The relay
node calculates the optimal transmit matrix B and the relay
matrix F, and forwards B to the transmitter and forwards B,
F, and H to all receivers1. Note that the transmitter does not
need any channel knowledge and each receiver only needs the
CSI of its own channel with the relay and that of the first-hop
channel. This is a very important assumption for multicasting
communication since in a multicasting scenario the receivers
are distributed and cannot cooperate.

We aim at improving the system performance through
optimizing the transmit and relay precoding matrices. Usually,
the system performance is quantified by its QoS and the

1This enables each receiver to calculate its receiver weight matrix. Alter-
natively, all receiver matrices can be calculated at the relay node, which then
forwards the ith receiver matrix to the ith receiver. In this case, the receivers
do not need to know B, F, and H. However, the signalling overhead of
the latter approach increases with the number of receivers, while the former
approach does not.

resources it consumes. The most commonly used QoS metrics
include the MSE of the signal waveform estimation, bit-error-
rate (BER), system capacity and the output SNR. Interest-
ingly, the aforementioned QoS measures can be expressed
in terms of MSE [18]. On the other hand, resources that
a multicasting system consumes include the spectrum and
transmission power. In the next section, we study two types of
optimization problems for two-hop multicasting MIMO relay
systems. The first problem deals with minimizing the MSE
of the signal waveform estimation subjecting to transmission
power constraints at the transmitter and the relay node, while
the second problem investigates how to achieve given MSEs
using a minimal possible total network transmission power.

III. PROPOSED TRANSMITTER AND RELAY DESIGN

ALGORITHMS

Due to its simplicity, a linear receiver is used at each
receiver to retrieve the transmitted signals. Denoting Wi as
an Nd × Nb weight matrix at the ith receiver, the estimated
signal vector ŝi is given by

ŝi = WH
i yd,i, i = 1, · · · , L . (4)

From (4), the MSE of the signal waveform estimation at the
ith receiver is given by

Ei = tr
(
E
[
(ŝi − s)(ŝi − s)H

])
= tr

(
(WH

i Ai − INb
)(WH

i Ai − INb
)H+WH

i CiWi

)
i = 1, · · · , L (5)

where tr(·) denotes matrix trace and Ci � E[nin
H
i ] =

GiFF
HGH

i + INd
is the covariance matrix of ni. Obviously,

the power consumed by the transmitter is tr(BBH). And
from (1) and (2), the transmission power consumed by the
relay node is given by tr(F(HBBHHH + INr)F

H). In the
following, we consider two design strategies for optimizing the
transmit and relay matrices. The first optimization strategy is
to minimize the maximal MSE among all receivers subject
to power constraints at the transmitter and the relay node.
The second strategy minimizes the total network transmission
power subject to QoS constraints.

A. Min-Max MSE-Based Transmitter and Relay Design

Given the power constraints at the transmitter and the relay
node, we aim at minimizing the maximal MSE of the sig-
nal waveform estimations among all receivers. This problem
formulation is important when the power consumption is a
strict system constraint that cannot be relaxed. In this case, the
transmitter, relay, and receiver matrices optimization problem
can be formulated as

min
B,F,{Wi}

max
i

Ei (6a)

s.t. tr(F(HBBHHH + INr)F
H) ≤ Pr (6b)

tr(BBH) ≤ Ps (6c)

where {Wi} � {Wi, i = 1, · · · , L}, (6b) and (6c) are the
transmission power constraints at the relay node and the trans-
mitter, respectively, and Pr > 0, Ps > 0 are the corresponding
power budgets. In the following, we first develop an iterative
algorithm to solve the problem (6) and then we propose a low
complexity solution to this problem.
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1) Iterative Approach: This algorithm starts with random
F and B satisfying (6b) and (6c). In each iteration, the trans-
mitter, relay, and receiver matrices are updated alternatingly
through solving convex subproblems. Firstly, with given F and
B, the optimal Wi, i = 1, · · · , L, are obtained by solving the
unconstrained convex problem of minWi Ei, since Ei does
not depend on Wj , j = 1, · · · , L, j �= i, and Wi does not
appear in constraints (6b) and (6c). The solution is the well-
known linear minimal mean-squared error (MMSE) filter [19]
and given by

Wi =
(
AiA

H
i +Ci

)−1
Ai, i = 1, · · · , L (7)

where (·)−1 denotes matrix inversion.
Secondly, with given Wi, i = 1, · · · , L, and B, using the

MSE expression in (5), the relay matrix optimization problem
can be formulated as

min
F

max
i

tr
(
WH

i GiFKFHGH
i Wi −WH

i GiFHB

−(GiFHB)HWi

)
+ tr

(
WH

i Wi + INr

)
(8a)

s.t. tr(FKFH) ≤ Pr (8b)

where K � HBBHHH + INr , and (8a) is obtained by
substituting Ai into (5). Let us introduce

