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Multiuser Multi-Hop MIMO Relay Systems with
Correlated Fading Channels

Yue Rong, Senior Member, IEEE, and Yong Xiang

Abstract—In this letter, we address multiuser multi-hop
multiple-input multiple-output (MIMO) relay communication
systems with correlated MIMO fading channels. In particular,
we consider the practical scenario where the channel fading is
fast and thus the instantaneous channel state information (CSI)
is only available at the destination node, but unknown at all users
and all relay nodes. We derive the structure of the optimal user
precoding matrices and relay amplifying matrices that maximizes
the users-destination ergodic sum mutual information. Compared
with existing works, our results are more general, since we
address multiuser scenarios, consider MIMO relays with a finite
dimension, and take into account the noise vector at each relay
node.

Index Terms—Channel correlation, MIMO relay, multi-hop
relay, multiuser.

I. INTRODUCTION

NON-regenerative multiple-input multiple-output (MIMO)
relay communication systems have been recently investi-

gated under various assumptions on the availability of channel
state information (CSI) [1]-[8]. Given the instantaneous CSI
of all hops, the optimal source precoding matrix and relay am-
plifying matrices of a single-user multi-hop relay system were
developed in [2] for a broad class of commonly used objective
functions in MIMO system design. A minimal mean-squared
error (MMSE)-based optimal two-hop multiuser MIMO relay
system has been recently proposed in [3] where the instan-
taneous CSI is known. In [4], the source and relay matrices
were optimized for a single-user two-hop relay system where
the instantaneous source-relay CSI is available, while only the
covariance matrix of the relay-destination channel is known
at the relay node. The ergodic mutual information (MI) of a
two-hop MIMO relay channel with a large number of antennas
has been analyzed in [5] and [6] using the information on the
covariance matrices of MIMO channels. The exact analytic
form of the ergodic capacity of a two-hop amplify-and-forward
MIMO relay channel with finite dimension has been recently
derived in [7]. In [8], by neglecting the noise at all the relay
nodes, Fawaz et al. derived the optimal source and relay
matrices of a single-user multi-hop MIMO relay system with
correlated fading channels.
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In this letter, we focus on multiaccess communication
through multi-hop linear non-regenerative relays. We consider
the practical scenario where the channel fading is fast and thus
the instantaneous CSI is only available at the destination node,
but unknown at other nodes. We assume that each MIMO
channel is correlated at both the transmit and the receive side,
each user knows the correlation matrix of the first hop channel,
and each relay node has the knowledge on the correlation
matrices of its direct backward and forward channel. Based on
the knowledge of the channel correlation matrices, we show
that to optimize the users-destination ergodic sum MI, the
optimal precoding matrix at each user is the product of the
eigenvector matrix of the transmit side correlation matrix of
the first-hop channel and a diagonal power loading matrix.
And the optimal amplifying matrix at each relay node is
the product of the eigenvector matrix of the transmit side
correlation matrix of the forward channel, a diagonal power
loading matrix, and Hermitian transpose of the eigenvector
matrix of the receive side correlation matrix of the backward
channel. Compared with existing works in this area (for
example [5], [6], [8]), our results in this letter are more
general, since we address multiuser scenarios, consider MIMO
relays with a finite dimension, and take into account the noise
vector at all relay nodes. Another advantage of our algorithm
is that power allocation is computed locally at each node based
on the local knowledge on the channel correlation.

The rest of this letter is organized as follows. In Section II,
we introduce the model of a multi-hop linear non-regenerative
multiaccess MIMO relay communication system. The pro-
posed user and relay matrices design algorithm is presented in
Section III. In Section IV, we show some numerical examples.
Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a multiaccess system with 𝑁𝑢 users simultane-
ously transmitting information to a common destination node
through 𝐿− 1 relay nodes as illustrated in Fig. 1. We assume
that the 𝑖th user has 𝑀𝑖 antennas, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, the 𝑙th relay
node is equipped with 𝑁𝑙 antennas, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1, and the
destination node has 𝑁𝐿 antennas. We denote 𝑁0 =

∑𝑁𝑢

𝑖=1 𝑀𝑖

as the total number of independent data streams from all
users. For a linear non-regenerative MIMO relay system with
a linear receiver at the destination node, there should be
𝑁0 ≤ min(𝑁1, ⋅ ⋅ ⋅ , 𝑁𝐿), since otherwise the system can
not support 𝑁0 active symbols in each transmission. This
condition establishes the upper-bound for the total number
of data streams that can be concurrently transmitted from all
users.

