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Abstract—Underwater communications have severe channel
distortions which can greatly affect its performance. This paper
proposes a novel approach for estimating channel parameters
(multipath delay and Doppler scaling) for underwater acoustic
channels. The method is a Fractional Fourier Transform (FrFT)
based approach with linear frequency-modulated (chirp) signals
as a pilot. Innovation lies in the receiver design, where a
2D array is formed by performing a scan of FrFTs on the
received signal. Key point detection algorithms are exploited
to extract distinct X-shaped features in a 2D array, allowing
for simultaneous estimation of both channel delay and Doppler
parameters for all multipath components. The novel approach
avoids the costly iterative process used in existing algorithms,
which calculates Doppler scaling for one path per iteration.
Simulation results show that the proposed algorithm is capable
of estimating channel parameters in a severely time-delayed
and Doppler-scaled multipath channel. The algorithm achieved a
±0.1% estimation accuracy with Doppler scaling factors ranging
between 0.95 to 1.05. Multipath delay was estimated to within
±2ms for delays ranging from 0 to 0.2 seconds.

I. INTRODUCTION

IN recent years, there has been significant research and
experimentation in the field of underwater acoustic (UWA)

communications. Ocean research and pollution monitoring
have become increasingly important in the scientific sector,
whereas offshore monitoring and autonomous vehicles are
gaining popularity in the commercial and military sectors.
These applications require greater reliability, higher data rates,
and greater range capabilities, but UWA channels present
unique challenges that are not seen in terrestrial electro-
magnetic communications. Due to the slow speed of UWA
signals relative to the movement of the transmitter/receiver,
the Doppler scaling phenomena is three orders of magnitude
larger than in terrestrial systems [1]. Moreover, UWA channels
are severely time spread with significant multipath delay which
necessitates innovative receiver algorithms.

A. State of the Art

Three predominant technologies exist within underwater
communications: acoustic, optical, and electromagnetic (EM)
[2]. Although EM and optical communications benefit from
higher data rates both are unsuitable for long range commu-
nication. For the former, propagation is limited to 1 to 200
metres by the conductive nature of saline water, especially
in oceans [3]. For the latter, even greater attenuation occurs
due to water absorption and scattering from floating particles
resulting in a 2 to 100 metre range [2]. In contrast, UWA

communications operate up to 120 km [2] making it the
preferred technology for long distance applications.

Current UWA communication research dealing with
Doppler estimation either assumes all multipaths to have
common Doppler scaling or, treats all multipaths as having
statistically independent Doppler scaling. The assumption of
common Doppler scaling benefits from overall simplicity.
However, in applications such as underwater autonomous vehi-
cles, and high data rate communication the emerging multipath
dependent Doppler estimation has proven more useful [4].
Nonetheless, common Doppler estimation is more advanced
in its research maturity so it serves as a point of comparison
in this paper.

The most well established common Doppler estimation ap-
proach is the block-based correlation approach outlined in [5].
The idea is to form blocks of data by prepending and append-
ing a pilot signal with strong autocorrelation property around
the data. At the receiver, matched filtering produces two peaks
whose time difference directly calculates Doppler scaling. In
addition to its common Doppler limitations explained above,
the block-based approach suffers from high bit-error-rates
when the coherence time of the channel drops within the block
duration. Another well researched common Doppler estimator
is the correlation based method [6]. In this method Doppler
scaled copies of the transmitted signal are correlated with the
received signal through a correlator bank. The scaling factor
corresponding to the maximum peak response is chosen as the
Doppler estimate. One major drawback is that computational
complexity scales with precision as the estimate resolution
depends on the number of correlators. In general, both of the
above methods are simple and in principle are used to estimate
the Doppler scaling for the dominant path exclusively.

