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Transceiver Optimization for Two-Hop AF MIMO
Relay Systems With DFE Receiver and Direct Link

Qiao Su , and Yue Rong , Senior Member, IEEE

Abstract— In this paper, we consider precoding and receiving
matrices optimization for a two-hop amplify-and-forward (AF)
multiple-input multiple-output (MIMO) relay system with a
decision feedback equalizer (DFE) at the destination node in
the presence of the direct source-destination link. By adopting
the minimum mean-squared error (MMSE) criterion, we develop
two new transceiver design algorithms for such a system. The
first one employs an iterative procedure to design the source,
relay, feed-forward, and feedback matrices. The second algorithm
is a non-iterative suboptimal approach which decomposes the
optimization problem into two tractable subproblems and obtains
the source and relay precoding matrices by solving the two
subproblems sequentially. Simulation results validate the better
MSE and bit-error-rate (BER) performance of the proposed
algorithms and show that the non-iterative suboptimal method
has a negligible performance loss when the ratio of the source
node transmission power to the relay node transmission power is
small. In addition, the computational complexity analysis suggests
that the second algorithm and one iteration of the first algorithm
have the same order of complexity. As the first algorithm typically
converges within a few iterations, both proposed algorithms
exhibit a low complexity order.

Index Terms— Amplify-and-forward, MIMO relay, precoding
matrix, decision feedback equalizer (DFE), direct link.

I. INTRODUCTION

S INCE the multiple-input multiple-output (MIMO) relay
communication technique combines the advantages of

MIMO and relay systems simultaneously which can effectively
improve the quality and coverage of wireless communications,
it has received much attention in recent years [1]. There are
several relay protocols including amplify-and-forward (AF)
and decode-and-forward (DF) [2]. For the AF protocol, the
relay node only amplifies (including linear precoding) and
forwards the received signals, while for the DF protocol, the
relay node decodes and re-encodes the received signals before

Manuscript received June 9, 2021; revised November 13, 2021 and
February 9, 2022; accepted April 10, 2022. Date of publication April 18,
2022; date of current version June 16, 2022. This work was supported by the
National Natural Science Foundation of China under Grant Nos. 62001513 and
62071485 and the Natural Science Foundation of Jiang Su Province in
China under Grant Nos. BK20200579 and BK20201334. The associate editor
coordinating the review of this article and approving it for publication was
A. El Shafie. (Corresponding author: Qiao Su.)

Qiao Su is with the College of Communications Engineering, Army
Engineering University of PLA, Nanjing 210007, China (e-mail:
qiaosu810@foxmail.com).

Yue Rong is with the School of Electrical Engineering, Computing and
Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia
(e-mail: y.rong@curtin.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2022.3168281.

Digital Object Identifier 10.1109/TCOMM.2022.3168281

retransmission. Thus, the AF protocol has a much lower com-
plexity than the DF protocol particularly when we consider
MIMO relay systems. Based on these advantages, AF MIMO
relay systems are promising for improving the performance
of next generation wireless communication systems. In the
literature, the AF and DF relays are also referred to as the
nonregenerative and regenerative relays, respectively [3]–[7].

Most of existing works design AF MIMO relay systems
by maximizing the mutual information (MI) between source
and destination [3]–[4] or by minimizing the mean-squared
error (MSE) of the estimation of the signal waveform [5]–[6].
In [7], a wide class of commonly applied criteria for AF
MIMO relay system design have been investigated under a
unified framework. In view of the case with mismatch between
the true and the estimated channel state information (CSI),
robust transceivers have been designed for AF MIMO relay
systems in [8]–[9]. AF MIMO relay system design with
constrains on the quality-of-service (QoS) has been developed
in [10]–[12].

Works such as [5] and [7] ignored the direct link between
the source and the destination. However, in some application
scenarios, the direct link is non-negligible, which can be
exploited to provide valuable spatial diversity. When the direct
link is considered, the corresponding MIMO relay system
optimization problems become more complicated. Based on
the minimum MSE (MMSE) objective, source and relay pre-
coding matrices design with the direct link has been studied
in [13], which employs the projected gradient method and
the interior-point method to update the source and relay
precoding matrices alternately. In [14], a tri-step algorithm
and a bi-step algorithm have been proposed for AF MIMO
relay systems considering the direct link, where the tri-step
algorithm iteratively optimizes the source, relay, and receiver
matrices and the bi-step algorithm only alternately updates
the source and relay precoding matrices. Transceiver design
for AF MIMO relay systems with the direct link and the
source node transmits information in both time slots has
been investigated in [15]. By introducing two scaling factors
multiplied to the received signals at the destination, two
AF MIMO relay system design schemes have been derived
in [16]. One algorithm in [16] identifies a locally optimal
solution by alternately updating the two scaling factors and
the source, relay, and receiver matrices in order to further
reduce the complexity of the tri-step algorithm in [14]. Without
utilizing the two scaling factors, the other algorithm in [16]
provides a closed-form suboptimal solution in a non-iterative
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manner by decomposing the problem into two simpler
subproblems.

The works [3]–[7] and [13]–[16] consider linear receivers.
As well known, a receiver with a nonlinear decision feedback
equalizer (DFE) usually yields a lower system bit-error-rate
(BER) compared with linear receivers. When a DFE decodes
a particular data stream, interference caused by data streams
that are already decoded is canceled [17]–[18]. Some works
have studied the optimization of AF MIMO relay systems
with the DFE receiver. In [19], a multi-hop AF MIMO
relay system design with an MMSE-DFE receiver has been
proposed. To reduce the computational complexity, a non-
iterative method has been proposed in [20] to design the source
and relay matrices for AF MIMO relay systems equipped with
a DFE receiver in the absence of the direct link. By combining
the advantages of exploiting the DFE receiver and the direct
link, transceiver optimization with the DFE receiver and the
direct link has been investigated in [21] with the zero-forcing
(ZF) strategy. However, the transceiver with the ZF strategy
has poor performance at low signal-to-noise ratio (SNR),
due to the effect of noise enhancement of the ZF receiver.
We would like to note that the transceiver optimization prob-
lem utilizing the MMSE strategy with the DFE receiver and
the direct link is more difficult to solve than that of the
ZF scheme.

In this article, we study the transceiver design with perfect
and imperfect CSI for two-hop AF MIMO relay systems with
a DFE receiver and the direct link. The main contributions of
this paper over existing works such as [3]–[21] are summarized
below.

1) We propose two new transceiver design algorithms for
such system based on the MMSE criterion, where both
algorithms can be used for the perfect and imperfect
CSI cases. The first algorithm optimizes the source,
relay, feed-forward, and feedback matrices iteratively by
solving convex subproblems. We show that this iterative
algorithm converges to a Nash point [22].

