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Abstract—In underwater acoustic (UA) communication,
Doppler effect is much larger than that of the terrestrial radio
communication as propagation speed of the acoustic wave in
water is far slower than that of the electromagnetic wave in the
air. Frequency offset and Doppler effect severely degrade the per-
formance of orthogonal frequency-division multiplexing (OFDM)
systems. This paper presents a Doppler shift mitigation approach
in UA OFDM communication systems incorporated with a deep
neural network (DNN) based receiver. The regression-based DNN
is incorporated with a long short-term memory (LSTM) layer,
which has an improved feature extraction capability compared
with the commonly used neural network methods. The DNN is
trained by simulation data with Doppler shifts and is used to
predict the transmitted bits. The results show that the proposed
LSTM-based DNN receiver achieves better performance than the
traditional receiver, which is implemented with the least-squares
(LS) channel estimator, and the commonly used neural network
methods.

Index Terms—Underwater acoustic communication, orthogo-
nal frequency-division multiplexing, long short-term memory,
deep neural network, convolutional neural network, Doppler
shift, least-squares, regression.

I. INTRODUCTION

The underwater acoustic (UA) channel is a time-varying,
multipath complex communication channel. Reliable commu-
nication through the UA channel is challenging, due to the
time-varying instantaneous frequencies caused by the propa-
gation of sound signals, namely the Doppler effect. Doppler
effect on received signals is caused by relative motion between
transceiver nodes in mobile UA communication. It compresses
or expands the signal waveform and shifts the frequency
of the signal by generating offset [1]. The Doppler effects
can cause a high error rate, and even a complete failure of
the communication task. In order to facilitate communication
under challenging multipath and rapid phase variation con-
ditions, more advanced signal processing techniques are of
great interest. Incorporating of deep belief network into the UA
communication system to combat the signal distortion caused
by the Doppler effect and multi-path propagation [2] and UA
communication channel modeling using deep learning [3] are
the commonly used approaches.

Orthogonal frequency-division multiplexing (OFDM) is an
effective technique to combat multipath fading in UA commu-
nication channel. In [4], an OFDM-based receiver has been
developed by integrating a neural network for UA communi-

cation. However, the performance of the approach in [4] is
poor in terms of recovered bits when Doppler shift exists in
the system. The deep neural network (DNN) used in [4] is
composed of an input layer, two fully connected layers and
a regression layer as the output layer. The concept of deep
learning originated from the study on artificial neural networks
(ANNs). DNN consists of many layers, where each layer has
a number of neurons. Each layer performs a weighted sum of
the inputs followed by a nonlinear activation and the output
is fed as an input to the next layer [5].

In this paper, a UA OFDM system is proposed by integrating
a regression-based deep learning technique with a long short-
term memory (LSTM) layer in the network architecture. An
LSTM model has an artificial recurrent neural network (RNN)
architecture. Its feedback connections process single data
points and an entire sequences of data. The operations within
the cells allow the LSTM to memorize or forget information
by enabling back-propagation of the error through time and
layers [6].

When the DNN is implemented in a UA communication
system, the Doppler shift is compensated by the knowledge
acquired from training data, and the transmitted data can be re-
covered without using conventional demodulation techniques.
In conventional systems, Doppler shift estimation is performed
by using null subcarriers [7].

By training the DNN using Doppler shifted data, the fre-
quency offset can be learned. The DNN parameters including
weights and biases of each layer are determined with respect
to the training data and the DNN predicts the transmitted data
with the learned channel information and frequency offset [8].
The simulation results show that the performance of regression
based DNN with an LSTM layer is better than the traditional
least-squares (LS) method, existing DNN with fully connected
layers and convolutional neural network (CNN) in terms of
bit-error-rate (BER).