Within the multipath dependent Doppler estimation methods
there is relatively less literature but one promising approach
stands out. In [7], a scan of FrFTs is performed to estimate
the Doppler scaling for the most dominant multipath com-
ponent. The delay of the dominant component is then found
by cross-correlating the received signal with the previously
found multipath component. The dominant multipath is then
subtracted from the received signal, and the process is repeated
for the next most dominant multipath. Iterations occur until the
desired number of multipaths have been estimated.
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Fig. 1. Block diagram of overall transmitter receiver structure. Prepend Chirp and Delay Doppler Estimation blocks are newly introduced

B. Motivation and Contribution

This paper presents a multipath Doppler and delay estima-
tion method motivated by long range, high speed, and high
data rate application areas. The common Doppler assumption
is not made, in favour of a multipath dependent Doppler model
that is more useful in such areas. Contributions include:

• Simultaneous estimation of parameters Doppler scaling
and multipath delay for all multipaths. This includes the
joint estimation of Doppler scaling and multipath delay.
This lies in contrast to the successive estimation process
of existing methods.

• Greater efficiency in the estimation process.
• Use of key point detection as a technique in the

estimation process for the first time in underwater
telecommunications.

II. SYSTEM MODEL

A. UWA Communication System

Doppler scaling constitutes the most severe and non-linear
distortions in an underwater communication system. Thus, it is
imperative for the estimation and compensation step to be first
in the receiver processing and occur prior to demodulation.
The introduction of the chirp pilot signal takes place in
the transmitter prior to modulation. Both of these steps are
depicted in Fig. 1.

B. UWA Channel and Signal Model

In the current literature there are a few accepted definitions
of Doppler scaling. In this paper, Doppler scaling will be
denoted by a and refers to the compression or expansion of
signals in the time domain. It is defined as

a = 1 +
vrel
c

(1)

where vrel is the relative transmitter-receiver motion (negative
indicates motion towards each other, positive indicates motion
away from each other), and c is the speed of sound in the UWA
channel. In the time domain the effect of Doppler scaling on
a signal is

r(t) = s (at) (2)

where r(t) is the received signal and s(t) is the transmitted
signal. While in the frequency domain

R(f) =
1

|a|
S

(
f

a

)
(3)

where R(f) is the received signal and S(f) is the trans-
mitted signal in the frequency domain assuming the signal
is normalised. In a UWA communication system the channel
is modelled as a linear time invariant channel. The received
signal is a superposition of multiple Doppler scaled, delayed,
and attenuated copies of the transmitted signal. The received
signal r(t) at time t is given by

r(t) =

L∑
i=1

Ais(ai(t− τi)) + n(t), (4)

where s(t) is the transmitted signal, i denotes path index, Ai

is the attenuation, ai is the Doppler scaling factor, τi is the
delay, n(t) is the noise signal, and L is the total number of
paths. Unlike with common Doppler estimation, τi and ai are
statistically independent for all paths.

For estimating the UWA channel, the chirp signal is adopted
as the pilot and is given by

x(t) = ℜ
{
ej(2πf0t+πkt2+Φ0)

}
, ∀t ∈ (t0, t1) . (5)

where f0 is the starting frequency of the signal, k is the chirp
rate, Φ0 is the initial phase, t0 is the starting time, t1 is the
ending time, and ℜ

{
·
}

is the real part.

III. THE FRACTIONAL FOURIER TRANSFORM

The FrFT of a function x(t) with parameter ϕ is given by

Xϕ(u) =

∫ ∞

−∞
x(t)Kϕ(t, u) dt

Kϕ(t, u) =


Aϕe

j t2+u2

2 cotϕ−jut cscϕ, for ϕ ̸= nπ

δ(t− u), for ϕ = 2nπ

δ(t+ u), for ϕ = (2n± 1)π
(6)