2) In the second proposed method, we substitute the opti-
mal feed-forward matrix into the MSE objective function
and derive the optimal structure of the relay precod-
ing matrix, which enables the transceiver design prob-
lem to be decomposed into two tractable subproblems.
By solving the two subproblems sequentially, we obtain
suboptimal source, relay, and feedback matrices without
iteration. To the best of our knowledge, both algorithms
are proposed for the first time in this paper.

3) Compared with [21], which also considered the DFE
receiver and the direct link but only works when the
number of transmit data streams is equal to the number
of antennas at the source node, both proposed algorithms
are applicable to more general scenarios.

4) The robust algorithms extend the proposed methods
from the ideal case of perfect CSI to practical systems
with imperfect CSI knowledge, thus, bringing the pro-
posed methods one step closer to practical deployment.

5) Simulation results demonstrate that the first algorithm
has a better MSE and BER performance than the meth-
ods in [16], [20], and [21] under various scenarios.

Fig. 1. Block diagram of an AF MIMO relay system with a DFE receiver
and direct link.

Moreover, although the second algorithm is suboptimal,
it has a negligible performance loss compared with
the first algorithm when the ratio of the source node
transmission power (Ps) to the relay node transmission
power (Pr) is small (typically less than two), since the
sub-optimality of the decomposition decreases with the
reduction of Ps/Pr.

6) Computational complexity analysis shows that the sec-
ond algorithm and one iteration of the first algorithm
have the same complexity order. As the first algorithm
typically converges within a few iterations, both pro-
posed algorithms exhibit a low complexity order.

The remainder of this article is organized as follows. The
model of a dual-hop AF MIMO relay system having a DFE
receiver and direct link is introduced in Section II. The
proposed transceiver optimization algorithms with the exact
CSI are presented in Section III. The extension of the proposed
transceiver optimization algorithms to the case with imperfect
CSI is given in Section IV. Simulation results are provided in
Section V to show the performance of the proposed algorithms.
Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We study a three-node dual-hop AF MIMO relay system
as illustrated in Fig. 1, where the information is transmitted
from the source node to the destination node with the aid
of a relay node. A nonlinear DFE-based receiver is utilized
at the destination node. The source node, relay node, and
destination node have Ns, Nr, and Nd antennas, respectively.
A half-duplex relay is considered in this paper to avoid the
loop interference. Therefore, the communication between the
source node and the destination node is accomplished in two
time intervals.

During the first time interval, an information-bearing vector
s ∈ CNb×1 (Nb ≤ Ns, Nr, Nd) is precoded linearly at the
source node by a matrix B ∈ CNs×Nb as

xs = Bs (1)

where E{ssH} = INb
, Nb is the number of data streams, and

each stream carries independent information bits. Here (·)H
denotes the Hermitian transpose, E{·} represents the statistical
expectation, and Im stands for the m×m identity matrix. Then
xs is transmitted from the source node to both the relay node
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and the destination node. The received signal vectors at the
relay and destination nodes are given respectively by

yr =Hxs + nr (2)

yd1 =Txs + nd1 (3)

where H ∈ CNr×Ns and T ∈ CNd×Ns are the channel
matrices for the source-relay link and the source-destination
link, respectively, nr ∈ CNr×1 is the noise vector at the relay
node, and nd1 ∈ CNd×1 is the noise vector at the destination
node in the first time interval.

In the second time interval, yr is linearly precoded by a
matrix F ∈ CNr×Nr as

xr =Fyr . (4)

Then the relay node forwards xr to the destination node. The
received signal vector at the destination node is written as

yd2 =Gxr + nd2 (5)

where G ∈ CNd×Nr is the channel matrix for the
relay-destination link and nd2 is the noise vector at the
destination node in the second time interval.

According to (1)-(5), the received signal vector at the
destination node during two consecutive time intervals can be
described by

y =
[
yd2

yd1

]
=
[
GFH

T

]
Bs +

[
GFnr + nd2

nd1

]
= Ms + v (6)

where M ∈ C2Nd×Nb and v ∈ C2Nd×1 are defined respec-
tively as

M =
[
GFHB

TB

]
, v =

[
GFnr + nd2

nd1

]
.

We assume that nr, nd1 , and nd2 are independent and identi-
cally distributed (i.i.d.) Gaussian noise vectors whose entries
are zero-mean with unit variance.

At the destination, a nonlinear DFE receiver shown in
Fig. 1 is employed to estimate the source signals successively
from the Nb-th symbol down to the first symbol. The estimated
signal vector can be written as [19]

ŝ = WHy − Ps (7)

where W ∈ C2Nd×Nb is the feed-forward matrix and P ∈
CNb×Nb is a strictly upper triangular feedback matrix with
zero main diagonal elements. Based on (6) and (7), at the
destination node, the MSE matrix of the signal waveform
estimation can be written as

E = E{(ŝ− s)(ŝ− s)H}
= (WHM − U)(WHM − U)H + WHCvW (8)

where U = P + INb
is an upper triangular matrix with unit

main diagonal elements and Cv = E{vvH} is the noise
covariance matrix and given by

Cv =
[
GFFHGH+INd

0
0 INd

]
.

Based on (1) and (4), the transmission power consumption
at the source node and the relay node can be computed
respectively as

E{tr(xsxH
s )}= tr(BBH) (9)

E{tr(xrxH
r )}= tr(F(HBBHHH + INr )FH) (10)

where tr(·) is the matrix trace.
Based on (8)-(10), the optimization problem with respect to

the source and relay precoding matrices and the feed-forward
and feedback matrices at the destination node is formulated as

min
B,F,W,P∈U

tr(E) (11a)

s.t. tr(BBH) ≤ Ps (11b)

tr(F(HBBHHH + INr)F
H) ≤ Pr (11c)

where Ps and Pr are the transmission power budget at
the source node and the relay node, respectively, and U
denotes the set of Nb × Nb strictly upper triangular matrices.
The problem (11) aims to minimize the MSE of the signal
waveform estimation using a DFE receiver, subjecting to
the transmission power constraints at the source and relay
nodes.

The problem (11) is nonconvex and challenging to solve,
particularly when both the direct link and the nonlinear DFE
receiver are considered. Note that without the direct link,
the structure of the optimal precoding matrices B and F
are known [19]. However, when the direct link is included,
the optimal structure of B and F cannot be given in an
analytic form. Compared with existing works which consider
the direct link without the nonlinear DFE receiver such as [13],
[14], and [16], the problem (11) is more complicated since
the objective function (11a) contains four matrix variables.
Compared with the objective function based on the ZF strategy
in [21] which also considers the direct link and the nonlinear
DFE receiver, the objective function (11a) with the MMSE
strategy is more complex.