II. SYSTEM MODEL

In this paper, we consider a frame-based UA OFDM com-
munication system. Each OFDM frame contains a pilot block
and a data block as shown Fig. 1. In the data block, a
binary source bit stream is mapped into data symbols drawn
from the quadrature phase-shift keying (QPSK) constellation,
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Fig. 1. frame structure.

d = (d[1], ..., d[Nc])
T , where Nc is the number of data subcar-

riers. The pilot block contains Np pilot subcarriers with null
subcarriers at every sixth positions, p = (p[1], ..., p[Np])

T .
Each OFDM symbol is converted to the time domain by the

inverse fast Fourier transform (IFFT), where a cyclic prefix
(CP) with a length Tcp longer than the channel delay spread
is added to the time domain symbol. The received signal can
be written as

y(t) = x(t) ∗ h(t) + w(t) (1)

where x(t) is the transmitted signal, * denotes the convolution
operation, h(t) is the impulse response of the channel, and
w(t) is the additive noise. At the receiver end, the received
data frame is the input of the DNN after downshifting and
removing the CP. The proposed LSTM based DNN predicts
the transmitted data from y(t) without explicit Doppler com-
pensation, channel estimation, equalization and demodulation.

Doppler effect including Doppler shift and Doppler spread
is an inherent feature of the communication channel, which
can cause interference and affect the quality of communica-
tion. Relative movement between the transmitter and receiver
and slow underwater sound propagation generates significant
Doppler effect [9].

Doppler spread is the spectral broadening or compression
caused by the time rate of change of the channel and is
defined as the range of frequencies over of which the received
Doppler spectrum is essentially non-zero. The amount of
Doppler spread depends on the ratio of bandwidth to the center
frequency. Assuming the power spectral density (PSD) of the
transmit signal is Dt(f), the Doppler affects the received PSD
as Dr(f) = 1/a2Dt(f/a), where a = 1+v/c, v is the relative
transmitter-receiver speed and c denotes the underwater sound
propagation speed. For UA communication systems, which
are broadband, the shifted frequency has big difference at the
lower end of the frequency band afl and at the higher end
of the frequency band afh. This is the reason of the Doppler
spreading. If fl and fh are comparable in the narrow-band
systems, there would be only Doppler shifting and not Doppler
spreading. The Doppler shift and Doppler spread are both the
linear functions of the signal frequency [11]. Doppler shift of
the receiver f is given by

f = (v/c)fc (2)

where v is the relative transmitter-receiver speed, c denotes
the underwater sound propagation speed and fc is the centre
frequency of the band.

The current trend of Doppler compensation is a two-step
processing that consists of re-sampling and residual carrier

Fig. 2. Block diagram of the transmitter.

frequency offset (CFO) compensation [4], [5]. A re-sampling
ratio is associated with signal compression / expansion and
the ratio is determined by the estimated Doppler scaling factor.
After re-sampling the effect of Doppler spreading is mitigated,
and the remaining Doppler only affects the phase of the
received signal.

The discrete time samples of a received baseband OFDM
symbol can be written as

y = ΦFHDhf +w (3)

where y = (y[1], ..., y[Nc])
T is the received data, Φ =

diag(ej2πf/B , ..., ej2πNcf/B), B is the bandwidth, F is the
Nc×Nc discrete Fourier transform matrix, (.)H denotes the
conjugate transpose,

D =

{
diag(d) for the data block
diag(p) for the pilot block

(4)

diag(.) denotes a diagonal matrix and hf =
(hf [1], ..., hf [Nc])

T is the channel frequency response.

III. SYSTEM DESIGN

This section explains the system design for the proposed
OFDM transmitter and the receiver.

1) Transmitter: Each transmitted frame contains one
OFDM data block and one pilot block. In each data block,
there are Nc = 64 subcarriers and the pilot block consists
of Np = 64 pilot subcarriers with null subcarriers in every
sixth positions. The data symbols are modulated by the QPSK
constellations. Hence, one symbol is encoded by two bits. The
cyclic prefix is chosen as Tcp = 20 samples. The proposed
transmitter architecture is illustrated in Fig. 2.

2) Receiver: The signals received from the transmitter are
converted to the frequency domain using the fast Fourier
transform (FFT) and the baseband signals are input into the
trained DNN as shown in Fig. 3. The output of the DNN
is the demodulated transmitted bits. Training the network is
the vital part of any system which includes DNN. Training
data including the transmitted data and the received data is
illustrated in Fig. 4. The DNN extracts the channel information
and Doppler effects from the received signal and tunes its
internal parameters accordingly. The weights and biases of
each layer of the DNN are determined using the stochastic gra-
dient descent and the back-propagation algorithm. The mean-
squared error L formulated in (5) is used as the loss function
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Fig. 3. Block diagram of the receiver.

which evaluates the difference between the transmitted data
and the DNN predictions

L =
1

N

N−1∑
k=0

(b̂(k)− b(k))2 (5)

where N is the number of bits, b̂(k) is the predicted bit, and
b(k) is the training bit [4].

