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Abstract—In conventional two-phase channel estimation al-
gorithms for dual-hop multiple-input multiple-output (MIMO)
relay systems, the relay-destination channel estimated in the
first phase is used for the source-relay channel estimation in
the second phase. For these algorithms, the mismatch between
the estimated and the true relay-destination channel affects the
accuracy of the source-relay channel estimation. In this paper,
we investigate the impact of such channel state information
(CSI) mismatch on the performance of the two-phase channel
estimation algorithm. By explicitly taking into account the CSI
mismatch, we develop a robust algorithm to estimate the source-
relay channel. Numerical examples demonstrate the improved
performance of the proposed algorithm.

Index Terms—Channel estimation, MIMO relay, Robust.

I. INTRODUCTION

In recent years, there is a significant growth in the demand

for reliable and high rate wireless communications. This led

to great research efforts to improve the overall performance of

wireless networks from both industry and academia. Multiple-

input multiple-output (MIMO) relay channel has been iden-

tified to be one of the promising solutions, as it enhances

channel capacity, network reliability and extends the network

coverage [1].

For three-node two-hop MIMO relay systems where the

direct source-destination link is omitted, the optimal relay

precoding matrix is obtained in [2]-[3] to maximize the mutual

information between the source and destination nodes. A

unified framework has been established recently for optimizing

the source and relay precoding matrices of two-hop MIMO

relay systems with a broad class of commonly used objective

functions [4].

For the MIMO relay systems [1]-[4] mentioned above, the

instantaneous channel state information (CSI) knowledge of

both the source-relay and relay-destination links is required at

the destination node in order to retrieve the signals transmitted

from the source node. However, in a real wireless relay system,

the instantaneous CSI is unknown, and thus, estimation of

channel matrices is required at the destination node. The

estimation of channel matrices for single-hop MIMO systems

can be found in [5]-[7]. However, the technique used to

estimate the channel matrices for single-hop MIMO systems

is not applicable for MIMO relay systems.

A novel interim channel estimation technique has been

proposed in [8] where the source-relay and relay-destination

channels are estimated at the destination node with the help

of a known pilot enhancement matrix inserted at the relay

node. However, the algorithm in [8] is developed for a MIMO

mimicking amplify-and-forward (AF) relay system, and it is

proven in [9] that the relay system can never fully mimic a

real MIMO relay system as the multiplexing gain is limited.

Two algorithms have been proposed in [10], namely, Bayesian-

based linear minimum mean-squared error (LMMSE) and

expectation-maximization (EM)-based maximum a posteriori

(MAP) channel estimation. In the LMMSE channel estimation

algorithm, only a sub-optimal solution can be achieved due

to the high complexity in the computational of the LMMSE

estimator. Consequently, the authors of [10] suggested the EM-

based MAP channel estimation algorithm, where the initial

estimate of the EM algorithm depends on the LMMSE esti-

mator proposed earlier. However, the training sequences and

relay precoding matrix are not optimized in [10]. A parallel

factor analysis-based MIMO channel estimator was proposed

in [11].

In [12], an algorithm based on the least-squares (LS) method

was developed to estimate the channel matrices of MIMO

relay networks. In particular, both the source-relay and the

relay-destination channel matrices are estimated from the

observed composite source-relay-destination channel matrix.

A drawback from channel estimation using [12] is the scalar

ambiguity of the estimated channel matrices. A two-phase

channel estimation scheme based on LMMSE was proposed

in [13] for two-hop MIMO relay networks. In particular, in

the first phase, the source node is silent while the relay node

transmits a pilot matrix to the destination node to estimate

the relay-destination channel matrix. In the second phase, the

source transmits a source pilot matrix to the relay. The relay

node linearly precodes its received signal and forward it to the

destination node. Then the source-relay channel is estimated

at the destination node making use of the relay-destination

channel matrix estimated at the first phase. Compared with the

approach in [12], there is no scalar ambiguity in this approach.