III. PROPOSED TRANSCEIVER DESIGN ALGORITHMS

In this section, we present two algorithms for transceiver
optimization of AF MIMO relay systems with a DFE receiver
and direct link. The first algorithm optimizes the source, relay,
feed-forward, and feedback matrices iteratively. While the
second algorithm substitutes the optimal feed-forward matrix
into the MSE objective function and decomposes the resulting
objective function into two parts. Then the second algorithm
optimizes the source, relay, and feedback matrices sequentially
without iteration.

A. The Iterative Transceiver Design Algorithm

Due to the introduction of P, the problem that iteratively
optimizes B, F, W, and P is more complex compared with
that in [14] and [16]. In order to solve the problem (11),
we introduce a nonzero real scalar ξ. The received signal
vector at the destination node during two consecutive time
intervals can be reformulated by ŷ = ξy, where ξ can be
viewed as a gain control factor at the destination node. In this
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case, we rewrite the feed-forward matrix Ŵ = (1/ξ)W.
It will be shown later that the introduction of ξ facilitates
the optimization of the source precoding matrix B. Note that
since ŴHŷ = WHy, (7) holds unchanged after introducing
the nonzero real scalar ξ. Thus, the MSE matrix of the signal
waveform estimation in (8) stays the same. We can rewrite the
MSE matrix of the signal waveform estimation equivalently by
using W = ξŴ, which is given by

Ê=(ξŴHM − U)(ξŴHM − U)H + ξ2ŴHCvŴ. (12)

The sign of ξ can be absorbed by Ŵ according to the equation
W = ξŴ. Moreover, our final goal is to obtain W instead
of ξ and Ŵ. Thus, the sign of ξ does no affect the trans-
ceiver optimization. For the simplicity of presentation, we set
ξ > 0 in the following text.

The problem (11) can be reformulated as

min
B,F,�W,ξ,P∈U

tr(Ê) (13a)

s.t. tr(BBH) ≤ Ps (13b)

tr(F(HBBHHH + INr )FH) ≤ Pr. (13c)

The proposed algorithm updates B, F, Ŵ, ξ, and P iteratively
till convergence. In each iteration, we first optimize Ŵ and
P using given B, ξ, and F. Then, we optimize F with fixed
B, Ŵ, ξ, and P. Finally, B and ξ are optimized with given
F, Ŵ, and P. This procedure continuous till convergence.

Firstly, when B, ξ, and F are given, from (13), Ŵ and P
can be obtained from solving the problem of

min
�W,P∈U

tr(Ê). (14)

Let us introduce the QR decomposition [24] of[
(C′

v)−
1
2 M′

INb

]
= QR (15)

where M′ = ξM, C′
v = ξ2Cv , and (·)−1 denotes matrix

inversion. It can be shown from [19] that the solution to the
problem (14) is

Ŵ = (C′
v)

− 1
2 Q1D−1

r , P = D−1
r R − INb

(16)

where Q1 contains the first 2Nd rows of Q in (15) and Dr

is a diagonal matrix whose main diagonal elements are taken
from the main diagonal elements of R.

Secondly, with given B, Ŵ, ξ, and P, from (13), we can
obtain the optimal matrix F via the following problem

min
F

tr((H2FH1−Θ)(H2FH1−Θ)H+H2FFHHH
2 )

(17a)

s.t. tr(F(H1HH
1 + INr )FH) ≤ Pr (17b)

where H1 = HB, H2 = ξŴH
1 G, Θ = U − ξŴH

2 TB, Ŵ1

and Ŵ2 contain the first and last Nd rows of Ŵ, respectively.
The solution to the problem (17) can be easily found by
resorting to the Lagrange multiplier method as

F = HH
2 (H2HH

2 + γINb
)−1ΘHH

1 (H1HH
1 + INr)

−1 (18)

where γ ≥ 0 is the Lagrange multiplier.

When γ = 0, F is obtained from (18) as

F = HH
2 (H2HH

2 )−1ΘHH
1 (H1HH

1 + INr)
−1. (19)

If F given by (19) satisfies the constraint (17b), then (19) is
the optimal solution to the problem (17). Otherwise, we have
γ > 0 such that F in (18) satisfies the constraint (17b) with
equality as

tr(HH
2 (H2HH

2 +γINb
)−1Υ(H2HH

2 +γINb
)−1H2) =Pr (20)

where Υ = ΘHH
1 (H1HH

1 + INr)−1H1ΘH. By using the
singular value decomposition (SVD) of H2 = U2Λ2V2 and
defining Ω = UH

2 ΥU2, (20) can be rewritten as

Nb∑
i=1

λ2
2,iωi(λ2

2,i + γ)
−2

= Pr (21)

where λ2,i and ωi are the ith main diagonal elements of
Λ2 and Ω, respectively. We can obtain γ from (21) by the
bisection method [26], since the left-hand side (LHS) of (21)
monotonically decreases with γ > 0.

Thirdly, with fixed Ŵ, P, and F, the problem (13) becomes

min
B,ξ

tr((ξD1B−U)(ξD1B−U)H+ξ2ŴHCvŴ) (22a)

s.t. tr(BBH) ≤ Ps (22b)

tr(BHDH
2 D2B) ≤ P̂r (22c)

where D1 = ŴH
1 GFH + ŴH

2 T, D2 = FH, and P̂r =
Pr − tr(FFH). Note that optimizing B is more challenging
compared with the optimization of W, P, and F, as B appears
in both constraints (22b) and (22c). The introduced ξ can be
used to solve this problem without using any optimization
toolbox (which usually has a high complexity order).