In the proposed system, an LSTM layer is introduced to the
DNN by replacing a fully connected layer after the input layer.
This LSTM based DNN consists of four layers as shown in
Fig. 5, including a sequence input layer, an LSTM layer, a fully
connected layer and a regression layer. The performance of the
CNN and a fully connected DNN are also used to compare to
that of the LSTM, where the BER formulated in (5) is used
as the performance metric.

The proposed approach uses the DNN to compensate the
Doppler shift and it replaces the channel estimation, equal-
ization and demodulation in the traditional receiver. In the
traditional LS method, CFO compensation is performed by
minimizing the leakage energy in the null subcarriers intro-
duced in the pilot OFDM block [12]. The compensation of
the CFO on the received baseband symbol is performed by

d[n] = y[n]e−j2πNcf̂/B (6)

where f̂ is the estimated value of CFO and is generated
for each OFDM block by minimizing the energy of the null
subcarriers. The cost function is defined as

J(f) =
∑
k∈SN

|fHk ΦH(f)y|2 (7)

where, SN is the set of null subcarriers and fk is

fk = [ 1, ej2πk/Nc , ..., ej2πk(Nc−1)/Nc ]T (8)

The estimate of f is given by

f̂ = argmin
f

J(f) (9)

A. LSTM

Recurrent neural networks with an LSTM layer have
emerged as an effective and reliable model for several learning
problems related to sequential data. A memory cell retains
its state over time and nonlinear gating units control the
information flow into and out of the cell which creates the

Fig. 4. Training process of the DNN.

Fig. 5. DNN with LSTM architecture.

core of the LSTM architecture as in Fig. 7 [13]. In Fig. 6, the
peephole connections are illustrated as the blue connections
from the cell to the gates, and the forget gate are added to
the architecture in order to make precise timings easier to
learn. The forget gate enables the LSTM to reset its own state,
Input gate decides which new information is going to enter the
state of LSTM. The output gate updates and finalizes the next
hidden state [14].

B. CNN

A CNN is composed of several layers, including an image
input layer, a convolutional layer and a fully connected layer. A
regression layer is chosen as the output layer. The convolution
layer extracts the feature representations of the inputs. As

Fig. 6. LSTM memory cell [14].
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Fig. 7. LSTM layer architecture [13].

Fig. 8. CNN architecture.

shown in Fig. 8, a convolution layer is composed of several
convolution kernels which are used to compute different
feature elements of the input. Although these kernels usually
have very low spatial dimensions, they unfold over the entire
input depth dimension. A convolution layer convolves each
filter across the input data and produces an activation map,
once the information reaches it [15]. In this simulation, two
dimensional input data is fed to the image input layer. The
convolution layer filters extract the specific features from input
data and feed the processed data to the fully connected layer.
A regression layer is used as the output layer, which receives
the information from the fully connected layer and produces
the output.

IV. EXPERIMENT RESULTS

In this section, we evaluate the performance of our proposed
UA OFDM system by comparing the performance of DNN
with an LSTM layer, DNN with fully connected layer, CNN
and the conventional LS based receiver. The proposed DNN
architecture is shown in Fig. 5. CNN architecture is shown
in Fig. 8. We simulate a UA channel with 15 paths and the
channel delay spread is 15 samples.

Normally, training the network with a large amount of
data and high number of layers and neurons can produce
better performance. However, long training time is required.

TABLE I
NETWORK CONFIGURATION AND DETAILS.

When the trained network is used in a communication system
which includes a time varying channel, it will not produce
accurate predictions since the newly fed data have a huge
difference from the training data set. Since the channel is time
varying, the DNN needs to adapt to the changing channel. The
original trained parameters need to be retrained. Small number
of parameters requires less training time and suits for real
time implementation. To achieve this, we need to use small
training data set which requires less number of parameters
for the network. By selecting only 10 data subcarriers and 10
pilot subcarriers for the feature extraction process during the
training data generation allows us to reduce the parameters of
the networks and leads to a short training time.