where u is the fractional Fourier domain variable. The FrFT is
a generalised Fourier transform parameterised by ϕ, represent-
ing an angle of rotation in the time-frequency plane. The FrFT
has a powerful geometric interpretation [8]. Consider a new
set of axes on the time-frequency plane with u axis overlaid
on the time axis and the v axis overlaid on the frequency axis.
Suppose this new set of axes is then rotated anticlockwise by
ϕ radians as depicted in the left side of Fig. 2 with the chirp
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Fig. 2. Geometric interpretation of FrFT. Chirp signal on in the time-
frequency plane (left). The FrFT response of the same signal (right)

as the signal under transformation. The FrFT response is then
the projection of the signal onto the new set of axes shown
in the right side of Fig. 2. Using Parseval’s Theorem, which
states the area under the signal in the time frequency domain
is equal to the area in the FrFT domain, the height of the FrFT
response can be determined [8]. By extending this geometric
interpretation we can see that there exists a FrFT transform
with a specific FrFT parameter, ϕ⋆, for which a chirp signal
transforms into a narrow delta peak. This occurs when the u
axis is perpendicular to the gradient of the chirp as depicted
in the left side of Fig. 3. The FrFT response is a narrow peak
since the projection has a single point as the region of support
as seen in the right side of Fig. 3. It can be shown that for every
chirp rate k there exists one angle ϕ at which the response is a
delta. For the remainder of this paper ϕ⋆ will be referred to as
the optimal FrFT parameter. Combining this with the fact that
a one-to-one function relates Doppler scaling a to chirp rate
k results in the important property that there exists a unique
ϕ⋆ for every Doppler scaling factor acting on a chirp signal.

This property is crucial in allowing the FrFT to extract the
transmitted chirp from a superposition of delayed and scaled
copies of the original signal. The discrete FrFT will be used
to compute the discrete signals encountered in underwater

Fig. 3. The optimal FrFT transform in the time-frequency plane (left), which
occurs when the u axis is perpendicular to the chirp signal. The delta peak
response in the FrFT domain (right)

communications. It follows the same geometric interpretation
as the continuous case outlined above. [9].

IV. NOVEL UWA CHANNEL ESTIMATION ALGORITHM

The novel estimation algorithm is presented in three sec-
tions: the creation of the u − ϕ image, applying key point
detection, and computation of channel parameters.

A. Creation of u− ϕ image

Let N denote the number of FrFTs to be performed.
N copies of the received signal are created and ϕ =
{ϕ0, ϕ1, ..., ϕN−1} are chosen to be equally spaced across pre-
determined start and end values. The ϕ range is theoretically
bounded by 0 and π, however this range can be greatly reduced
to improve computation speed given the typical velocities
encountered in underwater environments. The discrete FrFT
is then performed on each copy using each value from the ϕ
range. Obtained responses are arranged in a u − ϕ 2D array
such that the horizontal axis contains the ϕ value and the
vertical axis contains the FrFT response. By storing the FrFT
responses in such a way, the resulting 2D array, when viewed
as an image, displays characteristic X-shapes. The presence of
the X-shapes can be understood by considering a single chirp
signal. Firstly, there exists a unique ϕ⋆ determined by the chirp
rate. As ϕ increases towards ϕ⋆ the projection of the chirp onto
the FrFT axes diminishes in region of support as the angle of
the axes approaches the angle of the chirp signal. At the exact
point ϕ = ϕ⋆ the response is narrowest. As ϕ increases past
ϕ⋆ the region of support expands at the same rate at which
the region decreased due to the geometrical symmetry. By
Parseval’s theorem the height must increase as the region of
support contracts and conversely, must decrease as the region
of support expands. Fig. 4 illustrates this behaviour with the
height of the surface representing the amplitude of the FrFT
response.