FKFH � Φ

WH
i GiFKFHGH

i Wi −WH
i GiFHB

−(GiFHB)HWi � Ψi, i = 1, · · · , L
and a real-valued slack variable tr, the problem (8) can be
equivalently transformed to

min
tr,F,{Ψi},Φ

tr (9a)

s.t. tr(Ψi) + tr
(
WH

i Wi

)
≤ tr, i = 1, · · · , L (9b)(

Ψi+WH
i GiFHB+(GiFHB)HWi WH

i GiF
FHGH

i Wi K−1

)
�0

i = 1, · · · , L (9c)

tr(Φ) ≤ Pr (9d)(
Φ F
FH K−1

)
� 0 (9e)

where {Ψi} � {Ψi, i = 1, · · · , L} and we use the Schur
complement to obtain (9c) and (9e). Here A � 0 indicates that
matrix A is positive semidefinite (PSD), and A � B means
B−A � 0. The problem (9) is a convex SDP problem and can
be efficiently solved by the disciplined convex programming
toolbox CVX [23], where interior-point method-based solvers
such as SeDuMi or SDPT3 are called internally.

Thirdly, to obtain the optimal B with given F and Wi, i =
1, · · · , L, we reformulate the problem (6) as

min
B

max
i

tr
(
LiBBHLH

i − LiB−BHLH
i

)
+tr

(
WH

i GiFF
HGH

i Wi +WH
i Wi + INb

)
(10a)

s.t. tr(F(HBBHHH + INr)F
H) ≤ Pr (10b)

tr(BBH) ≤ Ps (10c)

TABLE I
PROCEDURE OF SOLVING THE PROBLEM (6) BY THE ITERATIVE

ALGORITHM

1) Initialize the algorithm with random F and B satisfying (6b) and (6c),

for example, B(0)=
√

Ps/Ns INs and F(0)=
√

Pr/tr(K(0)) INr ;
Set n = 0.

2) Update {W(n)
i } using B(n) and F(n) as in (7).

3) Update F(n+1) by solving the problem (9) using given {W(n)
i } and

B(n) .
4) Solve the problem (11) using known F(n+1) and {W(n)

i } to obtain
B(n+1) .

5) If max
∥∥B(n+1) −B(n)

∥∥
1
≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2.

where Li � WH
i GiFH, i = 1, · · · , L. Let us introduce

FHBBHHHFH � Υ

BBH � Ω

LiBBHLH
i − LiB−BHLH

i � Γi, i = 1, · · · , L
and a real-valued slack variable ts, the problem (10) can be
equivalently transformed to

min
ts,B,{Γi},Υ,Ω

ts (11a)

s.t. tr(Γi) + tr
(
WH

i GiFF
HGH

i Wi +WH
i Wi

)
≤ ts

i = 1, · · · , L (11b)(
Γi+LiB+BHLH

i LiB
BHLH

i INb

)
� 0, i = 1, · · · , L (11c)

tr(Υ) ≤ Pr − tr(FFH) (11d)(
Υ FHB

BHHHFH INb

)
� 0 (11e)

tr(Ω) ≤ Ps (11f)(
Ω B
BH INb

)
� 0 (11g)

where {Γi} � {Γi, i = 1, · · · , L} and we use the Schur com-
plement to obtain (11c), (11e), and (11g). The problem (11) is
a convex SDP problem and we use the CVX software package
[23] to solve the problem. Now the original transmitter, relay,
and receiver matrices optimization problem (6) can be solved
by an iterative technique as shown in Table I, where ‖ · ‖1
denotes the matrix maximum absolute column sum norm, ε is
a small positive number close to zero and the superscript (n)
denotes the number of iterations.

In each iteration of the algorithm, the transmitter, relay, and
receiver matrices are updated alternatingly through solving the
corresponding subproblems. Since all subproblems are convex
optimization problems, the conditional update of each matrix
can not increase the objective function of each subproblem,
and hence the objective function (6a). Therefore, each con-
ditional update of W

(n)
i , i = 1, · · · , L, F(n), and B(n) may

either decrease or maintain but cannot increase the objective
function (6a). Note that the constraints in the problem (6)
are always satisfied with every conditional update. Thus a
monotonic convergence of W

(n)
i , i = 1, · · · , L, F(n), and

B(n) towards (at least) a locally optimal solution follows
directly from this observation.

The major computational complexity of the iterative ap-
proach involves solving the SDP problems (9) and (11) in
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each iteration. Thus the overall computational complexity of
the iterative algorithm is very high. In the following, we
develop a simplified algorithm for the min-max MSE problem
such that the nearly optimal transmitter and relay matrices
can be designed with a significantly reduced computational
complexity.

2) Simplified Approach: For any given B and F, by sub-
stituting (7) back into (5), we have

Ei = tr
([

INb
+AH

i C−1
i Ai

]−1
)

= tr
([

INb
+BHHHFHGH

i

(
GiFF

HGH
i + INd

)−1

×GiFHB]
−1

)
, i = 1, · · · , L. (12)

Therefore, we can equivalently rewrite the problem (6) as

min
B,F

max
i

tr
([

INb
+AH

i C−1
i Ai

]−1
)

(13a)

s.t. tr(F(HBBHHH + INr)F
H) ≤ Pr (13b)

tr(BBH) ≤ Ps. (13c)

The min-max problem (13) is highly nonconvex with matrix
variables, and an exactly optimal solution is very hard to
obtain with a reasonable computational complexity (non-
exhaustive searching). In the following, we propose a low
complexity solution to the problem (13).