Table I shows the network configuration of each DNN and
its learnable parameters used in the simulation, where 500
OFDM packets of 10 data subcarries and 10 pilot subcarriers
are used for training data generation from 64 data subcarriers
and 64 pilot subcarriers. 4 bits are recovered per OFDM frame
in the validation. The DNN with LSTM layer consists of 40
neurons in the input layer, 80 neurons in the LSTM layer
and 4 neurons in the fully connected layer. The DNN with
fully connected layers has the same number of neurons in
each layer as the DNN with LSTM layer. For the CNN, the
size of image input layer is 20-by-2, convolution layer has 8
filters with the size of 4-by-1 and a fully connected layer has 4
neurons. The number of neurons for the input layer is twice the
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Fig. 9. System BER performance; v = 1m/s for both training (500 OFDM
packets) and testing.

number of subcarriers chosen for training data generation for
both DNN with LSTM layer and DNN with fully connected
layers, as complex QPSK constellations are used. The number
of neurons for the fully connected layer in front of the output
layer is the number of bits recovered per OFDM frame.

Firstly, we consider the scenario where the same relative
speed (v = 1m/s) is used to train and validate the DNNs.
The system performance is illustrated in Fig. 9, which shows
that the BER performance of the DNN with LSTM system is
much better than the results obtained by the LS method, the
CNN and the fully connected layered DNN without LSTM.
In this scenario, only 500 OFDM packets are used to generate
the training data sets, which includes, 400 training data sets
and 100 validation sets. As the number of training packets
increases the performance of each network is improved which
is shown in Fig. 10, where 1000 OFDM packets are used.
Table I illustrates that, the number of learnable parameters is
directly related to the performance of each network. As the
number of internal parameters increases the network learns
more information from the training data and improves its
performance.

1000 OFDM packets are utilized in the generation of
training data sets for Figs. 10 - 13, where the same relative
speed (v = 1m/s) is used to train and validate the DNNs. For
testing, 4, 6, 12 and 20 bits are recovered respectively, which
are the dimensions of the labels and network input/output
sizes. For example, if we are aiming to recover 10 bits, then
we need to provide 10 bits to the network as labels during the
training process. These figures show that, DNN with LSTM
performs better than other two networks and the LS method.

Secondly, we validate the DNN performance with different
Doppler shifts for training and testing, where the DNN with
an LSTM layer and other two networks are trained with
v = 1m/s and tested with v = 1.2m/s. These network
performances are compared with the LS method with the
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Fig. 10. System BER performance; v = 1m/s for both training (1000 OFDM
packets) and testing (4 bits recovered per frame).
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Fig. 11. System BER performance; v = 1m/s for both training (1000 OFDM
packets) and testing (6 bits recovered per frame).

same Doppler shift (v = 1.2m/s). Figs. 14 and 15 show
that better performance can be achieved by the DNN with
LSTM layer system compared with the method in [4], CNN
and the LS method. Surprisingly, the neural networks are able
to perform better than the traditional LS method although they
are trained for a specific frequency offset value but tested with
different frequency offset values. Also, the results show that
the BER performance of the DNN and CNN systems can
be improved by increasing the numbers of subcarriers and
numbers of OFDM packets used for training the networks,
increasing numbers of neurons in individual layers, changing
the epochs rate and other parameters of the neural network. In
this simulation, the networks are trained with mini-batch size
of 50 and 100 epochs. As illustrated in Fig. 9 and Fig. 10,
when the number of OFDM packets increased form 500 to
1000, the performance of networks improves.
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Fig. 12. System BER performance; v = 1m/s for both training (1000 OFDM
packets) and testing (12 bits recovered per frame).
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Fig. 13. System BER performance; v = 1m/s for both training (1000 OFDM
packets) and testing (20 bits recovered per frame).

V. CONCLUSION

In this paper, a UA OFDM receiver integrated with an
LSTM-based DNN is proposed to mitigate the Doppler effect
in UA system. The results show that the proposed approach
achieves better performance compared with the traditional
receiver which uses the LS estimation method, DNN with
fully connected layer and CNN in Doppler compensation,
demodulating and decoding the transmitted bits. Even the
training data and testing data vary in the frequency offset
value, the neural networks perform better than the conventional
method. In the future, the performance of the proposed receiver
can be verified by using real time UA communication for
training the DNN and validating the performance.
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Fig. 14. System BER performance; different v = 1.2m/s values for training
and testing (4 bits recovered per frame).
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Fig. 15. System BER performance; different v = 1.2m/s values for training
and testing (6 bits recovered per frame).
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