The Lagrangian function of the problem (22) can be
expressed as

L=tr((ξD1B− U)(ξD1B− U)H + ξ2ŴHCvŴ)
+μ1(tr(BBH)−Ps)+μ2(tr(BHDH

2 D2B)−P̂r) (23)

where μ1 ≥ 0 and μ2 ≥ 0 are the Lagrange multipliers.
Based on the first-order derivative condition of ∂L/∂B = 0,

we can obtain from (23) that

(DH
1 D1 + μ̃1INs + μ̃2DH

2 D2)B = (1/ξ)DH
1 U (24)

where μ̃1 = μ1/ξ2 and μ̃2 = μ2/ξ2. By employing the
first-order derivative condition of ∂L/∂ξ = 0, we get

tr(D1BBHDH
1 ) + tr(ŴHCvŴ)
= (1/2ξ)(tr(UBHDH

1 ) + tr(D1BUH)). (25)

Pre-multiplying (24) by BH, we have

BH(DH
1 D1+μ̃1INs +μ̃2DH

2 D2)B=(1/ξ)BHDH
1 U. (26)

From (26), we can see that BHDH
1 U is a Hermitian

Matrix. Thus, it can be obtained easily that tr(UBHDH
1 ) =

tr(D1BUH). Then, by combining (25) and (26), we can get

tr(ŴHCvŴ) = μ̃1tr(BHB) + μ̃2tr(BHDH
2 D2B). (27)
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Interestingly, (27) shows the relationship between μ̃1 and μ̃2.
From (24), we can compute B as

B = (1/ξ)(DH
1 D1 + μ̃1INs + μ̃2DH

2 D2)
−1

DH
1 U. (28)

If μ̃1 = μ̃2 = 0, we can see from (27) that tr(ŴHCvŴ) =
0, which cannot be true. Thus, we consider the following three
cases: i) μ̃1 = 0 and μ̃2 > 0; ii) μ̃1 > 0 and μ̃2 = 0;
iii) μ̃1 > 0 and μ̃2 > 0. Assuming that μ̃1 = 0 and
μ̃2 > 0, we have tr(BHDH

2 D2B) = P̂r according to the
complementary slackness condition. Thus, it can be deduced
from (27) and (28) that

B =
1
ξ

(
DH

1 D1 +
tr(ŴHCvŴ)

P̂r

DH
2 D2

)−1

DH
1 U (29)

where ξ =
√

tr(B
H

1 DH
2 D2B1)

/
P̂r with

B1 =

(
DH

1 D1 +
tr(ŴHCvŴ)

P̂r

DH
2 D2

)−1

DH
1 U. (30)

If the constraint (22b) is satisfied by B in (29), then (29) is the
optimal solution to the problem (22). Otherwise, μ̃1 = 0 and
μ̃2 > 0 do not hold true.

Now we consider the case of μ̃1 > 0 and μ̃2 = 0. According
to the complementary slackness condition, we get tr(BBH) =
Ps in this case. Combining (27) and (28), we obtain

B =
1
ξ

(
DH

1 D1 +
tr(ŴHCvŴ)

Ps
INs

)−1

DH
1 U (31)

where ξ =
√

tr(B2B
H

2 )
/

Ps with

B2 =

(
DH

1 D1 +
tr(ŴHCvŴ)

Ps
INs

)−1

DH
1 U. (32)

If the constraint (22c) is satisfied by B in (31), then (31) is the
optimal solution of the problem (22). Otherwise, μ̃1 > 0 and
μ̃2 = 0 is not true.

For the case of μ̃1 > 0 and μ̃2 > 0, we can deduce from
(27) and (28) that

B =
1
ξ
(DH

1 D1 + μ̃1INs

+
tr(ŴHCvŴ) − μ̃1Ps

P̂r

DH
2 D2)−1DH

1 U (33)

where ξ=
√

tr(B3B
H

3 )
/

Ps with

B3 = (DH
1 D1 + μ̃1INs

+
tr(ŴHCvŴ) − μ̃1Ps

P̂r

DH
2 D2)−1DH

1 U. (34)

It can be seen that B in (33) is a function of μ̃1. Note
that in this case, B in (33) should satisfy tr(BBH) = Ps and
tr(BHDH

2 D2B) = P̂r simultaneously. Thus, we have

tr(BBH)
tr(BHDH

2 D2B)
=

Ps

P̂r

. (35)

From (33) and (35), we can get

tr(QB−1
0 (μ̃1)DH

1 UUHD1B−1
0 (μ̃1)) = 0 (36)

where B0(μ̃1) = DH
1 D1+μ̃1INs + tr(�WHCv

�W)−�μ1Ps

�Pr
DH

2 D2

and Q = INs − Ps

P̂r
DH

2 D2. Let us introduce

f(μ̃1) = tr(QB−1
0 (μ̃1)DH

1 UUHD1B−1
0 (μ̃1)).

In Appendix, we prove that f(μ̃1) is a non-increasing function
with respect to μ̃1. Therefore, the bisection method can be
employed to solve μ̃1 from (36). Then, B and ξ are obtained
from (33) by using the calculated μ̃1.

According to (16), (18), (29), (31), and (33), the steps of
using the proposed iterative algorithm to solve the transceiver
optimization problem (13) are listed in Algorithm 1, where
the superscript (n) stands for variables at the nth iteration and
ε > 0 is a small number for which convergence is acceptable.
Since the subproblem (14) of optimizing Ŵ and P, the
subproblem (17) of updating F, and the subproblem (22)
of optimizing B and ξ are all convex optimization problem,
based on [22], Algorithm 1 converges to a Nash point of the
problem (13).

Algorithm 1 Iterative Transceiver Optimization Algorithm
Input: H, G, T, Ps, Pr .
Output: B, F, �W, ξ, P.

Initialize B(0), ξ(0) and F(0), set n = 0 and tr(E(0)) = Nb.
1: repeat
2: Set n := n + 1.
3: Optimize �W(n) and P(n) for fixed B(n−1) , ξ(n−1), and F(n−1)

as (16).
4: Calculate F(n) for fixed �W(n), P(n), B(n−1) , and ξ(n−1) as

(18).
5: Update B(n) and ξ(n) for given �W(n), P(n), and F(n) accord-

ing to the following three cases:
1) If B(n) in (29) satisfies (22b), then B(n) and ξ(n) are given
by (29);
2) If B(n) in (31) satisfies (22c), then B(n) and ξ(n) are given
by (31);
3) Otherwise, B(n) and ξ(n) are given by (33)

6: until (tr(E(n−1)) − tr(E(n)))/tr(E(n−1)) ≤ ε

B. The Non-Iterative Transceiver Design Algorithm

In this subsection, we present a non-iterative transceiver
design approach, which is suboptimal but has a lower com-
putational complexity compared with the iterative algorithm
in Section III-A. We consider the problem (11). Taking the
first order derivative of tr(E) in (8) with respect to W and
equating the result to zero, we obtain the optimal feed-forward
matrix W minimizing tr(E) in (8) with fixed B, F, and P,
which is given by [25]

W= (MMH+Cv)−1M(P + INb
)H. (37)

By substituting (37) back into (8), we obtain

E = U[INb
+ BHTHTB + BHHHFHGH

×(GFFHGH + INd
)−1GFHB]−1UH. (38)
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Based on [27], it can be shown that the optimal F that
minimizes tr(E) in (38) can be written as

F = DL (39)

where L = (BHHHHB + BHTHTB + INb
)−1BHHH and

D ∈ CNr×Nb remains to be optimized. Interestingly, D can
be viewed as the linear transmitter matrix at the relay node,
while L can be treated as the linear receiver matrix at the relay
node.