It can be shown similar to [20] that for any B, the optimal
F for the transmitter-relay-ith receiver channel has a structure
of F = TiD

H , where D = (HBBHHH + INr)
−1HB.

Therefore, decomposition of F into

F = TDH (14)

is optimal for all receivers, which is also optimal with respect
to the min-max problem (13). Interestingly, D can be viewed
as the weight matrix of the linear MMSE receiver for the first-
hop MIMO channel at the relay node given by (1), and T can
be treated as the transmit precoding matrix for the effective
second-hop MIMO multicasting system yi = GiTx + vi,
i = 1, · · · , L, where x is the transmitted signal vector and vi

is the noise vector.
Using the optimal F in (14), the MSE of the signal wave-

form estimation at the ith receiver in (12) can be equivalently
rewritten as the sum of two individual MSEs

Ei = tr
([

INb
+BHHHHB

]−1
)

+tr
([

R−1 +THGH
i GiT

]−1
)
, i = 1, · · · , L(15)

where

R = BHHH(HBBHHH + INr)
−1HB. (16)

Note that the first term in (15) tr
([
INb

+ BHHHHB
]−1)

is actually the MSE of estimating the signal vector s from
the received signal vector (1) at the relay node using the
linear MMSE receiver D, while the second term in (15)
tr
([
R−1 +THGH

i GiT
]−1)

can be viewed as the increment
of the MSE introduced by the second-hop. Interestingly,
matrix R in (16) is in fact the covariance matrix of z � DHyr

as R = E[zzH ] = DHE[yry
H
r ]D. It can be seen from (15)

that the effect of noise in the first-hop is reflected by INb
in

the first term and that of the second-hop is reflected by R−1

in the second term. Using the optimal structure of F in (14),
the relay power consumption tr(F(HBBHHH + INr)F

H) is
equivalent to tr(TRTH). Therefore, the problem (13) can be
equivalently rewritten as

min
B,T

max
i

tr
([

INb
+BHHHHB

]−1
)

+tr
([

R−1 +THGH
i GiT

]−1
)

(17a)

s.t. tr(TRTH) ≤ Pr (17b)

tr(BBH) ≤ Ps. (17c)

By applying the matrix inversion lemma (A+BCD)
−1

=

A−1 −A−1B
(
DA−1B+C−1

)−1
DA−1, matrix R can be

rewritten as

R = BHHH(INr−HB
(
BHHHHB+ INb

)−1

BHHH)
HB

= BHHHHB
(
BHHHHB+ INb

)−1

. (18)

An interesting observation from (18) is that with increasing
first-hop SNR, the term BHHHHB approaches to infinity.
And at a (moderately) high SNR level, there is BHHHHB �
INb

. Here for matrices X and Y, X � Y indicates that the
eigenvalues of (X − Y) are much greater than zero. Thus
we can strictly upper-bound R as INb

for the high SNR
case [21]. As a consequence, tr

([
R−1 + THGH

i GiT
]−1)

in (17a) is upper-bounded by tr
([
INb

+ THGH
i GiT

]−1)
,

i = 1, · · · , L, as shown below: R ≺ INb
−→ R−1 �

INb
−→ R−1 + THGH

i GiT � INb
+ THGH

i GiT −→[
R−1 + THGH

i GiT
]−1 ≺ [

INb
+ THGH

i GiT
]−1 −→

tr
([
R−1 +THGH

i GiT
]−1)

< tr
([
INb

+THGH
i GiT

]−1)
.

Here for matrices A and B, A ≺ B means B−A is a positive
definite matrix, and A � B means A−B is a positive definite
matrix. The tightness of this bound increases with the first-hop
SNR. Therefore, the problem (17) can be approximated as

min
B,T

max
i

tr
([

INb
+BHHHHB

]−1
)

+tr
([

INb
+THGH

i GiT
]−1

)
(19a)

s.t. tr(TTH) ≤ Pr (19b)

tr(BBH) ≤ Ps. (19c)

We would like to mention that since tr(TTH) > tr(TRTH),
if tr(TTH) = p, then tr(TRTH) < p. This indicates that
due to the approximation in (19b), the transmission power
available at the relay node is not fully utilized in the case of
the low first-hop SNR. We can simply scale the relay matrix
obtained from solving the problem (19) to compensate such
slight loss and make the best use of the available power budget
at the relay node. We can justify the need for the scaling
operation as follows. Assuming that T1 = cT2 with c > 1, it
can be seen from (19a) that tr

([
INb

+TH
1 GH

i GiT1

]−1
)
=

tr
([
INb

+c2TH
2 GH

i GiT2

]−1
)

<

tr
([
INb

+TH
2 GH

i GiT2

]−1
)

. Therefore, the entire power
should be utilized to minimize (19a).