However, in practical relay systems, there is always mis-

match between the estimated and the true relay-destination

channel. Such CSI mismatch affects the accuracy of the
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source-relay channel estimation in [13]. In this paper, we

investigate the impact of this CSI mismatch on the perfor-

mance of the two-phase channel estimation algorithm [13]. By

explicitly taking into account the CSI mismatch, we develop a

robust algorithm to estimate the source-relay channel, without

the need of greater computation effort. Numerical examples

demonstrate the improved performance of the proposed algo-

rithm.

The rest of this paper is organized as follows. In Section II,

we introduce the model of a two-hop MIMO relay communica-

tion system and the two-phase channel training algorithm. The

impact of CSI mismatch on the performance of the two-phase

channel estimation algorithm is investigated in Section III.

A robust channel estimation algorithm is also developed in

Section III. In Section IV, we show some numerical examples.

Conclusions are drawn in Section V.

II. BACKGROUND

We consider a three-node two-hop MIMO relay system

where the source node transmits information to the destination

node through a relay node. The source, relay, and destination

nodes are equipped with nS , nR, and nD antennas, respec-

tively. We focus on the case where the direct link between

the source and destination nodes is sufficiently weak to be

ignored [12], [13]. This scenario occurs when the direct link

is blocked by an obstacle such as a mountain. In fact, a relay

plays a much more important role when the direct link is weak

than when it is strong.

Similar to [13], the channel matrices are estimated in two

phases, where the relay-destination channel matrix H2 is

estimated in phase one while the source-relay channel matrix

H1 is estimated in phase two. In phase one, the signal received

by the destination node is given by

Y
(1)
D = H2SR +N(1) (1)

where SR is the the nR × nR pilot matrix transmitted by

the relay node to the destination node satisfying SH
RSR =

SRS
H
R = PR

nR
InR

[5], and N(1) is the nD × nR noise matrix

at the destination node during phase one. Here PR is the power

budget available at the relay node, (·)H stands for the matrix

(vector) Hermitian transpose, and In denotes an n×n identity

matrix. Note that we choose the length of SR to be nR to

maximize the overall system spectral efficiency [14].

A minimal variance unbiased (MVU) estimation [15] of H2

can be obtained from (1) as

Ĥ2 =
nR

PR

Y
(1)
D SH

R = H2 +
nR

PR

N(1)SH
R . (2)

It can be seen from (2) that due to the existence of the

noise N(1), there is a mismatch ∆2 , nR

PR
N(1)SH

R between

H2 and Ĥ2. Obviously, ∆2 is a complex Gaussian random

matrix with zero mean and the variance of its entries is

nR/PR. Therefore, H2 is a complex Gaussian matrix with

the following distribution

H2 ∼ CN (Ĥ2, βInR
⊗ InD

) (3)

where β , nR/PR and ⊗ denotes the matrix Kronecker

product [16]. It can be seen from (3) that the variance of H2

decreases when PR increases.

In phase two, the source node transmits an nS × nS pilot

matrix SS to the relay node. Here we choose the length of SS

to be nS to maximize the overall system spectral efficiency.

The relay node applies an nR × nR precoding matrix F and

retransmits the linear precoded signal matrix

XR = FH1SS + FV (4)

to the destination node, where V is the nR×nS noise matrix

at the relay node. The signal received at the destination node

can be written as

YD = H2FH1SS +H2FV +N (5)

where N is the nD × nS noise matrix at the destination node

during phase two.

By vectorizing both sides of (5), we obtain

yD = (ST
S ⊗H2F)h1 + (InS

⊗H2F)v + n (6)

where yD , vec(YD), h1 , vec(H1), v , vec(V), n ,

vec(N), (·)T denotes matrix transpose, and vec(·) denotes the

vectorization operator which stacks all column vectors of a

matrix on top of each other. To obtain (6) from (5), we use

the property of vec(ABC) = (CT ⊗A)vec(B) [16].