The 𝑀𝑖 × 1 modulated signal vector s𝑖 at the 𝑖th user is
linearly precoded by the 𝑀𝑖 ×𝑀𝑖 user precoding matrix B𝑖,
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Fig. 1. Block diagram of an 𝑁𝑢-user 𝐿-hop linear non-regenerative MIMO relay communication system.

and the precoded signal vector u𝑖 = B𝑖s𝑖 is transmitted to
the first relay node. The 𝑁1 × 1 signal vector y1 received at
the first relay node is given by

y1 =

𝑁𝑢∑
𝑖=1

G𝑖u𝑖 + v1 ≜ H1x1 + v1 (1)

where G𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, is the 𝑁1 × 𝑀𝑖 MIMO channel
matrix between the first relay node and the 𝑖th user, v1 is the
𝑁1× 1 independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN) vector at the first relay node,
x1 = F1s, s ≜

[
s𝑇1 , ⋅ ⋅ ⋅ , s𝑇𝑁𝑢

]𝑇
, and

H1 ≜ [G1, ⋅ ⋅ ⋅ ,G𝑁𝑢 ], F1 ≜ bd(B1, ⋅ ⋅ ⋅ ,B𝑁𝑢). (2)

Here H1 is the equivalent 𝑁1 ×𝑁0 first-hop MIMO channel,
F1 is the equivalent 𝑁0 ×𝑁0 block diagonal user precoding
matrix, s is an 𝑁0 × 1 vector containing source symbols
from all users, bd(⋅) stands for a block diagonal matrix,
and (⋅)𝑇 denotes matrix (vector) transpose. We assume that
E[ss𝐻 ] = I𝑁0 , where E[⋅] stands for the statistical expectation,
(⋅)𝐻 denotes the Hermitian transpose, and I𝑛 is an 𝑛 × 𝑛
identity matrix.

Using a linear nonregenerative relay matrix at each relay as
in [1]-[8], the input-output relationship at the 𝑙th relay nodes
is

x𝑙+1 = F𝑙+1y𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1 (3)

where F𝑙+1, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿 − 1, is the 𝑁𝑙 × 𝑁𝑙 amplifying
matrix at the 𝑙th relay node, and y𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿 − 1, is the
𝑁𝑙 × 1 signal vector received at the 𝑙th relay node written as

y𝑙 = H𝑙x𝑙 + v𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1 (4)

where H𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿−1, is the 𝑁𝑙×𝑁𝑙−1 MIMO channel
matrix of the 𝑙th hop, and v𝑙 is the i.i.d. AWGN vector at
the 𝑙th relay node. We assume that all noises are complex
circularly symmetric with zero mean and unit variance.

From (1)-(4), the received signal vector at the destination
node is given by

y𝐿 = As+ v̄ (5)

where A is the equivalent MIMO channel matrix from all
users to the destination, and v̄ is the equivalent noise vector
at the destination node given by [2]

A =

1⊗
𝑖=𝐿

(H𝑖F𝑖), v̄ =

𝐿∑
𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)v𝑙−1

)
+v𝐿. (6)

Here for matrices X𝑖,
⊗𝑘

𝑖=𝑙(X𝑖) ≜ X𝑙 ⋅ ⋅ ⋅X𝑘. The covariance
matrix of v̄ in (6) is given by

C𝑣 =

𝐿∑
𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H𝐻

𝑖 )
)
+ I𝑁𝐿 .

We would like to mention that the system model (3)-(5) is
applicable for relays working in full-duplex mode as in [8] or
half-duplex mode as in [1]-[3].

We assume that the channel fading is fast and thus the
instantaneous CSI of A is only available at the destination
node, but unknown at all users and all relay nodes. We also
assume that each MIMO channel is correlated at both the
transmit and receive side. Let us introduce Θ𝑡,𝑙 and Θ𝑟,𝑙 as
the correlation matrix at the transmit and receive side of H𝑙,
𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, respectively, and Φ𝑡,𝑖 as the correlation matrix
at the transmit side of G𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢. We assume that the
correlation matrix Φ𝑟 at the receive side of G𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢

are identical. Thus the instantaneous channel matrices can be
represented as

G𝑖 = Φ
1
2
𝑟 G

𝑤
𝑖 Φ

1
2

𝑡,𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢 (7)

H𝑙 = Θ
1
2

𝑟,𝑙H
𝑤
𝑙 Θ

1
2

𝑡,𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (8)

where G𝑤
𝑖 and H𝑤

𝑙 are Gaussian random matrices with i.i.d.
zero mean and unit variance entries and unknown to all users
and all relay nodes. We assume that each node only has the
local channel correlation knowledge. In particular, the 𝑖th user
knows Φ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, the first relay node knows Φ𝑟 and
Θ𝑡,2, and the 𝑙th relay node has the knowledge of Θ𝑟,𝑙 and
Θ𝑡,𝑙+1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 − 1. Since channel correlation matrices
vary much slower than the instantaneous channel, they can be
estimated at the corresponding node with a reasonably high
precision. We also assume that channel correlation matrices
Θ𝑟,𝑙, Θ𝑡,𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, Φ𝑟, and Φ𝑡,𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, are
all full rank.