By substituting (39) back into (38), we can decompose (38)
into two MSE matrices as

E = E1 + E2 (40)

where

E1 = U(BHHHHB + BHTHTB + INb
)−1UH (41)

E2 = U(DHGHGD + Ω−1)−1UH. (42)

Here Ω = L(HB(BHTHTB + INb
)−1BHHH + INr )LH.

Using (40), the problem (11) can be rewritten as

min
B,D,P∈U

tr(E1) + tr(E2) (43a)

s.t. tr(BBH) ≤ Ps (43b)

tr(DL(HBBHHH+INr)L
HDH) ≤ Pr. (43c)

Since D does not appear in tr(E1) and the constraint (43b),
we propose to optimize B and P through solving the problem
below

min
B,P∈U

tr(E1) (44a)

s.t. tr(BBH) ≤ Ps. (44b)

Then, using the solution of B and P from the problem (44),
we can obtain D by solving the optimization problem of

min
D

tr(E2) (45a)

s.t. tr(DL(HBBHHH+INr)L
HDH) ≤ Pr. (45b)

Thus, the problem (43) is decomposed into two subprob-
lems, the problem (44) and the problem (45). Since we
consider the direct link and the nonlinear DFE receiver, the
two MSE matrices E1 and E2 are complicated functions of B
and D because of the introduction of the upper triangular
matrix U and the channel matrix T for the direct link.
Thus, the optimization problems (44) and (45) are challenging
to solve compared with existing works. We would like to
note that as B is in (45a) and (45b), and P appears in the
objective function (45a), such decomposition is suboptimal.
The performance of the decomposition depends on the value
of Ps relative to Pr . When Ps is small compared with Pr,
the feasible region specified by (44b) is small. Therefore, the
suboptimality of obtaining B by solving the problem (44) has
smaller impact on the feasible region of D in (45b) with
smaller Ps. Thus, with increasing Pr/Ps, the performance
of the non-iterative method by solving the two subproblems
is getting closer to the iterative algorithm in Section III-A.
Moreover, this non-iterative method has a lower computational
complexity compared with the iterative algorithm. It will be
shown through numerical simulations that the non-iterative

method has a negligible performance loss when the source
node transmission power is less than the relay node transmis-
sion power.

In order to solve the problem (44), we first introduce
the arithmetic-geometric mean inequality [24] which shows
that for a positive semidefinite matrix K ∈ C

n×n, there is
1
n tr(K) ≥ |K| 1

n , where | · | denotes matrix determinant. The
equality holds if and only if K = αIn with α ≥ 0. Therefore,
we have

1
Nb

tr(E1)≥ |E1|
1

Nb

=
∣∣∣U(BHHHHB + BHTHTB + INb

)
−1

UH
∣∣∣ 1

Nb

=
∣∣BHHHHB + BHTHTB + INb

∣∣− 1
Nb (46)

where the fact of |U| = 1 is used. Let us define Z =
HHH + THT and introduce the SVD of B = UbΛbVH

b and
the eigenvalue decomposition (EVD) of Z = VzΛzVH

z , where
Λb and Λz are Nb × Nb and Ns × Ns diagonal matrices,
respectively, and the main diagonal elements of Λb and
Λz are arranged in descending order. Using the Hadamard’s
inequality [24], from (46) we obtain

∣∣BHZB + INb

∣∣− 1
Nb ≥

Nb∏
i=1

(λ2
b,iλz,i + 1)

− 1
Nb (47)

where λb,i and λz,i are the ith main diagonal elements of Λb

and Λz , respectively. The equality in (47) can be achieved
if Ub = Vz,1, where Vz,1 contains the first Nb columns
of Vz . The right-hand side (RHS) of (47) can be minimized
by solving the problem below

min
λb

Nb∏
i=1

(λ2
b,iλz,i + 1)

− 1
Nb (48a)

s.t.
Nb∑
i=1

λ2
b,i ≤ Ps (48b)

where λb = [λb,1, . . . , λb,Nb
]T, and (·)T is the matrix and vec-

tor transpose. The problem (48) has the water-filling solution
given by

λ2
b,i =

(
η1 − 1

λzi

)+

, i = 1, · · · , Nb (49)

where (x)+ = max(x, 0) and η1 > 0 is the Lagrange
multiplier which is computed to satisfy equality in the
constraint (48b).

In (46), 1
Nb

tr(E1) achieves its lower bound |E1|
1

Nb if and
only if

E1 = αINb
(50)

where α is the minimum value of the objective function (48a).
By substituting B = Vz,1ΛbVH

b into (50), we have

U(VbΛ2
bΛz,1VH

b + INb
)−1UH = αINb

(51)

where Λz,1 is a diagonal matrix containing the largest Nb

eigenvalues of Z. Similar to [20], U and Vb satisfying (51)
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can be obtained from the geometric mean decomposition
(GMD) [28] of Λ̃ = α(Λ2

bΛz,1 + INb
) as

Λ̃
1
2 = ΨHUVb (52)

where Ψ is an Nb×Nb unitary matrix. The feedback matrix P
is obtained from U as P = U− INb

.
Then, we consider solving the problem (45) with B and P

derived above. We rewrite E2 as

E2 = (D
H
GHGD + Φ−1)−1 (53)

where D = DU−1 and Φ = UΩUH. Let us introduce the
EVD of Φ = UΦΛΦUH

Φ and the SVDs of D = UdΛdV
H
d

and G = UgΛgVH
g , where ΛΦ, Λd, and Λg are Nb × Nb,

Nb×Nb, and Nd×Nr diagonal matrices whose main diagonal
elements are sorted in descending order. From (53), we can
rewrite the objective function (45a) as

tr(E2) = tr((UH
ΦD

H
GHGDUΦ + Λ−1

Φ )−1). (54)

Let us define Γ = UL(HBBHHH + INr)LHUH. The
constraint (45b) can be rewritten as

tr(DΓD
H
) ≤ Pr. (55)

By investigating (54) and (55), we find that in general there
does not exist an optimal D which simultaneously diagonal-
izes the objective function (54) and the constraint (55). Similar
to [27], we propose to apply a suboptimal structure of

D = Vg,1ΛdU
H
Φ (56)

where Vg,1 contains the first Nb columns of Vg. Based
on (56), the problem (45) becomes

min
λd

Nb∑
i=1

(λ2
d,i

λ2
g,i + λ−1

Φ,i)
−1

(57a)

s.t.
Nb∑
i=1

λ2
d,i

τi ≤ Pr (57b)

where λd = [λd,1, . . . , λd,Nb
]T, λd,i, λg,i, λΦ,i, and τi are the

ith main diagonal elements of Λd, Λg , ΛΦ, and UH
ΦΓUΦ,

respectively. It can be shown that the problem (57) has a
water-filling solution given by

λ2
d,i

=
1

λ2
g,iλΦ,i

⎛⎝√λ2
g,iλ

2
Φ,i

η2τi
− 1

⎞⎠+

(58)

where η2 > 0 is the Lagrange multiplier calculated to satisfy
the constraint (57b) with equality.