In this paper, we assume that the channel matrices H1 and

H2 satisfy the well-known Kronecker correlation model [17]

Hi = C
1

2

riHw,iC
T
2

ti
, i = 1, 2 (7)

where Cti and Cri , i = 1, 2, are channel correlation matrices

at the transmit side and the receive side of Hi, respectively,

and Hw,i, i = 1, 2, are Gaussian random matrices with

independent and identically distributed (i.i.d.) entries having

zero mean and unit variance. We also assume that all noises

are i.i.d. additive white Gaussian noise (AWGN) with zero

mean and unit variance.

III. ROBUST CHANNEL ESTIMATION ALGORITHM

In this section, we derive the optimal SS and F that

minimize the MSE of estimating H1. Using a linear estimator,

the estimated h1 is given by

ĥ1 = WyD (8)

where W is the weight matrix of the linear estimator. Using

(8), the MSE of estimating h1 can be written as

J1=E
[

tr
(

(h1 − ĥ1)(h1 − ĥ1)
H
)]

=tr
(

Rh1h
H
1

−Rh1y
H
D
WH−WRH

h1y
H
D
+WRyDyH

D
WH

)

(9)

where tr(·) denotes the matrix trace, E[·] stands for statistical

expectation, and from (6) we have

Rh1y
H
D
=E[h1y

H
D ] = (Ct1S

∗
S)⊗ (Cr1F

HHH
2 ) (10)

RyDyH
D
=E[yDyH

D ] = (ST
SCt1S

∗
S)⊗ (H2FCr1F

HHH
2 )

+InS
⊗ (H2FF

HHH
2 ) + InSnD (11)

Rh1h
H
1

=E[h1h
H
1 ] = Ct1⊗Cr1 . (12)
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Here (·)∗ stands for complex conjugate, and we use h1 =

(C
1

2

t1
⊗C

1

2

r1)hw,1 with hw,1 , vec(Hw,1).
From (10)-(12), it can be seen that the CSI of H2 is needed

in order to minimize J1. However, the exact H2 is unknown

in the second phase. In fact, it is shown in (3) that H2 is a

complex Gaussian random matrix with the mean matrix of

Ĥ2. Obviously, the mismatch between H2 and Ĥ2 affects

the accuracy of the estimation of H1. To take such mismatch

into account, we adopt a statistically robust objective function

through averaging J1 in (9) with respect to the distribution of

H2 as

EH2
[J1] = tr

(

Rh1h
H
1

− EH2
[Rh1y

H
D
]WH−WEH2

[RH
h1y

H
D
]

+WEH2
[RyDyH

D
]WH

)

. (13)

The estimator W which minimizes (13) is the linear MMSE

estimator [15] given by

W = EH2
[Rh1y

H
D
]
(

EH2
[RyDyH

D
]
)−1

(14)

where (·)−1 denotes matrix inversion. Substituting (14) back

into (13), we have

EH2
[J1] = tr

(

Rh1h
H
1

− EH2
[Rh1y

H
D
]
(

EH2
[RyDyH

D
]
)−1

×EH2
[RH

h1y
H
D
]
)

. (15)

It can be easily seen from (10) that

EH2
[Rh1y

H
D
] = (Ct1S

∗
S)⊗ (Cr1F

HĤH
2 ). (16)

Using the property that for a complex Gaussian random matrix

H ∼ CN (H̄,Θ⊗Φ), EH[HAHH] = H̄AH̄H +tr(AΘT )Φ
[18], we have from (3) that

EH2
[RyDyH

D
]

= (ST
SCt1S

∗
S)⊗

(

Ĥ2FCr1F
HĤH

2 + tr(βFCr1F
H)InD

)

+InS
⊗
(

Ĥ2FF
HĤH

2 + tr(βFFH)InD

)

+ InSnD . (17)

Substituting (16) and (17) back into (15), we obtain that

EH2
[J1]