The sum MI of the users-destination channel (5) for one
channel realization is given by

MI = log2
∣∣I𝑁0 +A𝐻C−1

𝑣 A
∣∣

= log2

∣∣∣∣∣I𝑁0 +

𝐿⊗
𝑖=1

(F𝐻
𝑖 H𝐻

𝑖 )

(
𝐿∑

𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H𝐻

𝑖 )
)
+ I𝑁𝐿

)−1 1⊗
𝑖=𝐿

(H𝑖F𝑖)

∣∣∣∣∣∣ (9)
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where ∣ ⋅ ∣, (⋅)−1 denote matrix determinant and inversion,
respectively.

III. OPTIMAL STRUCTURE OF USER AND RELAY

MATRICES

We consider a practical MIMO relay system where the pre-
coding/amplifying matrix is designed locally at each user/relay
node. Obviously, since the channel fading is fast and the
instantaneous CSI is unknown at users and relay nodes, it
is impossible to design {B𝑖} and {F𝑙} to maximize MI in
(9), where {F𝑙} ≜ {F𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿}, and {B𝑖} ≜ {B𝑖, 𝑖 =
1, ⋅ ⋅ ⋅ , 𝑁𝑢}. In this letter, we aim at maximizing E𝐻 [MI] by
exploiting the channel statistics, where the expectation E𝐻 is
over the realization of all channels. The maximal ergodic sum
MI-based optimal multiuser multi-hop MIMO relay design
problem is given as

max
{F𝑙},{B𝑖}

E𝐻 [MI] (10)

s.t. E𝐻

[
tr

(
F𝑙+1

( 𝑙∑
𝑗=1

( 𝑗⊗
𝑖=𝑙

(H𝑖F𝑖)

𝑙⊗
𝑖=𝑗

(F𝐻
𝑖 H𝐻

𝑖 )
)

+I𝑁𝑙

)
F𝐻

𝑙+1

)]
≤ 𝑝𝑙+1, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1 (11)

tr(B𝑖B
𝐻
𝑖 ) ≤ 𝑞𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢 (12)

where tr(⋅) denotes matrix trace, (11) contains the averaged
transmission power constraint at each relay node, (12) includes
the transmission power constraint at each user, 𝑝𝑙 and 𝑞𝑖 are
the corresponding power budget.

Let us introduce the eigenvalue decompositions (EVDs) of

Θ𝑟,𝑙=V𝜃,𝑙Λ𝜃,𝑙V
𝐻
𝜃,𝑙, Θ𝑡,𝑙=U𝜃,𝑙Σ𝜃,𝑙U

𝐻
𝜃,𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (13)

Φ𝑟=V𝜃,1Λ𝜃,1V
𝐻
𝜃,1, Φ𝑡,𝑖=U𝜙,𝑖Σ𝜙,𝑖U

𝐻
𝜙,𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢(14)

where the main diagonal elements of the eigenvalue matrices
are sorted in a decreasing order. The following Theorem
establishes the structure of the optimal user precoding matrices
and relay amplifying matrices.

THEOREM 1: The optimal structure of B𝑖 and F𝑙 in the
form of their singular value decompositions (SVDs) is given
by

B𝑖 = U𝜙,𝑖Δ𝑏,𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, (15)

F𝑙 = U𝜃,𝑙Δ𝑓,𝑙V
𝐻
𝜃,𝑙−1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. (16)

PROOF: See Appendix A. □
Interestingly, from (15) and (16) we find that the optimal

precoding matrix at each user is the product of the eigenvector
matrix of the transmit side correlation matrix of the first-hop
channel and a diagonal power loading matrix. And the optimal
amplifying matrix at each relay node is the product of the
eigenvector matrix of the transmit side correlation matrix of
the forward channel, a diagonal power loading matrix, and
Hermitian transpose of the eigenvector matrix of the receive
side correlation matrix of the backward channel. Compared
with [8], our result in (15)-(16) is more general, since it holds
for multiuser scenarios by considering MIMO relays with a
finite dimension, and taking into account the noise vector at all

relay nodes. Using (15)-(16), the optimal relay design problem
(10)-(12) is converted to the following power loading problem

max
{Δ𝑏,𝑖},{Δ𝑓,𝑙}

E𝐻

[
log2

∣∣∣∣∣I𝑁0+

𝐿⊗
𝑖=1

(
Σ𝑖H̄

𝐻
𝑖

)( 𝐿∑
𝑙=2

𝑙⊗
𝑖=𝐿

(H̄𝑖Σ𝑖)

×Λ−1
𝜃,𝑙−1

𝐿⊗
𝑖=𝑙

(
Σ𝑖H̄

𝐻
𝑖

)
+Λ−1

𝜃,𝐿

)−11⊗
𝑖=𝐿

(H̄𝑖Σ𝑖)

∣∣∣∣∣
⎤
⎦(17)

s.t. tr
(
Δ2

𝑓,𝑙+1Λ𝜃,𝑙

) 𝑙∑
𝑗=1

𝛼𝑗tr
(
Σ2
𝑗 Π𝑗

)
+tr
(
Δ2

𝑓,𝑙+1

) ≤ 𝑝𝑙+1, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1 (18)

tr
(
Δ2

𝑏,𝑖

) ≤ 𝑞𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢 (19)

where the definitions of H̄𝑙, 𝛼𝑙, Π𝑙, and Σ𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿,
are given in Appendix A.