Interestingly, it can be seen from the problem (19) that T
does not affect the first term of the objective function (19a)
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and B is irrelevant to the second term of (19a). This fact
implies that the objective function (19a) and the constraints
(19b) and (19c) are decoupled with respect to the optimization
variables B and T. In this case, matrix B can be determined
independent of T, and vice-versa, which greatly simplifies
the design of the transmit and relay matrices. Therefore, with
the (relatively) high first-hop SNR assumption, the problem
(19) can be decomposed into the following transmit precoding
matrix optimization problem

min
B

tr
([

INb
+BHHHHB

]−1
)

(20a)

s.t. tr(BBH) ≤ Ps (20b)

and the relay precoding matrix optimization problem

min
T

max
i

tr
([

INb
+THGH

i GiT
]−1

)
(21a)

s.t. tr(TTH) ≤ Pr. (21b)

Let H = UhΛhV
H
h denote the singular value decomposi-

tion (SVD) of H, where the dimensions of Uh, Λh, and Vh

are Nr×Nr, Nr×Ns, and Ns×Ns, respectively. We assume
that the main diagonal elements of Λh are arranged in de-
creasing order. According to Lemma 2 in [20], the transmitter
optimization problem (20) has a closed form solution with the
optimal structure of B given by

B = Vh,1Λb (22)

where Vh,1 contains the leftmost Nb columns of Vh and Λb is
an Nb ×Nb diagonal power loading matrix. Substituting the
optimal B in (22) back into (20) and using the Lagrangian
multiplier method [22], we find that the ith diagonal element
of Λb is given by

λb,i =

[
1

λh,i

(√
λh,i/μ− 1

)+
] 1

2

, i = 1, · · · , Nb

where (x)+ � max(x, 0), λh,i is the ith diagonal element of
Λh, and μ > 0 is the Lagrangian multiplier and the solution
to the nonlinear equation of

∑Nb

i=1
1

λh,i

(√
λh,i/μ−1

)+
= Ps.

By introducing TTH � Q, and using the matrix identity
tr
([

Im+Am×nBn×m

]−1
)
= tr

([
In+Bn×mAm×n

]−1
)
+

m− n, the problem (21) can be equivalently rewritten as

min
Q

max
i

tr
([

INd
+GiQGH

i

]−1
)
+Nb −Nd (23a)

s.t. tr(Q) ≤ Pr (23b)

Q � 0. (23c)

By introducing
[
INd

+GiQGH
i

]−1 � Yi, i = 1, · · · , L,
and a real-valued slack variable t, the problem (23) can be
equivalently transformed to

min
t,Q,{Yi}

t (24a)

s.t. tr(Yi) ≤ t, i = 1, · · · , L (24b)

tr(Q) ≤ Pr (24c)(
Yi INd

INd INd+GiQGH
i

)
� 0, i = 1, · · · , L (24d)

Q � 0 (24e)

where {Yi} � {Yi, i = 1, · · · , L} and we use the Schur
complement to obtain (24d). Note that in the above for-
mulation, t provides an MSE upper-bound for the relay-
receiver channels. The problem (24) is an SDP problem which
can be efficiently solved by the interior-point method at a
maximal complexity order of O(

(N2
r +L+1)3.5

)
[24]. Since

most of the computation task in solving the problem (20)
involves performing SVD and calculating the power loading
parameters, the computation overhead is negligible compared
with that of solving the problem (24). Note that the problem
(19) can also be directly formulated as an SDP problem
which can be solved using interior point-based solvers at a
complexity order that is at most O(

(N2
s +N2

r + L + 2)3.5
)
.

Therefore, solving the decoupled transmit and relay precoding
problems (20) and (21) has a much smaller computational
complexity compared with directly solving the problem (19),
especially in the case of large Ns.

B. Minimal Total Power-Based Transmitter and Relay Design

In this scheme, we aim at minimizing the total transmitter
and relay power consumption satisfying the target QoS re-
quirements at all receivers. This criterion is important when
certain QoS level must be maintained at each receiver. We
choose the MSE of the signal waveform estimation at the
receiver as the QoS metric. The multicasting MIMO relay
system tries to satisfy the given required QoS (maximal
allowable MSE) with the minimal total transmission power.
Thus the optimization problem can be written as

min
B,F

tr(F(HBBHHH + INr)F
H) + tr(BBH) (25a)

s.t. tr
([

INb
+AH

i C−1
i Ai

]−1
)
≤ εi, i = 1, · · · , L (25b)

where εi is the maximal allowable MSE at the ith receiver.
In almost all situations, the problem (25) is feasible for
εi ≥ 0, i = 1, · · · , L. The only exception is when the
channel matrices are ‘ill’, for example H = 0, or Gi = 0.
Obviously, since channel matrices are random, the probability
of having ill channel matrices is zero in practice. Similar to
the problem (13), the problem (25) is highly nonconvex with
matrix variables.