Finally, F is obtained by F = DUL. The proposed
non-iterative transceiver design algorithm is summarized in
Algorithm 2.

IV. PROPOSED ROBUST TRANSCEIVER

DESIGN ALGORITHMS

The discussions above are based on the exact knowledge
of CSI. In this section, the practical case of CSI mismatch is
considered. We show that the transceiver design problem under
imperfect CSI can be converted to the problem with perfect

Algorithm 2 Non-Iterative Transceiver Optimization
Algorithm
Input: H, G, T, Ps, Pr .
Output: B, F, W, P.
1: Calculate Λb by (49).
2: Obtain U and Vb by employing the GMD of �Λ

1
2 according to

(52), and then obtain B and P as B = Vz,1ΛbV
H
b and P =

U − INb , respectively.
3: Compute Λd by (58) and calculate D by (56). Obtain F as F =

DUL.

CSI knowledge. We denote H, G, and T as the estimated
channel matrices of H, G, and T, respectively. By intro-
ducing the well-known Gaussian-Kronecker model [14], the
true channel matrices H, G, and T can be written as H =
H + AΦH

HwHAH
ΘH

, G = G + AΦG
HwGAH

ΘG
, and T =

T + AΦT
HwTAH

ΘT
, respectively, where AΦi

AH
Φi

= Φi,
AΘiA

H
Θi

= ΘT
i , Φi and Θi, i ∈ {H,G,T}, are the

covariance matrix of channel estimation error seen from the
receiver side and the transmitter side, respectively, and Hwi

(the unknown part in the CSI mismatch) is a Gaussian random
matrix with i.i.d. zero mean and unit variance entries.

We consider the statistical expectation of E in (8) in this
case, which is described by

E(E)= E((WHM − U)(WHM − U)
H

+ WHCvW)
= WHE(MMH + Cv)W − UE(MH)W
−WHE(M)UH + UUH. (59)

By defining α1= tr(BBHΘT
H), β = tr(F(HBBHH

H
+

α1ΦH)FHΘT
G), α2 = β + tr(FFHΘT

G), and α3 =
tr(BBHΘT

T), we can deduce that

E(MMH + Cv) = MM
H

+ Cv + R (60)

where

M=
[
GFHB

TB

]
Cv =

[
GFFHG

H
+ INd

0
0 INd

]

R=

[
α1GFΦHFHG

H
+ α2ΦG 0

0 α3ΦT

]
.

Note that (60) is obtained based on the fact [14] that
E(HXHH) = HXH

H
+ tr(XΘT

H)ΦH, and similarly for
equations involving G and T.

By introducing PH=α1ΦH+INr , PG=α2ΦG+INd
, and

PT=α3ΦT+INd
, (60) can be rewritten as (61), as shown at

the bottom of the next page.
Since the true channel matrix H is unknown, the averaged

transmission power at the relay node is considered, which is

E(tr(F(HBBHHH + INr)F
H))

= tr(F(HBBHH
H

+ α1ΦH + INr)F
H). (62)

Let us introduce H̃=P− 1
2

H H, G̃=P− 1
2

G G, T̃=P− 1
2

T T,

F̃=FP
1
2
H, W̃H

1 =WH
1 P

1
2
G, and W̃H

2 =WH
2 P

1
2
T, where W1 and
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W2 contain the first and last Nd rows of W, respectively.
Combining (59) and (61), we get

E(E) = (W̃HM̃ − U)(W̃HM̃ − U)H + W̃HC̃vW̃ (63)

where

W̃H = [W̃H
1 , W̃H

2 ]

M̃ =

[
G̃F̃H̃B

T̃B

]

C̃v =
[
G̃F̃F̃HG̃H + INd

0
0 INd

]
.

The averaged transmission power at the relay node shown
in (62) can be rewritten as tr(F̃(H̃BBHH̃H + INr )F̃H).

Thus, the optimization problem for robust transceiver design
is described by

min
B,�F,�W,P∈U

tr(E(E)) (64a)

s.t. tr(BBH) ≤ Ps (64b)

tr(F̃(H̃BBHH̃H + INr )F̃H) ≤ Pr. (64c)

Comparing the problem (64) with the problem (11), we can
easily find that these two problems are similar. Therefore,
the proposed iterative and non-iterative transceiver design
algorithms for solving the problem (11) can be directly applied
to solve the problem (64) for robust transceiver design where
we only need to replace F, W, H, G, and T with F̃, W̃,
H̃, G̃, and T̃. Then we obtain the iterative and non-iterative
algorithms for robust transceiver design.

V. NUMERICAL EXAMPLES

We study the performance of the proposed transceiver
design algorithms in this section by numerical simulations.
In the simulations, the source-relay channel matrix H, the
relay-destination channel matrix G, and the source-destination
channel matrix T have complex Gaussian entries with zero
mean and variances of σ2

s/Ns, σ2
r/Nr, and σ2

d/Ns, respec-
tively. We define SNRs = σ2

sPs/Ns, SNRr = σ2
rPr/Nr,

and SNRd = σ2
dPs/Ns as the SNRs of the source-relay,

relay-destination, and source-destination links, respectively.
When the BER performance is studied, signals are modulated
by QPSK constellations. The simulation results are averaged
through 2000 Monte-Carlo runs.