For a multi-hop MIMO relay system with a finite dimension,
the analytic expression of (17) is still an open problem. Thus,
the problem (17)-(19) is very difficult to solve. In this letter,
we take a simple (but possibly) suboptimal solution such
that Δ2

𝑓,𝑙 = 𝛾𝑙I𝑁𝑙−1
, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, and Δ2

𝑏,𝑖 = 𝛽𝑖I𝑀𝑖 ,
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢. From (33) in Appendix A, we obtain that
𝛼𝑗 =

∏𝑗+1
𝑖=𝑙 𝛾𝑖tr(Σ𝜃,𝑖Λ𝜃,𝑖−1), 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙 − 1, and thus we

have that

𝑙∑
𝑗=1

𝛼𝑗tr
(
Σ2
𝑗 Π𝑗

)

=

𝑙−1∑
𝑗=1

𝛼𝑗tr
(
Σ2
𝑗 Π𝑗

)
+ tr

(
Σ2

𝑙Λ
−1
𝜃,𝑙−1)

=

𝑙−1∑
𝑗=1

𝑗+1∏
𝑖=𝑙

𝛾𝑖tr(Σ𝜃,𝑖Λ𝜃,𝑖−1)tr(Δ
2
𝑓,𝑗Σ𝜃,𝑗) + tr(Δ2

𝑓,𝑙Σ𝜃,𝑙)

=

𝑙−1∑
𝑗=1

𝑗+1∏
𝑖=𝑙

𝛾𝑖tr(Σ𝜃,𝑖Λ𝜃,𝑖−1)𝛾𝑗tr(Σ𝜃,𝑗)+𝛾𝑙tr(Σ𝜃,𝑙), 𝑙 ≥ 2 (20)

𝑙∑
𝑗=1

𝛼𝑗tr
(
Σ2
𝑗 Π𝑗

)
=

𝑁𝑢∑
𝑖=1

𝛽𝑖tr(Σ𝜙,𝑖), 𝑙 = 1 (21)

where for simplicity, we define 𝛾1tr(Σ𝜃,1)≜
∑𝑁𝑢

𝑖=1𝛽𝑖tr(Σ𝜙,𝑖).
From (18)-(21), we now obtain that

𝛾𝑙+1 =
𝑝𝑙+1

tr(Λ𝜃,𝑙)
∑𝑙

𝑗=1𝛼𝑗tr
(
Σ2
𝑗 Π𝑗

)
+𝑁𝑙

, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1

𝛽𝑖 =
𝑞𝑖
𝑀𝑖

, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢.

Finally, from (15)-(16), the user precoding matrices and relay
amplifying matrices are given by

B𝑖 =
√
𝛽𝑖U𝜙,𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, (22)

F𝑙 =
√
𝛾𝑙U𝜃,𝑙V

𝐻
𝜃,𝑙−1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. (23)

A distinct advantage of the user and relay matrices design
in (22)-(23) is that it is robust and very simple to implement. It
does not require any instantaneous CSI. In fact, each node only
needs the local knowledge on the channel correlation matrix,
performing the EVD and computing the power allocation
scaler locally. Such simple design is of great importance for
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Fig. 2. Ergodic sum MI versus 𝑃 . 𝐿 = 2, 𝑁 = 4, and 𝑁𝑢 = 2.

practical multiuser multi-hop MIMO relay systems. Interest-
ingly, in Section IV we will see that for a two-hop multiuser
MIMO relay system, the user and relay matrices design in
(22)-(23) only has a small performance degradation compared
with the optimal user and relay design using the instantaneous
CSI.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
multiuser multi-hop MIMO relay design algorithm through
numerical simulations. For simplicity, we consider systems
where all users have the same number of antennas (i.e.,
𝑀𝑖 = 𝑀 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢), all relay nodes and the destination
node are equipped with the same number of antennas (i.e.,
𝑁𝑙 = 𝑁 , 𝑙 = 1, ⋅ ⋅ ⋅ , 𝑁𝐿), and 𝑀𝑁𝑢 = 𝑁 . We assume that
all users have an identical transmission power 𝑞𝑖 = 𝑃/𝑁𝑢,
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, and all relay nodes have the same transmission
power 𝑝𝑙 = 𝑃 , 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. We also assume that the channel
correlation matrices have the commonly used exponential
Toeplitz structure [5], [8] such that [Θ𝑡,𝑙]𝑚,𝑛 = 𝜃