It can be shown similar to [20] that the optimal structure of
F for the problem (25) is given by (14). Then, the problem
(25) can be equivalently converted to the following problem

min
B,T

tr(TRTH) + tr(BBH) (26a)

s.t. tr
([

INb
+BHHHHB

]−1
)

+tr
([
R−1+THGH

i GiT
]−1

)
≤ εi, i = 1, · · · , L.(26b)

Similar to Section III-A, we have tr
([
R−1+THGH

i GiT
]−1)

≤ tr
([
INb

+THGH
i GiT

]−1)
, and at a relatively high first-

hop SNR, the problem (26) can be approximated (relaxed) to
the problem of

min
B,T

tr(TTH) + tr(BBH) (27a)

s.t. tr
([

INb
+BHHHHB

]−1
)

+tr
([

INb
+THGH

i GiT
]−1

)
≤ εi, i = 1, · · · , L.(27b)
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By introducing BBH � P and
[
INr +HPHH

]−1 � X,
the problem (27) can be transformed to the following SDP
problem

min
P,Q,X,{Yi}

tr(P) + tr(Q) (28a)

s.t. tr(X) + tr(Yi) ≤ εi +Nd +Nr − 2Nb

i = 1, · · · , L (28b)(
X INr

INr INr+HPHH

)
� 0 (28c)

(
Yi INd

INd INd+GiQGH
i

)
� 0, i = 1, · · · , L (28d)

P � 0, Q � 0 (28e)

where the Schur complement is used to obtain (28c). Note that
unlike the problem (19), the problem (28) is not decoupled
due to the constraint (28b) which couples tr(X) and tr(Yi).
However, we can use the CVX software package [23] to solve
the SDP problem (28) at a complexity order that is at most
O(

(N2
s +N2

r + L)3.5
)

and is usually much less [3].
We would like to mention that for a point-to-point two-

hop MIMO relay system, it has been shown in [21] through
numerical examples that the high first-hop SNR approxima-
tion provides negligible performance loss in all SNR range
in comparison to the optimal designs. For the multicasting
MIMO relay system addressed in this paper, the exactly
optimal solution for the transmit and relay precoding matrices
are intractable. However, by using the high first-hop SNR
approximation, the nearly optimal transmit and relay matrices
can be designed with a significantly reduced computational
complexity.

Although a two-hop multicasting MIMO relay system is
considered in this paper, the simplified algorithm proposed in
Section III.A.2 and the algorithm developed in Section III.B
can be straightforwardly extended to the multi-hop scenario
with multiple relays in series by using the high SNR upper-
bound technique, as in [20].

IV. TRANSMITTER AND RELAY OPTIMIZATION FOR

SINGLE DATA STREAM MULTICASTING

The transmit and relay precoding matrices developed in
the last section are applicable for the general case of multi-
datastream multicasting. In this section, we derive the solution
for the min-max MSE and the total power minimization prob-
lems for the special case of single data stream multicasting
in two-hop MIMO relay systems. In the case where the
transmitter multicasts a single data stream s, i.e., Nb = 1,
the received signal vector at the ith receiver can be written as

yd,i = GiF (Hbs+ vr) + vd,i, i = 1, · · · , L (29)

where b is the Ns × 1 transmit beamforming vector. In
the following, we solve the min-max MSE and the total
network transmission power minimization problems for the
system in (29). In particular, we establish an interesting link
between the relay precoding matrix in a two-hop MIMO
multicasting system and the transmit beamformer in a single-
hop multicasting system.

A. Min-Max MSE-Based Transmitter and Relay Design

Using a linear MMSE receiver wi ((7) with Nb = 1) at the
ith receiver to estimate s from (29), it can be shown similar
to (12) that the MSE of the signal waveform estimation can
be written as

ei=
[
1+(GiFHb)H

(
GiFF

HGH
i +INd

)−1
GiFHb

]−1

i = 1, · · · , L. (30)

Similar to Section III-A, the worst-case MSE minimization
problem for a single data stream multicasting MIMO relay
system can be formulated as

min
b,F

max
i

[
1+(GiFHb)H(GiFF

HGH
i +INd)

−1GiFHb
]−1

(31a)

s.t. tr(F(HbbHHH + INr)F
H) ≤ Pr (31b)

bHb ≤ Ps. (31c)

We would like to mention that for the single data stream
multicasting case, minimizing the MSE of the signal waveform
estimation is equivalent to maximizing the receive SNR, and
thus, the transmitter-receiver mutual information (MI).

Let Gi = UiΛiV
H
i denote the SVD of Gi, i = 1, · · · , L,

where the dimensions of Ui, Λi, and Vi are Nd × Nd,
Nd×Nr, and Nr×Nr, respectively. We assume that the main
diagonal elements of Λi are arranged in decreasing order.
According to the unified framework developed in [25], the
optimal transmitter forms a “beam” along the direction of the
strongest singular value of the transmitter-relay channel and
hence, the transmit beamforming vector is given by

b = vh,1

√
Ps (32)

where vh,1 is the leftmost column of Vh. Moreover, the
optimal relay precoding matrix is given by F = αivi,1u

H
h,1 for

the transmitter-relay-ith receiver channel [25], where αi, i =
1, · · · , L, is the power loading factor at the relay node, uh,1

and vi,1 are the leftmost columns of Uh and Vi, i = 1, · · · , L,
respectively.