The performance of the proposed iterative (ITA) and non-
iterative (NITA) algorithms for transceiver design with the
exact CSI are compared with the following three benchmark-
ing approaches: i) The transceiver design for AF MIMO relay
systems with a ZF-based DFE receiver and direct link [21]
(denoted as ZF-DFE); ii) Joint MMSE transceiver design for
AF MIMO relay systems with a linear receiver and direct
link [16] (denoted as JMLD); iii) Joint MMSE transceiver
design for AF MIMO relay systems with a DFE receiver where

Fig. 2. Example 1: MSE of the ITA algorithm versus the number of iterations
under two scenarios, where in (a) SNRs = SNRr = SNR0, SNRd =
SNRs − 10dB, Ns = Nr = Nd = Nb = 3, and SNR0 = 8dB, 10dB
or 12dB, and in (b) SNRs = 15dB, SNRr = 10dB, Ns = 4, Nr = 6,
Nd = 3, Nb = 2, and SNRd = 0dB, 5dB or 12dB.

the direct link is ignored [20] (denoted as JMDND). Note
that the ZF-DFE algorithm can only work when Ns = Nb.
For the case of CSI mismatch, we compare the performance
of the proposed iterative (ITA-R) and non-iterative (NITA-R)
algorithms for robust transceiver design with the joint
MMSE robust transceiver design algorithm in [16] (denoted
as JMLD-R).

In the first simulation example, we investigate the conver-
gence of the proposed ITA algorithm under two scenarios.
We set SNRs = SNRr = SNR0, SNRd = SNRs − 10dB, and
Ns = Nr = Nd = Nb = 3 in the first scenario. In the second
scenario, we set SNRs = 15dB, SNRr = 10dB, Ns = 4,
Nr = 6, Nd = 3, and Nb = 2. Fig. 2(a) demonstrates the
MSE of the proposed ITA algorithm versus the number of
iterations (denoted as t) for SNR0 = 8dB, SNR0 = 10dB, and
SNR0 = 12dB under the first scenario. In Fig. 2(b), the MSE
of the proposed ITA algorithm versus the number of iterations
for SNRd = 0dB, SNRd = 5dB, and SNRd = 12dB is
shown under the second scenario. It can be clearly seen from
both Fig. 2(a) and Fig. 2(b) that the MSE of the proposed ITA
algorithm converges in about 5 iterations for various scenarios.

In the second example, we set SNRs = SNRr = SNR0,
SNRd = SNRs − 10dB, and Ns = Nr = Nd = Nb = 4.
The CSI mismatch is considered in this example, where for
i ∈ {H,G,T}, Θi and Φi are set as Θi = σ2

eINb
and

Φi =

⎡⎢⎢⎣
1 φ φ2 φ3

φ 1 φ φ2

φ2 φ 1 φ
φ3 φ2 φ 1

⎤⎥⎥⎦ .

In this example, we select φ = 0.45. Fig. 3 shows the
MSE of the proposed algorithms versus SNR0 with the exact
CSI and imperfect CSI. We can see from Fig. 3 that for

E(MMH + Cv) =

[
GFHBBHH

H
FHG

H
+ GFPHFHG

H
+ PG GFHBBHT

H

TBBHH
H
FHG

H
TBBHT

H
+ PT

]
(61)
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Fig. 3. Example 2: MSE versus SNR0 with SNRs = SNRr = SNR0,
SNRd = SNRs − 10dB, and Ns = Nr = Nd = Nb = 4.

Fig. 4. Example 3: MSE versus SNRd with SNRs = 18dB, SNRr =
15dB, and Ns = Nr = Nd = Nb = 4.

both the exact and imperfect CSI cases, the proposed NITA
and ITA algorithms perform almost same and both of them
have a better MSE performance than the JMLD algorithm.
That is to say, the DFE receiver shows a better performance
than the linear receiver. As expected, the MSEs of the three
tested algorithms increase with σ2

e . In the following numerical
examples, we focus on the exact CSI case.

In the third example, we study the MSE and BER perfor-
mance of the proposed algorithms versus SNRd with fixed
SNRs and SNRr. Fig. 4 displays the MSE performance of
the four tested algorithms versus SNRd with SNRs = 18dB,
SNRr = 15dB, and Ns = Nr = Nd = Nb = 4. From Fig. 4,
we can see that the MSE performance of the proposed ITA
and NITA algorithms is better than that of the ZF-DFE and
JMLD algorithms with different SNRd. Moreover, the NITA
algorithm has a slightly higher MSE than the ITA algorithm
throughout the range of SNRd, since the former one is a
suboptimal method. In Fig. 5, we show the BER performance
of the four tested algorithms versus SNRd with the same
configuration. Similar to Fig. 4, we can see from Fig. 5 that

Fig. 5. Example 3: BER versus SNRd with SNRs = 18dB, SNRr =
15dB, and Ns = Nr = Nd = Nb = 4.

the proposed ITA and NITA algorithms have a better BER
performance than the ZF-DFE and JMLD algorithms. From
Figs. 4 and 5 we can observe that the performance of the
ZF-DFE algorithm is good at high SNR, while it deteriorates
at low SNR. The reason is that the ZF-DFE algorithm takes use
of the ZF strategy, which has poor performance at low SNR,
due to the effect of noise enhancement of the ZF receiver.

In the next example, we fix SNRs (or SNRr) and investigate
the impact of SNRr (or SNRs) on the performance of the
proposed algorithms. We set SNRd = SNRs − 10dB and
Ns = Nr = Nd = Nb = 3. Fig. 6 illustrates the
MSE performance of the five algorithms versus SNRr with
SNRs = 20dB. It can be observed from Fig. 6 that the ITA
algorithm yields the lowest MSE among the five approaches
over the entire SNRr range, and the NITA algorithm has a
lower MSE than the JMDND and ZF-DFE algorithms. Note
that the JMDND algorithm does not exploit the direct link,
so it usually performs worse than the other algorithms. When
SNRr > 15dB, the MSE of the NITA algorithm is close to that
of the ITA algorithm, while the former deteriorates and is even
worse than that of the JMLD algorithm when SNRr < 15dB.
The reasons for the worse performance of the NITA algo-
rithm at low SNRr are explained below. As mentioned in
Section III-B, the NITA algorithm obtains B and P by solving
the problem (44). This may result in suboptimal B and P since
E2 contains B and P, and the constraint (45b) is also related
to B. The impact of such sub-optimality increases as the value
of Ps/Pr grows.

For this simulation example, we display the MSE of the
five algorithms versus SNRs with SNRr = 12dB in Fig. 7.
From Fig. 7, we can see that the ITA algorithm has a lower
MSE compared with the other four algorithms throughout the
entire range of SNRs. Additionally, the MSE performance
of the NITA algorithm is better than that of the ZF-DFE,
JMLD, and JMDND algorithms when SNRs ≤ 15dB, and
is worse than that of the ZF-DFE and JMLD algorithms when
SNRs ≥ 25dB, which corroborates the conclusion above in
Fig. 6. Moreover, we can find that there is a switching point
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Fig. 6. Example 4: MSE versus SNRr with SNRs = 20dB, SNRd =
10dB, and Ns = Nr = Nd = Nb = 3.