= tr
(

Ct1⊗Cr1 − (ST
SC

H
t1
Ct1S

∗
S)⊗ (Ĥ2FC

H
r1
Cr1F

HĤH
2 )

×
[

(ST
SCt1S

∗
S)⊗

(

Ĥ2FCr1F
HĤH

2 + tr(βFCr1F
H)InD

)

+InS⊗
(

Ĥ2FF
HĤH

2 + tr(βFFH)InD

)

+ InSnD
]−1
)

.(18)

The transmission power consumed at the relay node during

phase two can be calculated from (4) as

pr ,EH1

[

tr
(

F(H1SSS
H
S HH

1 + nSInR
)FH

)]

= tr(ST
SCt1S

∗
S)tr(FCr1F

H) + nStr(FF
H). (19)

Using (18) and (19), the optimal robust SS and F can be found

as the solution to the following problem

min
SS,F

EH2
[J1] (20)

s.t. tr(SSS
H
S ) ≤ PS (21)

tr(ST
SCt1S

∗
S)tr(FCr1F

H) + nStr(FF
H) ≤ PR (22)

where (21) and (22) are the transmission power constraint at

the source and the relay node, respectively, and PS is the

power budget available at the source node. The problem (20)-

(22) is complicated with matrices variables. We first show the

optimal structure of SS and F.

Let us define the following eigenvalue decompositions

(EVDs)

ST
SCt1S

∗
S =USΛSU

H
S (23)

Ĥ2FCr1F
HĤH

2 =UFΛFU
H
F (24)

Ct1 =Ut1Λt1U
H
t1

(25)

Cr1 =Ur1Λr1U
H
r1

(26)

where US , UF , Ut1 , and Ur1 are the unitary eigenvector ma-

trices, and ΛS , ΛF , Λt1 , and Λr1 are the diagonal eigenvalue

matrices with descending diagonal elements. From (23)-(24),

we can obtain that

ST
SC

1

2

t1
= USΛ

1

2

SQS , Ĥ2FC
1

2

r1 = UFΛ
1

2

FQF (27)

where QS and QF are unitary matrices. Here C
1

2

t1
and C

1

2

r1

are defined based on (25) and (26) as

C
1

2

t1
= Ut1Λ

1

2

t1
, C

1

2

r1 = Ur1Λ
1

2

r1 (28)

Let us introduce the singularvalue decomposition (SVD) of

Ĥ2 as

Ĥ2 = UH2
ΣH2

VH
H2

(29)

where UH2
and VH2

are the singular vector matrices and ΣH2

is the singularvalue matrix with descending diagonal elements.

From (27) and (29) we have

ST
S = USΛ

1

2

SQSC
− 1

2

t1
, F=VH2

Σ−1
H2

UH
H2

UFΛ
1

2

FQFC
− 1

2

r1 .
(30)

Using (23)-(30), J̄1 , EH2
[J1]− tr(Ct1⊗Cr1) can be written

as

J̄1 =−tr
(

[ΛS⊗(ΛF+aInD
) + InS

⊗ (Λ
1

2

FQFΛ
−1
r1

QH
F Λ

1

2

F )

+bInSnD
]−1(Λ

1

2

SQSΛt1Q
H
S Λ

1

2

S )⊗(Λ
1

2

FQFΛr1Q
H
F Λ

1

2

F )
)

(31)

where

a, tr(βΛFU
H
F UH2

Σ−2
H2

UH
H2

UF )

b, tr(βUFΛ
1

2

FQFΛ
−1
r1

QH
F Λ

1

2

FU
H
F UH2

Σ−2
H2

UH
H2

)+1.