Fig. 4. 3D rendering of u-ϕ image. The region of support decreases as ϕ
approaches ϕ⋆ and then increases as ϕ recedes from ϕ⋆. The height increases
closer to ϕ⋆ and drops further away

Delaying the chirp signal in time will not influence ϕ⋆ but
will change the angles of the X-shape wings and its position
along the u-axis. Since the received signal is a superposition
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Fig. 5. Key points found by ORB algorithm (left). Points cluster around true
crossing point and are averaged to improve accuracy (right).

of delayed and Doppler scaled copies of a chirp pilot, the
u−ϕ image will similarly be a superposition of X-shapes. The
left side of Fig. 5 shows the 2D array depicted as an image
with lighter pixels denoting higher magnitude responses. Each
X-shape corresponds to a multipath with different Doppler
scaling and delay values, the X-shapes and crossing points are
accordingly different. The next step is to extract these crossing
point location co-ordinates.

B. Applying Key Point Detection

Our proposed method applies a key point detection algo-
rithm to extract the co-ordinates of each crossing point. Key
point detection is a widely used image processing tool which
identifies distinct points in images or video frames [10]. The
most commonly used algorithms were tested and compared to
each other and based on estimation error the Orientated FAST
and Rotated BRIEF (ORB) algorithm was chosen. The ORB
algorithm is based on the Features from Accelerated Segment
Test (FAST) algorithm. It evaluates whether a pixel is a key
point or not based on the 16 pixels forming a Bresenham
circle of radius 3 around it, shown in Fig. 6. Suppose the
pixel has intensity is represented by a positive real number, Ip
and an appropriate threshold, It is selected. If there exists m

Fig. 6. The Bresenham circle of pixels under consideration to determine the
key pint status of the centre pixel

contiguous pixels in the circle that are all brighter than Ip+It
or are all darker than Ip − It then the centre pixel is a key
point. The FAST algorithm works best when 12 ≤ m ≤ 16.
Full details of the ORB and FAST algorithms can be found in
[11]. The number of key points to be found can be specified
as an input parameter. The simulation in this paper uses a
2D array as the input to ORB and the output is the specified
number of co-ordinate pairs.

C. Computation of channel parameters

An excess of key points are found so clusters around cross-
ing points can be averaged. The averaging process improves
efficiency since ORB is rotationally invariant hence key points
will be spread evenly in the horizontal and vertical directions.
The equal spread in both directions can be seen in the right
side of Fig. 5. The number of key points is also chosen so that
non-crossing point features are not included. Identified key
points are then grouped together if their separation is below a
threshold distance. This threshold distance is carefully chosen
to include all key points comprising a cluster but exclude
neighbouring key points and outliers. Fig. 7 shows a suitably
chosen threshold distance. All points within each group are
averaged to find the co-ordinates of each crossing point,
(u⋆

p, ϕ
⋆
p). Lastly, channel Doppler scaling, âp and multipath

delay, τ̂p for path p can then be obtained as shown below.

Fig. 7. Key points are grouped using a distance threshold. Threshold also
allows falsely detected points to be ignored. Circles represent the threshold
distance

Consider the case when ϕ = ϕ⋆ as shown in Fig. 8.
For simplicity, let t

′

0 = 0. In Fig. 8 f
′

0 is the received
chirp starting frequency, τ is the multipath delay, and k

′
is

the received chirp rate. The triangle enclosed by the vertices
A, E, and O is denoted △AEO and the triangle enclosed by
vertices A, B, and C is denoted △ABC. ∠EAO denotes the
angle of vertex A, while ∠AOE denotes the angle of vertex
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Fig. 8. Derivation of channel parameter formulae

E within △AEO.
In △AEO, ∠EAO = ϕ⋆ − π

2 . In △ABC:

tan (ϕ⋆ − π

2
) =

f
′

0

D + τ
, (7)

In △AEO, ∠AOE = π − ϕ⋆, so

cos (π − ϕ⋆) =
u

D
. (8)

Solving (7) and (8) for D, we have

D =
u

cos (π − ϕ⋆)
=

f
′

0

tan (ϕ⋆ − π

2
)
− τ . (9)