Although the optimal F for the ith receiver depends on Gi,
it can be seen from the discussion above that F has the generic
optimal structure of

F = fuH
h,1 (33)

which is optimal for all receivers. Here vector f remains to
be optimized. Using (32) and (33), the MSE in (30) can be
rewritten as

ei =
[
1 + Psλ

2
h,1f

HGH
i

(
Giff

HGH
i + INd

)−1
Gif

]−1

i = 1, · · · , L (34)

where λh,1 is the largest singular value of H. From (32) and
(33), the relay transmit power (31b) becomes

tr
(
Psλ

2
h,1ff

H + ffH
)
= fHf

(
Psλ

2
h,1 + 1

)
.

Applying the matrix inversion lemma, (34) can be equivalently
rewritten as

ei =

[
1 +

Psλ
2
h,1f

HGH
i Gif

fHGH
i Gif + 1

]−1

=

[
1 + Psλ

2
h,1 −

Psλ
2
h,1

fHGH
i Gif + 1

]−1

, i = 1, · · · , L.(35)
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Note that minimizing the MSE in (35) is equivalent to maxi-
mizing fHGH

i Gif which in fact determines the SNR at the ith
receiver in a single-hop (relay-receiver channel in this case)
MIMO multicasting system. Therefore, the min-max MSE
problem (31) is equivalent to the following max-min SNR
optimization problem

max
f

min
i

fHGH
i Gif (36a)

s.t. fHf ≤ Pr

Psλ2
h,1 + 1

. (36b)

Interestingly, the problem (36) is equivalent to a max-min
transmit beamforming problem for a single-hop multicasting
system, which can be efficiently solved using standard tech-
niques such as rank relaxations at a maximal complexity order
of O(

(N2
r + L+ 1)3.5

)
[3].

B. Minimal Total Power-Based Transmitter and Relay Design

For single data stream multicasting, the design of the trans-
mit beamformer and the relay precoding matrix that minimize
the total network transmission power, subjecting to constraints
on the MSE of the signal waveform estimation at each user
(30), can be written as the following problem

min
b,F

tr(F(HbbHHH + INr)F
H) + bHb (37a)

s.t.
[
1+(GiFHb)H(GiFF

HGH
i +INd

)−1GiFHb
]−1

≤ εi, i = 1, · · · , L. (37b)

It can be shown similar to [26] that the optimal transmit
beamformer and relay precoding matrix as the solution to the
problem (37) has the generic structure of b = vh,1

√
P1 and

F = fuH
h,1, respectively, where P1 > 0 is the power required

at the transmitter for multicasting a single data stream and
remains to be optimized.

Based on the optimal structure of b and F, and using
(35), the QoS-constrained problem (37) can be equivalently
converted to the following problem

min
P1,f

P1 +
(
P1λ

2
h,1 + 1

)
fHf (38a)

s.t.
P1λ

2
h,1f

HGH
i Gif

fHGH
i Gif + 1

≥ ηi, i = 1, · · · , L (38b)

where ηi � 1
εi
−1 can be viewed as the minimal SNR required

at the ith receiver. The problem (38) is still nonconvex.
However, it can be seen from (38b) that for a given P1, there
is fHGH

i Gif ≥ βi for βi � ηi

P1λ2
h,1−ηi

> 0, i = 1, · · · , L.

Thus, for a given P1, the problem (38) reduces to

min
f

fH f (39a)

s.t. fHGH
i Gif ≥ βi, i = 1, · · · , L. (39b)

The problem (39) is equivalent to the minimal transmission
power beamforming problem for a single-hop multicasting
system [3]. Note that the problem (39) can be solved using
standard SDR techniques at a complexity order that is at most
O(

(N2
r + L)3.5

)
[3].

Now we show some insights on the optimal P1 by consid-
ering the objective function (38a). Obviously, it can be seen
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Fig. 2. Function (38a) versus P1. L = 6, Ns = 6, Nr = 3, Nd = 3,
λh,1 = 1.5345, ηi = η = 20dB.

from the definition of βi that P1λ
2
h,1 > ηi, i = 1, · · · , L.

In other words, the lower-bound of the feasible region of
P1 is maxi(ηi)/λ

2
h,1. When P1 is very close to its lower

bound ηM/λ2
h,1, βM = ηM

P1λ2
h,1−ηM

> 0 is a very large

number, where M � argmaxi(ηi). As a result, fHf as the
solution to the problem (39) is a large number, leading to a
large value of (38a). When P1 increases from ηM/λ2

h,1, βM

decreases, and the value of (38a) starts to decrease since the
decrease of fHf dominates the increase of P1. The value of
(38a) keeps decreasing as P1 increases till a ‘turning point’
where the increase of P1 starts to dominate the decrease of
fH f . After such turning point, the value of (38a) increases
monotonically as P1 increases. To validate the analysis, a
plot of the objective function (38a) over the range of feasible
values of P1 is generated in Fig. 2 for the case of L = 6,
Ns = 6, Nr = 3, Nd = 3, λh,1 = 1.5345, and ηi = η is set
to be 20dB. Here for each P1, the problem (39) is solved
to obtain the optimal f . It can be observed from Fig. 2 that
the objective function (38a) is a unimodal function of P1. An
efficient method of locating the minimal value of a unimodal
function is the golden section searching (GSS) algorithm [27].
Hence, the optimal P1 for the problem (38) can be obtained
by applying the GSS technique.