∣𝑚−𝑛∣
𝑡,𝑙 ,

[Θ𝑟,𝑙]𝑚,𝑛 = 𝜃
∣𝑚−𝑛∣
𝑟,𝑙 , [Φ𝑡,𝑖]𝑚,𝑛 = 𝜙

∣𝑚−𝑛∣
𝑡,𝑖 , and [Φ𝑟]𝑚,𝑛 =

𝜙
∣𝑚−𝑛∣
𝑟 . The ergodic sum MI is obtained by averaging over

104 channel realizations. In the simulations, we compare the
proposed algorithm with the optimal user and relay matrices
design for multiuser multi-hop MIMO relay systems using
the instantaneous CSI (ICSI). The ICSI-based scheme uses the
iterative algorithm developed in [3] with the source-destination
MI as the objective function.

In our first example, we set 𝐿 = 2, 𝑁 = 4, and 𝑁𝑢 = 2.
The channel correlation parameters are chosen as 𝜙𝑡,1 = 0.5,
𝜙𝑡,2 = 0.6, 𝜙𝑟 = 0.2, 𝜃𝑡,2 = 0.3, 𝜃𝑟,2 = 0.5. Fig. 2 shows
the ergodic sum MI comparison between two algorithms. It
can be seen that the performance of the proposed algorithm
is very close to that of the optimal algorithm using the ICSI.

In the second example, we set 𝐿 = 4, 𝑁 = 9, 𝑁𝑢 =
3, and choose 𝜙𝑡,1 = 0.5, 𝜙𝑡,2 = 0.6, 𝜙𝑡,3 = 0.4, 𝜙𝑟 =
0.2, 𝜃𝑡,2 = 0.3, 𝜃𝑡,3 = 𝜃𝑡,4 = 0.4, 𝜃𝑟,2 = 0.5, 𝜃𝑟,3 = 0.3,
𝜃𝑟,4 = 0.4 as the channel correlation parameters. It can be seen
that with the increasing number of hops, the gap between the
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Fig. 4. Ergodic sum MI versus 𝑁𝑢. 𝐿 = 2, 𝑀 = 2, and 𝑃 = 20dB.

proposed algorithm and the optimal algorithm using the ICSI
increases. However, the former algorithm has a much lower
computational complexity and signalling overhead compared
with the latter algorithm.

We investigate the ergodic sum MI of both algorithms
versus the number of users in our third example. We set 𝐿 = 2,
𝑀 = 2, 𝑃 = 20dB, 𝜙𝑡,𝑖 = 0.5, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, 𝜙𝑟 = 0.2,
𝜃𝑡,2 = 0.3, and 𝜃𝑟,2 = 0.5. It can be seen from Fig. 4 that the
MI gap between the proposed algorithm and the ICSI-based
algorithm increases slightly as the number of users increases.

V. CONCLUSIONS

We developed the optimal structure of user precoding ma-
trices and relay amplifying matrices to optimize the ergodic
sum mutual information of multiuser multi-hop MIMO relay
communication systems. A simple power loading algorithm
was proposed. The proposed algorithm only has a small
performance degradation compared with the optimal user and
relay design using the instantaneous CSI, but greatly reduced
computational complexity and signalling overhead.
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APPENDIX A
PROOF OF THEOREM 1

The proof is conducted in three steps: First, we show that
B𝑖 in (15) minimizes the left-hand side of (12). Second, we
prove that F𝑙 in (16) minimizes the left-hand side of (11). At
last, we show that (15)-(16) is also optimal for the objective
function (10).

Using (13) and (14), we can write the channel matrices in
(7) and (8) as

G𝑖 = V𝜃,1Λ
1
2

𝜃,1V
𝐻
𝜃,1G

𝑤
𝑖 U𝜙,𝑖Σ

1
2

𝜙,𝑖U
𝐻
𝜙,𝑖

= V𝜃,1Λ
1
2

𝜃,1Ḡ𝑖Σ
1
2

𝜙,𝑖U
𝐻
𝜙,𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢 (24)

H𝑙 = V𝜃,𝑙Λ
1
2

𝜃,𝑙V
𝐻
𝜃,𝑙H

𝑤
𝑙 U𝜃,𝑙Σ

1
2

𝜃,𝑙U
𝐻
𝜃,𝑙

= V𝜃,𝑙Λ
1
2

𝜃,𝑙H̄𝑙Σ
1
2

𝜃,𝑙U
𝐻
𝜃,𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (25)

where Ḡ𝑖 ≜ V𝐻
𝜃,1G

𝑤
𝑖 U𝜙,𝑖 and H̄𝑙 ≜ V𝐻

𝜃,𝑙H
𝑤
𝑙 U𝜃,𝑙 have the

same statistics as G𝑤
𝑖 and H𝑤

𝑙 , respectively. From (24) and
(25) we have

H1F1 = V𝜃,1Λ
1
2

𝜃,1

[
Ḡ1, ⋅ ⋅ ⋅ , Ḡ𝑁𝑢

]
×bd

(
Σ

1
2

𝜙,1U
𝐻
𝜙,1B1, ⋅ ⋅ ⋅ ,Σ

1
2

𝜙,𝑁𝑢
U𝐻

𝜙,𝑁𝑢
B𝑁𝑢

)
H𝑙F𝑙 = V𝜃,𝑙Λ

1
2

𝜃,𝑙H̄𝑙Σ
1
2

𝜃,𝑙U
𝐻
𝜃,𝑙F𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿.

Let us also introduce the following SVDs

Σ
1
2

𝜙,𝑖U
𝐻
𝜙,𝑖B𝑖 = Q𝑖Λ𝑖P

𝐻
𝑖 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢(26)

Σ
1
2

𝜃,𝑙U
𝐻
𝜃,𝑙F𝑙V𝜃,𝑙−1Λ

1
2

𝜃,𝑙−1 = U𝑙Σ𝑙V
𝐻
𝑙 , 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (27)

where Q𝑖 and P𝑖 are 𝑀𝑖×𝑀𝑖 unitary matrices, U𝑙 and V𝑙 are
𝑁𝑙−1×𝑁𝑙−1 unitary matrices, and the main diagonal elements
of Λ𝑖 and Σ𝑙 are sorted in a decreasing order. By using (26)
and (27) we have

1⊗
𝑖=𝐿

(H𝑖F𝑖) = V𝜃,𝐿Λ
1
2

𝜃,𝐿

2⊗
𝑖=𝐿

(
H̄𝑖Σ

1
2

𝜃,𝑖U
𝐻
𝜃,𝑖F𝑖V𝜃,𝑖−1Λ

1
2

𝜃,𝑖−1

)

×H̄1bd
(
Σ

1
2

𝜙,1U
𝐻
𝜙,1B1, ⋅ ⋅ ⋅ ,Σ

1
2

𝜙,𝑁𝑢
U𝐻

𝜙,𝑁𝑢
B𝑁𝑢

)
= V𝜃,𝐿Λ

1
2

𝜃,𝐿

1⊗
𝑖=𝐿

(
H̄𝑖U𝑖Σ𝑖V

𝐻
𝑖

)
(28)

where for the notational simplicity, we define H̄1 ≜
[
Ḡ1, ⋅ ⋅ ⋅ ,

Ḡ𝑁𝑢

]
, U1 ≜ bd(Q1, ⋅ ⋅ ⋅ ,Q𝑁𝑢), Σ1 ≜ bd(Λ1, ⋅ ⋅ ⋅ ,Λ𝑁𝑢),

and V1 ≜ bd(P1, ⋅ ⋅ ⋅ ,P𝑁𝑢). From (26) and (27), we can
also obtain that for 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿,

𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(
F𝐻

𝑖 H𝐻
𝑖

)
= V𝜃,𝐿Λ

1
2

𝜃,𝐿

𝑙⊗
𝑖=𝐿

(
H̄𝑖U𝑖Σ𝑖V

𝐻
𝑖

)

×Λ−1
𝜃,𝑙−1

𝐿⊗
𝑖=𝑙

(
V𝑖Σ𝑖U

𝐻
𝑖 H̄𝐻

𝑖

)
Λ

1
2

𝜃,𝐿V
𝐻
𝜃,𝐿. (29)

Now we consider the constraints in (11) and (12). From
(26), the power consumed at each user is given by

tr(B𝑖B
𝐻
𝑖 ) = tr

(
Σ

− 1
2

𝜙,𝑖 Q𝑖Λ
2
𝑖Q

𝐻
𝑖 Σ

− 1
2

𝜙,𝑖

)
, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢. (30)

It can be seen from [9, 9.H.1.h] that tr(B𝑖B
𝐻
𝑖 ) ≥ tr

(
Σ−1

𝜙,𝑖Λ
2
𝑖

)
,

where the equality holds if and only if Q𝑖 is an 𝑀𝑖 × 𝑀𝑖

diagonal matrix with unit-norm main diagonal elements, i.e.,
∣[Q𝑖]𝑚,𝑚∣ = 1, [Q𝑖]𝑚,𝑛 = 0,𝑚, 𝑛 = 1, ⋅ ⋅ ⋅ ,𝑀𝑖,𝑚 ∕= 𝑛. For
the sake of simplicity, we choose Q𝑖 = I𝑀𝑖 , and from (26), we

have B𝑖 = U𝜙,𝑖Σ
− 1

2

𝜙,𝑖 Λ𝑖P
𝐻
𝑖 . Since the objective function (10)

is invariant to P𝑖, for simplicity, we also choose P𝑖 = I𝑀𝑖 .
We will show later that such structure of B𝑖 is also optimal
for the objective function (10).