The power constraints (21) and (22) can be rewritten as

tr(ΛSQSΛ
−1
t1

QH
S ) ≤ PS (32)

tr(ΛS)tr(Σ
−2
H2

UH
H2

UFΛFU
H
F UH2

)

+nStr(Σ
−2
H2

UH
H2

UFΛ
1

2

FQFΛ
−1
r1

QH
F Λ

1

2

FU
H
F UH2

)≤PR.(33)

From (31), we see that the mismatch between H2 and Ĥ2 is

considered by matrices aInD
and bInSnD

. In fact, the objective

function in [13] can be viewed as a special case of (31) where

a = b = 0. It can be proven similar to [13] that if Cr1 =
αInR

, then at the optimal SS , there is QS = InS
, QF = InR

,
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UF = UH2
, and US = InS

. Therefore, the optimal structure

of SS and F can be written as

ST
S = Λ

1

2

SC
− 1

2

t1
, F = α− 1

2VH2
Σ−1

H2
Λ

1

2

F . (34)

Substituting (34) back into (31)-(33) and let λS,i, λF,i, λt1,i,

λr1,i, and σH2,i be the ith diagonal element of ΛS , ΛF , Λt1 ,

Λr1 , and ΣH2
, respectively, the problem (20)-(22) is converted

to the following problem with scalar variables

min
{λS,i},{λF,j}

−
nS
∑

i=1

nD
∑

j=1

ci,j
di,j

(35)

s.t.

nS
∑

i=1

λS,i

λt1,i

≤ PS (36)

nS
∑

i=1

λS,i

nD
∑

j=1

λF,j

σ2
H2,j

+

nD
∑

j=1

nSλF,j

σ2
H2,j

λr1,j

≤ PR (37)

λS,i ≥ 0, i = 1, · · · , nS (38)

λF,j ≥ 0, j = 1, · · · , nD (39)

where

ci,j , λS,iλt1,iλF,jλr1,j

di,j , λS,iλF,j+

nD
∑

j=1

βλS,iλF,j

σ2
H2,j

+
λF,j

λr1,j

+

nD
∑

j=1

βλF,j

λr1,jσ
2
H2,j

+1

{λS,i} , {λS,i, i = 1, · · · , nS}

{λF,j} , {λF,j , j = 1, · · · , nD}

The problem (35)-(39) is non-convex. However, as the

optimization of {λF,j} is convex when {λS,i} is fixed, and

vice versa, (at least) a local optimum solution can be found

by iteratively optimize {λF,j} and {λS,i}. These two sub-

optimizations problem are formulated as follows.

1. Optimizing {λF,j} with fixed {λS,i}. The power con-

straint at the source node is irrelevant as {λS,i} is fixed. There-

fore, the Karush-Kuhn-Tucker (KKT) conditions of optimizing

{λF,j} can be written as

nS
∑

i=1

λS,iλt1,iλr1,j

d2i,j





nD
∑

l=1,l 6=j

βλF,l

σ2
H2,l

(

λS,i +
1

λr1,l

)

+ 1





= µ

[

nS
∑

i=1

λS,i

σ2
H2,j

+
nS

σ2
H2,j

λr1,j

]

(40)

µ





nS
∑

i=1

λS,i

nD
∑

j=1

λF,j

σ2
H2,j

+

nD
∑

j=1

nSλF,j

σ2
H2,j

λr1,j

− PR



 = 0 (41)

where µ ≥ 0 is the Lagrange multiplier such that equation (41)

holds. With any fixed {λS,i}, µ, and λF,l, l = 1, · · · , nD, l 6=
j, the non-negative λF,j can be derived using the bi-section

search, since the left-hand-side (LHS) of (40) is a monotoni-

cally decreasing function of λF,j . Note that (40) depends on

λF,j , j = 1, · · · , nD, hence, the value of {λF,j} needs to be

updated each time a new λF,j is obtained. To find the optimal

value of µ, an outer bi-section loop is used as the LHS of (37)

is an increasing function of λF,j , and λF,j is a monotonically

decreasing function of µ.

