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Abstract—In conventional orthogonal frequency-division mul-
tiplexing (OFDM) communication systems, channel knowledge
on data subcarriers is obtained through linear interpolation of
the estimated channel information on pilot subcarriers. This
operation degrades the accuracy of channel estimation, partic-
ularly when the multipath channel has a large delay spread as
in underwater acoustic (UA) channels. In this paper, we show
that such drawback can be overcome by a neural network (NN)-
based receiver, which is effective in learning the nonlinearity in
the channel information on subcarriers. A multilayer perceptron
(MLP) network, a convolutional neural network (CNN), and
a long short-term memory (LSTM) network architectures are
attempted. These NNs are trained and tested by data collected
in a real-world UA communication experiment conducted in a
water tank. The results show that the MLP and LSTM network-
based receivers achieve better bit-error-rate (BER) performance
than the conventional OFDM receiver.

I. INTRODUCTION

Underwater acoustic (UA) communication through a mul-
tipath channel creates multiple arrivals from various paths
[1]-[3]. Orthogonal frequency-division multiplexing (OFDM)
communication is applied to mitigate the multipath interfer-
ence [4].

Conventional OFDM receivers use linear interpolation for
channel estimation [4]. However, in UA channels, the channel
frequency response often presents strong nonlinearity between
two pilot subcarriers, due to the large delay spread of the
multipath channel. As the channel delay profile is unknown in
practice, this nonlinearity cannot be modeled precisely. Such
unknown nonlinearity motivates the neural network (NN)-
based receiver design, which is effective in learning the
nonlinearity through the NN training. The NN consists of a
number of independent layers, where each layer has a certain
number of nodes. In general, each layer performs a weighted
sum of the inputs followed by a nonlinear activation and the
output is fed as an input to the next layer [5]. Through the
training process, the weights and biases are tuned according
to the provided training data. A loss function is used for the
parameter estimation of a supervised deep learning. During
the training the loss function is used to optimize the optimal
weights and biases [6].

In this paper, a UA OFDM system is proposed by integrating
a regression-based NN receiver. Three commonly used NN
architectures are investigated: a multilayer perceptron (MLP)
network, a convolutional neural network (CNN), and a long
short-term memory (LSTM) network. The MLP network con-
sists of an input layer, fully connected hidden layers and a

regression output layer [7]. A CNN is an MLP with at least
one convolutional hidden layer. Convolutional layer includes
multiple optimizable filters and the number of filters defines
the depth of a convolutional layer [8]. An LSTM model has
a gated recurrent neural network (RNN) architecture, whose
feedback connections can process single data points and an
entire sequences of data. The operations within the cells allow
the LSTM to keep or forget the information by enabling back-
propagation of the error through the time and the layers hence
preserve them [9].

The NN-based receivers are trained and tested through data
collected in a recent UA communication experiment conducted
in a water tank. The transmitted data can be recovered
without using conventional demodulation techniques. The NN
parameters including weights and biases of each layer are
determined according to the training data and the NN predicts
the transmitted data with the channel information learned from
the training data [10]. The experimental results show that for
various signal-to-noise ratios (SNRs), the bit-error-rate (BER)
performance of the MLP and LSTM NNs is better than the
conventional UA OFDM system, which uses a least-squares
(LS)-based channel estimator.

The reminder of this paper is as follows. In Section II,
benefits of introducing the NN in the UA OFDM system are
presented. The proposed system design is explained in Section
III and an overview of the training process and architecture
of various NNs are given in Section IV. Experimental results
are explained in detail in Section V. Finally, conclusions and
future works are drawn in Section VI.

II. BENEFITS OF NN-BASED OFDM RECEIVER

We consider a frame-based UA OFDM communication
system. Each OFDM frame contains a pilot block and a
data block. In the data block, a binary source bit stream is
mapped into data symbols drawn from the quadrature phase-
shift keying (QPSK) constellation d = (d[1], ..., d[Nc])

T ,
where Nc is the number of data subcarriers. The pilot block
contains Np pilot subcarriers p = (p[1], ..., p[Np])

T with null
subcarriers at each of the sixth position. Each OFDM symbol
is converted to the time domain by the inverse fast Fourier
transform (IFFT), and a cyclic prefix (CP) with the length
Tcp longer than the channel delay spread is added to the time
domain symbol. The received signal can be written as

y(t) = x(t) ∗ h(t) + w(t) (1)
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where x(t) is the transmitted signal, * denotes the convolution
operation, h(t) is the channel impulse response, and w(t) is the
additive noise. At the receiver end, the received data frame is
input to the NN after downshifting and removing the CP. The
NN directly predicts the transmitted data from y(t) without
explicit channel estimation, equalization and demodulation.