Now the problem (38) can be solved through an iterative
approach. For a fixed P1, the problem (39) is solved to obtain
f , then P1 is updated based on value of (38a) using the GSS
technique. Then the problem (39) is solved again to update f
according to the new P1. This iterative procedure continues till
the convergence of the GSS algorithm. Note that the solution
of P1 and f based on the GSS technique and solving the
problem (39) with the SDR technique provides a suboptimal
solution to the problem (38).

V. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
two-hop multicasting MIMO relay optimization algorithms
through numerical simulations. The transmitter, relay node,
and receivers are equipped with Ns, Nr, and Nd antennas,
respectively. We simulate a flat Rayleigh fading environment
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where the channel matrices have entries with zero mean and
variances 1/Ns and 1/Nr, for H and Gi, i = 1, · · · , L,
respectively. All simulation results are averaged over 500
independent channel realizations.

We compare the performance of the proposed min-max
MSE algorithm in Section III-A with the naive amplify-and-
forward (NAF) algorithm and the pseudo match-and-forward
(PMF) algorithm in terms of both MSE and BER. For the
NAF scheme, we use

B =
√
Ps/Ns INs , F =

√
Pr/tr(HBBHHH + INr) INr .

For the PMF algorithm, the same B in the NAF algorithm is
taken and

F =

√
Pr/tr((HG)H(HBBHHH + INr)HG) (HG)H

where we randomly pick G from among the relay-receiver
channels Gi, i = 1, · · · , L. Both the NAF and the PMF
algorithms adopt the MMSE receiver at all receivers.

In the first example, we compare the performance of the
proposed iterative and simplified algorithms with the other two
approaches in terms of the MSE normalized by the number of
data streams (NMSE) for L = 2 and Nb = Ns = Nr = Nd =
3. Fig. 3 shows the MSE performance of all tested algorithms
versus Ps with Pr = 20dB. For the simplified algorithm in
Section III.A.2, we plot the NMSE of the user with the worst
channel (Worst) and the average of all the users (Avg.) along
with the MSE upper-bound (UB), which is (19a). For the
iterative algorithm in Section III.A.1, the NMSE of the worst
channel is shown. Our results clearly demonstrate the better
performance of the proposed joint transmitter and relay opti-
mization algorithms. It can be seen that the proposed iterative
algorithm consistently yield the lowest worst-user MSE over
the entire Ps region. The worst-user MSE is always better than
the MSE upper-bound. The NAF and PMF algorithms have
much higher MSE compared with the proposed scheme even
with very high transmission power. It can also be observed
from Fig. 3 that the iterative and simplified algorithms have
a similar worst-user MSE performance (curves marked with
‘∗’ and ‘×’ respectively), even at low SNRs. This indicates
that the (moderately) high first-hop SNR assumption in the
simplified algorithm introduces negligible performance loss in
the whole SNR range in comparison to the iterative design.
Note that the computational complexity of the simplified
algorithm is less than the complexity of one iteration of
the iterative algorithm, making it very attractive for practical
MIMO relay multicasting systems. We will focus on the
simplified algorithm in the following simulation examples.

In the second example, we compare the MSE performance
of the simplified algorithm for different number of receivers.
We set Nb = Ns = Nr = Nd = 3. Fig. 4 shows the
MSE upper-bound and the worst-user MSE of the simplified
algorithm versus Pr with Ps = 20dB. It can be clearly seen
from Fig. 4 that as the number of receivers increases, the MSE
upper-bound and the worst-user MSE keep increasing. This is
reasonable since it is more likely to find a worse relay-receiver
channel among the increased number of users and we choose
the worst-user MSE as the objective function.

In the next example, we compare the performance of the
simplified min-max MSE algorithm with the NAF and PMF
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Fig. 3. Example 1: Normalized MSE versus Ps. L = 2, Nb = Ns = Nr =
Nd = 3, Pr = 20dB.
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Fig. 4. Example 2: Normalized MSE versus Pr. Varying number of receivers,
Nb = Ns = Nr = Nd = 3, Ps = 20dB.

algorithms in terms of BER. QPSK signal constellations are
used to modulate the transmitted signals. We set L = 2,
Nb = 2, Ns = 4, Nr = 2, Nd = 4, and multicast Nb × 1000
randomly generated bits from the transmitter in each channel
realization. Fig. 5 shows the BER performance of all tested
algorithms versus Ps with Pr = 20dB. It can be seen from
Fig. 5 that the proposed simplified joint transmitter and relay
optimization algorithm obtains the lowest BER compared
with the other approaches. Even the worst-user BER of the
proposed simplified algorithm is always much better than that
of the NAF and the PMF schemes.

In the next example, we compare the average- and the
worse-user BERs of the simplified algorithm for different
number of receivers. This time we set Nb = 2, Ns = 4,
Nr = 2, and Nd = 4. Fig. 6 shows the BER performance
of the simplified algorithm versus Ps with Pr = 20dB for
different number of receivers. It can be clearly seen from
Fig. 6 that as we increase the number of receivers, the worst-
user BER keeps increasing which is analogous to the MSE
performance that we observed in Fig. 4. However, the average
BERs of the users are almost similar for different number of
receivers.