Using (26) and (27), the averaged power consumption at
the 𝑙th relay node in (11), 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1, can be written as

E𝐻

⎡
⎣tr
(
F𝑙+1

( 𝑙∑
𝑗=1

( 𝑗⊗
𝑖=𝑙

(H𝑖F𝑖)

𝑙⊗
𝑖=𝑗

(F𝐻
𝑖 H𝐻

𝑖 )
)
+I𝑁𝑙

)
F𝐻

𝑙+1

)⎤⎦

= E𝐻

⎡
⎣tr
(
F𝑙+1

( 𝑙∑
𝑗=1

(
V𝜃,𝑙Λ

1
2

𝜃,𝑙

𝑗⊗
𝑖=𝑙

(
H̄𝑖U𝑖Σ𝑖V

𝐻
𝑖

)
Π𝑗

𝑙⊗
𝑖=𝑗

(
V𝑖Σ𝑖U

𝐻
𝑖 H̄𝐻

𝑖

)
Λ

1
2

𝜃,𝑙V
𝐻
𝜃,𝑙

)
+ I𝑁𝑙

)
F𝐻

𝑙+1

)⎤
⎦

= E𝐻

⎡
⎣tr
(
Σ

− 1
2

𝜃,𝑙+1U𝑙+1Σ𝑙+1

( 𝑙∑
𝑗=1

𝑗⊗
𝑖=𝑙

(H̃𝑖Σ𝑖)V
𝐻
𝑗 Π𝑗V𝑗

𝑙⊗
𝑖=𝑗

(
Σ𝑖H̃

𝐻
𝑖

)
+V𝐻

𝑙+1Λ
−1
𝜃,𝑙V𝑙+1

)
Σ𝑙+1U

𝐻
𝑙+1Σ

− 1
2

𝜃,𝑙+1

)⎤⎦ (31)

where H̃𝑙 ≜ V𝐻
𝑙+1H̄𝑙U𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿− 1 and

Π𝑙 ≜
{

I𝑁0 , 𝑙 = 1;
Λ−1

𝜃,𝑙−1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿.

From [10], we know that for an 𝑁 × 𝑁 Gaussian random
matrix H with i.i.d. zero mean and unit variance entries, there
is E𝐻 [HAH𝐻 ] = tr(A)I𝑁 . Thus we have

E𝐻

⎡
⎣ 𝑗⊗

𝑖=𝑙

(H̃𝑖Σ𝑖)V
𝐻
𝑗 Π𝑗V𝑗

𝑙⊗
𝑖=𝑗

(
Σ𝑖H̃

𝐻
𝑖

)⎤⎦
= 𝛼𝑗tr

(
Σ𝑗V

𝐻
𝑗 Π𝑗V𝑗Σ𝑗

)
I𝑁𝑙

, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙 (32)

where

𝛼𝑗 ≜
{

1, 𝑗 = 𝑙;∏𝑗+1
𝑖=𝑙 tr(Σ

2
𝑖 ), 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙 − 1, (𝑙 ≥ 2).

(33)

Using (32), (31) can be rewritten as

tr
(
Σ

− 1
2

𝜃,𝑙+1U𝑙+1Σ
2
𝑙+1U

𝐻
𝑙+1Σ

− 1
2

𝜃,𝑙+1

) 𝑙∑
𝑗=1

𝛼𝑗tr
(
Σ𝑗V

𝐻
𝑗 Π𝑗V𝑗Σ𝑗

)
+tr
(
Σ

− 1
2

𝜃,𝑙+1U𝑙+1Σ𝑙+1V
𝐻
𝑙+1Λ

−1
𝜃,𝑙V𝑙+1Σ𝑙+1U

𝐻
𝑙+1Σ

− 1
2

𝜃,𝑙+1

)
.(34)

Similar to (30), (34) is minimized if and only if U𝑙+1 is
an 𝑁𝑙 × 𝑁𝑙 diagonal matrix with unit-norm main diagonal
elements, and V𝑗 is an 𝑁𝑗−1×𝑁𝑗−1, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙+1, diagonal
matrix with unit-norm main diagonal elements. For simplicity,
we choose U𝑙+1 = I𝑁𝑙

and V𝑗 = I𝑁𝑗−1 , 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙 + 1.

From (27), we obtain F𝑙 = U𝜃,𝑙Σ
− 1

2

𝜃,𝑙 Σ𝑙Λ
− 1

2

𝜃,𝑙−1V
𝐻
𝜃,𝑙−1.