To illustrate the limitation of the conventional OFDM
receiver, let us consider a multipath UA channel whose fre-
quency response at the kth subcarrier is given by

Hk =

L∑
l=1

hle
−j2πfkτl , k = 1, . . . , Nc (2)

where hl and τl, l = 1, . . . , L, are the amplitude and delay
of the lth arrival, respectively, fk = k/T is the frequency of
the kth subcarrier, and T is the OFDM symbol duration. In
conventional OFDM systems with comb-based pilot pattern,
pilot subcarriers are used for channel estimation. The channel
information on a data subcarrier is obtained by performing
linear interpolation of the estimated channel coefficients of two
most adjacent pilot subcarriers. This technique performs well
in terrestrial radio systems, since the multipath spread is much
shorter than the length of an OFDM symbol (i.e. τl � T ),
However, the performance of this technique may degrade in
UA communication systems, since UA channels usually have
a large delay spread and later arrivals are possible to have
larger amplitudes than early arrivals. In these scenarios, the
channel frequency response (2) presents strong nonlinearity
between two pilot subcarriers. Such unknown nonlinearity can
be effectively learned by a NN-based receiver.

The Doppler shift compensation in conventional method
is performed by minimizing the leakage energy in the null
subcarriers introduced in the pilot OFDM block [11]. The
compensation of the carrier frequency offset (CFO) on the
received baseband symbol is performed by

d[n] = y[n]e−j2πnf̂/Bw (3)

where y[n] is the received signal sample, d[n] is the CFO-
compensated sample, f̂ is the estimated value of the CFO, and
Bw is the bandwidth. The CFO is estimated for each OFDM
block by minimizing the energy of the null subcarriers. The
objective function of the CFO estimation is defined as

J(f) =
∑
k∈SN

|fHk ΦH(f)y|2 (4)

where y = (y[1], ..., y[Nc])
T is the received data, SN is the

set of null subcarriers, fk and Φ are

fk = [ 1, ej2πk/Nc , ..., ej2πk(Nc−1)/Nc ]T (5)

and
Φ = diag(ej2πf/Bw , ..., ej2πNcf/Bw). (6)

Here (.)H denotes the conjugate transpose and diag(.) denotes
a diagonal matrix. The estimate of f is given by

f̂ = argmin
f
J(f) (7)

Fig. 1. Block diagram of the transmitter.

By training the NN using the Doppler shifted data, the
frequency offset can be learned without explicit estimation
required by the conventional methods. The NN parameters
including weights and biases of each layer are determined with
respect to the training data and the NN predicts the transmitted
data with the learned channel information and the frequency
offset [12].

III. SYSTEM DESIGN

1) Transmitter: Each transmitted frame contains two
OFDM blocks, each having Nc = 107 subcarriers. The first
block consists of 90 pilot subcarriers and 17 evenly distributed
null subcarriers. All the subcarriers in the second OFDM block
are data subcarriers. The data symbols are modulated by the
QPSK constellations. Hence, one symbol is encoded by two
bits. The CP is chosen as Tcp = 25 ms and the system
bandwidth is Bw = 4 kHz. The transmitter block diagram
is illustrated in Fig. 1.

2) Receiver: The received signals are converted to the
frequency domain using the fast Fourier transform (FFT) and
the baseband signals are input into the NN. The output of the
NN is the demodulated transmitted bits as shown in Fig. 2.
The NN is trained by the data collected from a recent UA
communication experiment in a tank. The weights and biases
of each layer of the NN are determined using the stochastic
gradient descent and the back-propagation algorithm. The
mean-squared error L formulated in (8) is adopted as the
loss function, which evaluates the difference between the
transmitted data and the NN predictions.

L =
1

N

N−1∑
k=0

(b̂(k)− b(k))2 (8)

where N is the number of bits, b̂(k) is the predicted bit, and
b(k) is the training bit. The proposed approach uses NN to
replace the channel estimation, equalization, and demodulation
in the conventional OFDM receiver.

IV. TRAINING THE NNS

The performance of a NN depends on the quality and
quantity of the training data provided. The depth of a NN used
for a particular problem is determined with respect to the size
of the training data. Small data set may overfit the NN with
a large number of layers while the same NN trained with a
large data set could generalize well. Even though, a large data
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Fig. 2. Block diagram of the receiver.

Fig. 3. NN training process.

set gives an opportunity to increase the number of layers of
the network, it is better to start the network with a minimum
number of layers. The number of layers, neurons, epochs,
batch size, learning rate, etc required for the suitable network
for a particular problem is decided through trial and error
method. To generate training data for the NN in the proposed
supervised learning method, both the transmitted and the
received data are used as shown in Fig. 3. From this training
data set, the NN learns the relationship between transmitted
and received data and the channel characteristics and tune
its internal parameters accordingly. Half of the recorded data
from the receiver is used for training and validation purpose.
The other half is used as testing data for the final evaluation.
Alternative packets of the received data are selected for the
training data as it gives the whole channel information to the
NN.