In the fifth example, we study the performance of the
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Fig. 5. Example 3: BER versus Ps. L = 2, Nb = 2, Ns = 4, Nr = 2,
Nd = 4, Pr = 20dB.
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Fig. 6. Example 4: BER versus Ps. Varying number of receivers, Nb = 2,
Ns = 4, Nr = 2, Nd = 4, Pr = 20dB.

total power minimization algorithm proposed in Section III-B
for different number of receivers. For simplicity, we assume
εi = ε, i = 1, · · · , L. Fig. 7 shows the total network
transmission power versus the target MSE threshold ε for
Nb = Ns = Nr = Nd = 3. Here the UB refers to (28a).
From Fig. 7, it is obvious that more transmission power is
required to multicast to a larger number of receivers assuring
the same minimal MSE threshold at each receiver. The reason
is that the proposed algorithm applies transmission power to
satisfy the MSE requirement at all receivers. As the number of
users increases, more transmission power is needed to combat
the worst relay-receiver channel.

In the next two examples, we study the MI performance of
the proposed single data stream two-hop multicasting MIMO
relay algorithm developed in Section IV-A. The MI of the
transmitter-relay-ith receiver channel is calculated based on

(35) as log2

(
1 + Psλ

2
h,1 −

Psλ
2
h,1

fHGH
i Gif+1

)
. Firstly, the average

MI and the worst user MI of the proposed algorithm versus
Ps are shown in Fig. 8 for L = 6, Ns = 6, Nr = 3, Nd = 3,
and Pr = 20dB. From Fig. 8, we can see that even the worst-
channel user can have a comparable MI performance with the
average MI. In Fig. 9, the MI performance of the proposed
algorithm versus the number of receivers L is plotted with
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Fig. 7. Example 5: Total power versus target MSE ε. Varying number of
receivers, Nb = Ns = Nr = Nd = 3.
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Fig. 8. Example 6: Per-user MI versus Ps. L = 6, Nb = 1, Ns = 6,
Nr = 3, Nd = 3, Pr = 20dB.

Ns = 6, Nr = 3, Nd = 3, and Ps = Pr = 20dB. Note
that with the increasing number of receivers, the MI keeps
decreasing as is also observed in [4]. It can also be seen from
Fig. 9 that the worst user MI decreases slowly with increasing
L. It has been shown in [4] that the multicast rate converges
to zero when the number of users L approaches to infinity.

In the last example, the total powers required for multicas-
ting a single data stream among different number of receivers
are compared. We use the GSS algorithm [27] to find the
optimal P1 for each target SNR threshold. The optimal relay
precoding matrix is obtained by solving the problem (38) as is
described in Section IV-B. For simplicity, we assume ηi = η,
i = 1, · · · , L. Fig. 10 illustrates the total powers required for
L = 2, 4, and 6 versus target SNR threshold η with Ns = 6,
Nr = 3, and Nd = 3. Since Nb = 1 is a special case of
the system in Section III.B, the performance of the algorithm
based on solving the problem (28) is also shown in Fig. 10.
It is notable that the gap among the total powers required
for different number of receivers is small. This is because
the power required by the multicasting system in this paper
depends on the worst transmitter-relay-receiver channel. In this
example, the number of antennas in each node is much larger
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Fig. 9. Example 7: Per-user MI versus number of users L. Nb = 1, Ns = 6,
Nr = 3, Nd = 3, Ps = Pr = 20dB.
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Fig. 10. Example 8: Total power versus target SNR η. Varying number of
receivers, Nb = 1, Ns = 6, Nr = 3, Nd = 3.

than the number of data streams (Nb = 1). This averages out
the random channel leading to the so-called channel hardening
effect. In other words, in the system in Fig. 10, the statistics
of the worst channel among L = 4 receivers is very close to
that of the worst channel among L = 6 receivers. Therefore,
the power required by L = 4 and L = 6 systems is very
close. It can also be seen from Fig. 10 that due to the
high first-hop SNR approximation, the algorithm based on
solving the problem (28) yields larger total power consumption
compared with the algorithm based on solving the problem
(38). However, since the problem (38) is solved through
an iterative approach where the subproblem (39) is solved
using the SDR technique in each iteration, the computational
complexity involved in solving (38) is higher than that of the
problem (28). Such performance-complexity tradeoff is useful
in practical MIMO relay multicasting systems.

VI. CONCLUSIONS

We considered a two-hop multicasting MIMO relay system
with multi-antenna nodes and proposed transmit and relay
precoding matrices based on two design criteria. Firstly, the
worst-case MSE was minimized subjecting to power con-
straints at the transmitter and the relay node. Secondly, we

proposed a total network transmission power minimization
strategy subjecting to QoS constraints. Under some mild ap-
proximation, we showed that the problems can be solved with
a significantly smaller computational complexity. In addition,
for the special case of single data stream multicasting, we
established an interesting link between the relay precoding
matrix in a two-hop MIMO multicasting system and the
transmit beamformer in a single-hop multicasting system.
Simulation results demonstrated that the proposed transmitter
and relay design outperforms the existing techniques.
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