Fig. 7. Example 4: MSE versus SNRs with SNRr = 12dB, SNRd =
SNRs − 10dB, and Ns = Nr = Nd = Nb = 3.

(at SNRs = 15dB) between the ZF-DFE and JMDND algo-
rithms. The reason for the occurrence of the switching point is
that the ZF-DFE algorithm has poor performance at low SNR,
which has been explained above, so it may perform worse
than the JMDND algorithm at low SNR. Since the JMDND
algorithm does not exploit the direct link, the superiority of
the ZF-DFE algorithm which considers the direct link appears
at high SNR. Therefore, the switching point occurs and it
may appear in the following examples between the ZF-DFE
and JMDND algorithms. Fig. 8 shows the BER performance
of the five algorithms versus SNRs with SNRr = 12dB,
where we obtain observations similar to those in Fig. 7. Based
on Figs. 6-8, we can conclude that when Ps/Pr is small
(i.e., Ps/Pr < 2), the NITA algorithm has a negligible
performance loss compared with the ITA algorithms, and
performs better than the other benchmarking algorithms.

In the fifth example, we set SNRs = SNRr = SNR0

and SNRd = SNRs − 10dB. Fig. 9 illustrates the MSE
performance of the tested algorithms versus SNR0 with dif-
ferent number of antennas at three nodes. It can be seen from

Fig. 8. Example 4: BER versus SNRs with SNRr = 12dB, SNRd =
SNRs − 10dB, and Ns = Nr = Nd = Nb = 3.

Fig. 9. Example 5: MSE versus SNR0 with SNRs = SNRr = SNR0 and
SNRd = SNRs − 10dB, where in (a) Nb = 2, Ns = 2, Nr = 4, Nd = 6,
and in (b) Nb = 2, Ns = 4, Nr = 2, Nd = 6.

Fig. 9 that the ITA algorithm possesses the best performance
in all tested algorithms with various antenna configurations.
Moreover, the NITA algorithm has almost the same MSE
performance as the ITA algorithm and has better performance
than the other benchmarking approaches. The performance of
the ZF-DFE algorithm is not shown in Fig. 9(b) since this
algorithm does not work when Nb �= Ns.

In the sixth numerical example, we set Ns = Nr = Nd =
Nb = 4 and study the performance of the proposed algorithms
with SNRr = 2SNRs = SNR0 and SNRd = SNRs − 10dB.
The MSE and BER performance of the five tested algorithms
versus SNR0 is shown in Figs. 10 and 11, respectively. It can
be observed from Figs. 10 and 11 that the proposed ITA
and NITA algorithms almost have identical MSE and BER
performance, and they both yield lower MSEs and BERs than
the ZF-DFE, JMLD, and JMDND algorithms. It is obvious that
the results in this example corroborate the conclusion drawn
in example four.

Finally, we set Ns = Nr = Nd = Nb = N and compare
the computational complexity of the proposed algorithms with
the ZF-DFE, JMLD (JMLD-R), and JMDND methods. since
the NITA and ZF-DFE algorithms mainly involve matrix
SVD/EVD and matrix inversion, their computational complex-
ity order is O(N3). For each iteration of the ITA algorithm,
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Fig. 10. Example 6: MSE versus SNR0 with SNRr = 2SNRs = SNR0,
SNRd = SNRs − 10dB, and Ns = Nr = Nd = Nb = 4.

Fig. 11. Example 6: BER versus SNR0 with SNRr = 2SNRs = SNR0,
SNRd = SNRs − 10dB, and Ns = Nr = Nd = Nb = 4.

matrix QR decomposition, matrix SVD and matrix inversion
are employed. Thus, the ITA algorithm has an overall complex-
ity order of O(tN3), where t is the number of iterations till
convergence (usually around five according to example one).
From [16] and [20], it can be found that the JMLD (JMLD-R)
and JMDND algorithms possess the overall complexity order
of O(t′N3) and O(N3), respectively, where t′ refers to the
number of iterations and usually equals to three according
to [16]. Therefore, the ITA (ITA-R) and JMLD (JMLD-R)
algorithms almost have the same complexity and the former
is slightly higher than the latter. In addition, the computational
complexity of the ITA (ITA-R) algorithm is higher than that
of the NITA (NITA-R), ZF-DFE, and JMDND algorithms.
Considering that the performance of the ITA approach is
better, such performance-complexity tradeoff is interesting in
practical AF MIMO relay systems.

VI. CONCLUSION

We have investigated the optimization of precoding matrices
for a dual-hop AF MIMO relay system with a DFE receiver
and direct link. An iterative algorithm and a non-iterative

suboptimal approach have been developed to design the
transceiver matrices with exact and imperfect CSI based on
the MMSE criterion. Simulation results have shown that
the proposed iterative design has a better performance than
existing approaches under various scenarios. When the ratio
of the source node transmission power to the relay node
transmission power is small (typically less than two), the
proposed non-iterative suboptimal algorithm has a negligible
performance loss compared with the iterative algorithm.

APPENDIX

We calculate the first-order derivative of f(μ̃1) with respect
to μ̃1 as

∂f(μ̃1)
∂μ̃1

=
∂tr(QB−1

0 (μ̃1)DH
1 UUHD1B−1

0 (μ̃1))
∂μ̃1

= −tr(QB−1
0 (μ̃1)QB−1

0 (μ̃1)DH
1 UUHD1B−1

0 (μ̃1))
−tr(QB−1

0 (μ̃1)DH
1 UUHD1B−1

0 (μ̃1)QB−1
0 (μ̃1))

= −2tr(QB−1
0 (μ̃1)DH

1 UUHD1B−1
0 (μ̃1)QB−1

0 (μ̃1)). (65)

By introducing the eigenvalue decomposition (EVD) of
B−1

0 (μ̃1) = UB−1
0

ΛB−1
0

UH
B−1

0
, where ΛB−1

0
is an Ns × Ns

diagonal matrix, (65) is rewritten as

∂f(μ̃1)
∂μ̃1

=−2tr
(
ΓΓHUB−1

0
ΛB−1

0
UH

B−1
0

)
=−2tr

(
Λ−1/2

B−1
0

UH
B−1

0
ΓΓHUB−1

0
Λ−1/2

B−1
0

)
(66)

where Γ = QB−1
0 (μ̃1)DH

1 U. From (66), we have ∂f(�μ1)
∂�μ1

≤ 0.
Thus, f(μ̃1) is a non-increasing function with respect to μ̃1.
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