A. MLP

MLP is the most commonly used NN with an input layer,
an output layer and at least one hidden layer as shown in
Fig. 3. It has a feed-forward architecture as there is no internal
loop and the output of one neuron does not affect itself. The
non-linear activation functions, loss functions and optimizers
are the functions used to guide the performance of the MLP
[13]. These functions, the number of layers, neurons and other
parameters are decided through trial and error process. The
MLP used in the proposed design has four layers: a sequence
input layer as the input layer, two fully connected layer as the
hidden layers and a regression output layer.

B. LSTM

For sequential data related problems LSTM is the suitable
network to work with. It is an MLP with an LSTM layer after
the input layer as shown in Fig. 4. Memory cells in the LSTM

Fig. 4. Architecture of the LSTM-based receiver.

Fig. 5. Architecture of the CNN-based receiver.

layer provide the capability of reset or retain the current state
of the model [14]. The architecture of this NN is a sequence
input layer followed by an LSTM layer, a fully connected layer
and a regression output layer.

C. CNN

CNN is commonly used in image processing related prob-
lems. CNN is a multilayered NN with an image input layer,
a convolutional layer and a fully connected layer as hidden
layers and a regression output layer as shown in Fig. 5. The
convolutional layer is composed of a number of filter weights
also known as kernels and the kernels extract the feature
compositions of the data given [15]. In this sequential data
problem, a matrix with two column data is fed to the image
input layer and four filters with size [4, 4] is used in the
convolutional layer.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
NN-based receivers with the conventional OFDM receiver. We
transmitted 2000 OFDM frames six times with the transmitter
gain of −10dB, −14dB, −18dB, −22dB, −26dB, and −30dB
respectively. By varying the transmitter gain, the SNR at the
receiver changes. To train the NNs, only −10dB gain is used,
but for testing, all the six gains are used. Fig. 6 shows the
channel profile of the water tank environment illustrated in
Fig. 7 with length, width, and depth as 2.5 m, 1.5 m, and
1.8 m respectively. The transmitter and receiver are 3 m apart
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Fig. 6. Multipath channel profile.

Fig. 7. Tank set up.

during the experiment. We can see that the multipath delay
spread has a length of half OFDM symbol duration, which is
much longer than that of terrestrial radio systems.

The performance of the proposed system is tested in various
scenarios as shown follows.

1) Fixed water level: The system performance when the
receiver is fixed at a location is illustrated in Fig. 8, which
shows that the BER performance of the LSTM-based and
MLP-based receivers is better than those of the conventional
OFDM receiver and the CNN-based receiver. Note that the
NNs are trained at the −10dB gain, but they show good
performance at all six gains tested, indicating that the NNs
generalize well.
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Fig. 8. System BER performance for fixed water level data.
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Fig. 9. Trained with mix data and tested with high water level data; 4 bits
recovered.

2) Mixed water level: Fig. 9 to Fig. 11 show the perfor-
mance when the NNs are trained with a mix of received data
in high water level and low water level, and tested with high
water level data. Fig. 12 to Fig. 14 illustrate the performance
when the NNs are trained with the mixed data, but tested with
the low water level data set. These two data sets are obtained
by placing the receiver in two different depths of the water
tank. The testing data is not included in the training data. The
result shows that the MLP performs better than the traditional
method.

3) Varying subcarriers and epochs: We also find that
the BER performance of the NN system can be improved
by varying the number of subcarriers used for training and
testing. The increase or decrease in bits recovered affects the
performance of both NNs and the conventional method, which
is shown in Fig. 9 and Fig. 10. Changing the epochs rate
also impact the performance of the NNs, as large epochs rate
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Fig. 10. Trained with mix data and tested with high water level data; 2 bits
recovered.
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Fig. 11. 2 bits recovered with less number of epochs.

provides more opportunities to extract the characteristics of
the training data, and improves the internal parameters tuning.
This is evident in Fig. 10 with 1500 epochs used during
training, whereas only 100 epochs are used in Fig. 11.

4) Varying the test data size: Fig. 12, Fig. 13, and Fig. 14
show the difference in performance for various number of
testing data packets: 1000, 500, and 250 respectively by
keeping the size of training data set the same. A mix of high
water level data and low water level data is used as the training
data and low water level data is used for testing in these results.

VI. CONCLUSIONS

We demonstrated the benefits of using NN-based receivers
in UA OFDM systems. Through NN training, these receivers
effectively learn the nonlinearity in the channel frequency
response between pilot subcarriers. Tank trial results show that
the proposed approach achieves better performance compared
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Fig. 12. Trained with mix data and tested with low water level data; 1000
packets.
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Fig. 13. Trained with mix data and tested with low water level data; 500
packets.

with the conventional UA OFDM receiver, which uses linear
interpolation for channel estimation. In the future, the per-
formance of the system will be evaluated in a river test and
more investigations are planned in the scenario of moving the
transmitter or the receiver.
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