Now we start to consider the objective function. Since
H̄𝐿U𝐿 has the same distribution as H̄𝐿, and V𝐻

𝑙+1H̄𝑙U𝑙

has an identical distribution as H̄𝑙, 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿 − 1, by
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substituting (28) and (29) back into (10), the objective function
(10) can be equivalently rewritten as

E𝐻 [MI]=E𝐻

[
log2

∣∣∣∣∣I𝑁0+

𝐿⊗
𝑖=1

(
Σ𝑖H̄

𝐻
𝑖

)( 𝐿∑
𝑙=2

𝑙⊗
𝑖=𝐿

(H̄𝑖Σ𝑖)

×V𝐻
𝑙 Λ−1

𝜃,𝑙−1V𝑙

𝐿⊗
𝑖=𝑙

(
Σ𝑖H̄

𝐻
𝑖

)
+Λ−1

𝜃,𝐿

)−11⊗
𝑖=𝐿

(H̄𝑖Σ𝑖)

∣∣∣∣∣
⎤
⎦. (35)

It can be seen from (35) that the objective function is irrelevant
to P𝑖, Q𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, and U𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. Thus, the
optimal B𝑖 is indeed B𝑖 = U𝜙,𝑖Δ𝑏,𝑖 with Δ𝑏,𝑖 = Σ

− 1
2

𝜙,𝑖 Λ𝑖,
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢.

Let us introduce the EVD of

Σ𝑙V
𝐻
𝑙 Λ−1

𝜃,𝑙−1V𝑙Σ𝑙 = S𝑙Γ𝑙S
𝐻
𝑙 , 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿 (36)

where S𝑙 is an 𝑁𝑙−1 × 𝑁𝑙−1 unitary matrix, and Γ𝑙 is the
𝑁𝑙−1×𝑁𝑙−1 diagonal eigenvalue matrix. We can rewrite (35)
as

E𝐻 [MI] = E𝐻

[
log2

∣∣∣∣∣I𝑁0 +M𝐻

×
(
Λ−1

𝜃,𝐿 +

𝐿∑
𝑙=2

T𝑙H̆𝑙Γ𝑙H̆
𝐻
𝑙 T𝐻

𝑙

)−1

M

∣∣∣∣∣
]

(37)

where for notational simplicity, we define M≜
⊗1

𝑖=𝐿(H̄𝑖Σ𝑖),
H̆𝑙 ≜ H̄𝑙S𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, T𝐿 ≜ I𝑁𝐿 , and T𝑙 ≜⊗𝑙+1

𝑖=𝐿(H̄𝑖Σ𝑖), 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿− 1. It can be seen that M does
not depend on V𝑙, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿, thus M does not affect the
structure of the user and relay matrices.

Due to the contribution of the noise at all relay nodes to
the destination node (which is ignored in [8]), the closed-form
expression of the optimal Γ𝑙 that maximizes (37) by satisfying
(36) is very difficult to obtain. On the other hand, it can be
shown from [11] that log2∣I +X−1∣ is a convex function of
X, and from Jensen’s inequality we have E

[
log2∣I+X−1∣] ≥

log2
∣∣I+ (E[X])−1

∣∣. Thus (37) can be lower-bounded by

E𝐻 [MI] ≥

E𝐻

[
log2

∣∣∣∣∣I𝑁0+M𝐻
(
Λ−1

𝜃,𝐿+

𝐿∑
𝑙=2

T𝑙EH̆𝑙

[
H̆𝑙Γ𝑙H̆

𝐻
𝑙

]
T𝐻

𝑙

)−1

M

∣∣∣∣∣
]

= E𝐻

[
log2

∣∣∣∣∣I𝑁0 +M𝐻
(
Λ−1

𝜃,𝐿 +
𝐿∑

𝑙=2

tr(Γ𝑙)T𝑙T
𝐻
𝑙

)−1

M

∣∣∣∣∣
]

(38)

where we applied Jensen’s inequality to matrix variables
H̆𝑙Γ𝑙H̆

𝐻
𝑙 , 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿. Obviously, to maximize (38), tr(Γ𝑙)

should be minimized. From [9, 9.H.1.h] and (36), we know
that tr(Γ𝑙) ≥ tr(Σ2

𝑙Λ
−1
𝜃,𝑙−1), where the equality holds if and

only if V𝑙 is an 𝑁𝑙−1 × 𝑁𝑙−1 diagonal matrix with unit-
norm main diagonal elements. Therefore, we prove the optimal

structure of B𝑖 and F𝑙 in (15) and (16) with Δ𝑏,𝑖 ≜ Σ
− 1

2

𝜙,𝑖 Λ𝑖,

𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁𝑢, and Δ𝑓,𝑙 ≜ Σ
− 1

2

𝜃,𝑙 Σ𝑙Λ
− 1

2

𝜃,𝑙−1, 𝑙 = 2, ⋅ ⋅ ⋅ , 𝐿.
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