2. Optimizing {λS,i} with fixed {λF,j}. The KKT conditions

of this subproblem can be written as

nD
∑

j=1

λt1,iλF,jλr1,j

(

λF,j

λr1,j
+ β

nD
∑

l=1

λF,l

λr1,lσ
2

H2,l

+ 1
)

d2i,j

=
ν1
λt1,i

+ ν2

nD
∑

j=1

λF,j

σ2
H2,j

(42)

ν1

(

nS
∑

i=1

λS,i

λt1,i

− PS

)

= 0 (43)

ν2





nS
∑

i=1

λS,i

nD
∑

j=1

λF,j

σ2
H2,j

+

nD
∑

j=1

nSλF,j

σ2
H2,j

λr1,j

− PR



=0(44)

where ν1 ≥ 0 and ν2 ≥ 0 are the Lagrange multipliers. For any

fixed {λF,j}, ν1 and ν2, the non-negative λS,i can be found

by a bi-section search for all i. This is because the LHS of

(42) is a monotonically decreasing function of λS,i. Note that

the LHS of both (36) and (37) are increasing function of λS,i,

and λS,i is a monotonically decreasing function of both ν1 and

ν2. Generally, to find the optimal value of ν1 and ν2, a 2-D

bi-section loop search is required. However, if only one of the

constraints is active (i.e. only one of the constraints satisfies

the equality), then only 1-D bisection loop search is required

to find the corresponding multiplier for the constraint as the

other multiplier is zero. If both constraints are inactive, then a

2-D bi-section loop is required to determine the optimal value

of ν1 and ν2.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

channel estimation algorithm through numerical simulations.

We compare the proposed approach with the algorithm de-

veloped in [13] (denoted as “imperfect H2”) where Ĥ2 is

used in the second phase to estimate H1. As a benchmark,

the performance of channel estimation algorithm with exactly

known H2 is also studied.

In the simulations, for simplicity, we set nS = nR =
nD = N . The channel correlation matrices are modelled

as [Cti ]m,n = ρ|m−n|, i = 1, 2, [Cr2 ]m,n = ρ|m−n|,

where ρ is the correlation coefficient, and Cr1 = InR
. For

each channel realization, the normalized MSE (NMSE) of

channel estimation for all three algorithms is calculated as

‖H1 − Ĥ1‖2F /nSnR, where ‖ · ‖2F stands for the matrix

Frobenius norm. All simulation results are averaged over 100

random channel realizations.

Fig. 1 shows the normalized MSE of estimating H1 when

N = 2 and ρ = 0.2. A different number of antennas N = 4
and normalized correlation coefficient ρ = 0.8 are used for the

next scenario and the results are shown in Fig. 2. Note that for

both scenarios, the power at the source node is assumed to be

the same as the power at the relay node, i.e. PS = PR = P .
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Fig. 1. Normalized MSE versus P . N = 2 and ρ = 0.2
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Fig. 2. Normalized MSE of H1 for N = 4 and ρ = 0.8

Fig. 3 shows the normalized MSE when the power at the

source node PS is fixed at 20dB while the power at the relay

node PR is varied from 5dB to 30dB. The number of antennas

and the normalized correlation coefficient are set to be N = 2
and ρ = 0.8 respectively.

From the simulation results, it is obvious that by considering

the mismatch between Ĥ2 and H2 in the algorithm, the

performance of the algorithm has been improved without the

need of greater computation effort. The simulations are exe-

cuted with different parameters to examine the effectiveness

of the algorithm, and all results show an improvement in the

estimation of channel matrices.

V. CONCLUSIONS

The effect of the mismatch between the estimated and true

relay-destination channel on the performance of the LMMSE-

based MIMO relay channel estimation algorithm has been

investigated in this paper. It has been proven that the robust

channel estimation algorithm performs better compared to

the channel estimation algorithm proposed in [13] that does
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Fig. 3. Normalized MSE versus PR. N = 2, ρ = 0.8.

not take the mismatch into the consideration. Moreover, the

robust channel estimation algorithm does not require greater

computational effort.
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