Using the identities, cos (π − x) = − cos(x), and tan(x −
π
2 ) = − cot(x), (9) reduces to

u

− cosϕ⋆
=

f
′

0

− cotϕ⋆
− τ , (10)

and rewriting cotϕ⋆ as cosϕ⋆ / sinϕ⋆ gives

u

cosϕ⋆
=

f
′

0 sinϕ
⋆

cosϕ⋆
+ τ , (11)

then subjecting u results in:

u = f
′

0 sinϕ
⋆ + τ cosϕ⋆ . (12)

The received chirp has been acted on by a single Doppler
factor, a, thus: f

′

0 = af0. Since all signals are discrete the
frequency and time quantities must be normalised by using

f0 → f0
Fsamp

, (13a)

τ → τ

Tsig
, (13b)

where Fsamp is sampling frequency, and Tsig is pilot duration.
Substituting these normalisation factors and then rearranging
for τ results in

τ =

u−
(

af0
Fsamp

)
sinϕ⋆

cosϕ⋆

Tsig . (14)

The derivation for Doppler scaling factor, a is much simpler.
The optimal FrFT occurs when ϕ⋆ is perpendicular to the chirp
gradient, as shown in Fig. 8, and is given by

ϕ⋆ = − tan−1

(
1

k′

)
. (15)

The received chirp rate and transmitted chirp rate is related by

k
′
= a2k . (16)

Again normalisation is required for discrete signals

k → k
Tsig

Fsamp
. (17)

Substituting and rearranging for a results in

a =

√
− cotϕ

(
Fsamp

kTsig

)
. (18)

Combing (14) and (18) allows the direct computation of the
channel parameters Doppler scaling and multipath delay from
the crossign point co-ordinates (u⋆

p, ϕ
⋆
p)

âp =

√
− cot(ϕ⋆

p)

(
Fsamp

kTsig

)
, (19a)

τ̂p =

u⋆
p −

(
âpf0
Fsamp

)
sinϕ⋆

p

cosϕ⋆
p

Tsig , (19b)

where p denotes the multipath index.

Existing FrFT-based methods use only the ϕ coordinate to
calculate Doppler [7]. At the same time, an additional corre-
lation procedure obtains delay. With the proposed approach,
greater efficiency is achieved since subtracting the dominant
path and iterative computation is avoided [7].

Furthermore, performance of the overall method depends
on the accuracy of ORB which in turn is directly proportional
to the sample length of the received signal and the number of
FrFTs used in the scan. Thus higher accuracy can be obtained
by increasing the number of FrFTs.

V. VALIDATION, RESULTS, AND CONCLUSIONS

We simulated the proposed method in a UWA channel
consisting of 7 multipaths with Doppler scaling ranging from
0.95 to 1.05 following a normal distribution while the time
delay ranges from 0 to 0.2 seconds following a Rayleigh
distribution. Results of the simulation performed in MATLAB
show successful estimation of channel parameters: Doppler
scaling and multipath delay. The number of FrFTs was set
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to 1000 as further increase produced diminishing returns in
accuracy. ϕ ranged from 1.57 to 1.7 with equally spaced steps
and a total of 1000 points. Starting and ending values were
chosen to include all major X-shape features. The number of
key points was determined to be 90 since any further increase
included non-crossing point features as key points. From Fig. 9
we see that the maximum percentage error for Doppler scaling
is 0.1% while the maximum error for delay is within 2ms. The
number of multipaths to be estimated is set to 7. Note that the
detection accuracy depends on the number of FrFTs used, so
a trade-off exists between precision and computational speed.
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Fig. 9. Error statistics from 7 path simulation. apath denotes the Doppler
scale factor per path. Tpath denotes the delay per path

This paper proposes a new channel estimation algorithm
for UWA systems that utilises FrFTs and key point detection.
Our approach jointly estimates Doppler and multipath delay
for all multipaths simultaneously. Simulations results show
a 0.1% Doppler scaling estimation accuracy and a ±2ms
error for multipath delay. While our algorithm has improved
performance and efficiency, further enhancements can be made
by refining the key point detection algorithm and conducting
a more in-depth analysis of error statistics.
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