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Joint Source and Relay Optimization for
Two-Way MIMO Multi-Relay Networks

Yue Rong, Senior Member, IEEE

Abstract—In this letter, we study two-way nonregenerative
multiple-input multiple-output (MIMO) relay communications
with multiple relay nodes. An iterative algorithm is developed to
jointly optimize the source, relay, and receive matrices such that
the two-way sum mean-squared error (MSE) of the signal wave-
form estimation is minimized. Numerical examples demonstrate
a better performance of the proposed algorithm compared with
existing algorithms for two-way MIMO multi-relay networks.

Index Terms—MIMO relay, MMSE, multi-relay system.

I. INTRODUCTION

IN a two-way relay communication system, two source
nodes exchange their information through assisting relay

node(s). By using the idea of analog network coding, such
information exchange can be accomplished in two time slots
even with half-duplex relays [1]. This leads to a high spectral
efficiency.

Distributed space-time coding has been designed in [2] for
two-way relay communication with multiple single-antenna
relay nodes. For a two-way (and in general 𝑁 -way) relay
system with a multi-antenna relay node and single-antenna
source nodes, the optimal relay matrix has been proposed in
[3]-[5] for various objective functions. When all nodes in the
network have multiple antennas, we call such system a two-
way multiple-input multiple-output (MIMO) relay system. For
two-way MIMO relay system with a single relay node, the
optimal relay and source matrices have been developed in [6]
to maximize the two-way sum mutual information. A minimal
mean-squared error (MMSE) based two-way MIMO relay
system was proposed in [7]. Two-way relay communication in
a multiuser scenario was studied in [8]. Recently, a gradient
algorithm has been developed in [9] to optimize the source and
relay matrices of two-way MIMO relay systems with multiple
relay nodes.

In this letter, we consider two-way nonregenerative MIMO
relay communication systems with multiple relay nodes, which
include systems in [3]-[7] as special ceases. We aim at
minimizing the two-way sum MSE of the signal waveform es-
timation. Compared with existing works such as [9], the main
contribution of this letter lies in that an iterative algorithm
with guaranteed convergence is developed to jointly optimize
the source, relay, and receive matrices through solving convex
subproblems. Simulation results demonstrate that the proposed
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algorithm yields better MSE and bit-error-rate (BER) perfor-
mance compared with that of [9]. We would like to mention
that since one-way relay system can be viewed as a special
case of two-way relay system, the proposed iterative algorithm
can be applied to optimize the source, relay, and receive
matrices in a one-way MIMO relay system with multiple relay
nodes [9], [10].

II. SYSTEM MODEL

We consider a two-way MIMO relay communication system
where nodes 1 and 2 exchange information with the aid of 𝐾
relay nodes. We assume that both nodes 1 and 2 are equipped
with 𝑁 antennas, and each relay node has 𝐿 antennas. The
generalization to a system with different number of antennas
at each node is straightforward. The information exchange
between nodes 1 and 2 is completed in two time slots. In
the first time slot, nodes 1 and 2 concurrently transmit, and
the signal vector from node 𝑖 is x𝑖 = B𝑖s𝑖, 𝑖 = 1, 2, where
s𝑖 is the 𝑀𝑖 × 1 (𝑀𝑖 ≤ 𝑁 ) modulated source signal vector,
and B𝑖 is the 𝑁 ×𝑀𝑖 source precoding matrix at node 𝑖. We
assume that the source signal vector satisfies E[s𝑖s

𝐻
𝑖 ] = I𝑀𝑖 ,

𝑖 = 1, 2, where I𝑛 stands for an 𝑛 × 𝑛 identity matrix, (⋅)𝐻
is the matrix (vector) Hermitian transpose, and E[⋅] denotes
statistical expectation. The 𝐿 × 1 received signal vector y𝑟,𝑘

at the 𝑘th relay node can be written as

y𝑟,𝑘 = H𝑟1,𝑘x1 +H𝑟2,𝑘x2 + v𝑟,𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 (1)

where H𝑟𝑖,𝑘 is the 𝐿×𝑁 MIMO channel from node 𝑖 to the
𝑘th relay node and v𝑟,𝑘 is the additive Gaussian noise vector
at the 𝑘th relay node.

In the second time slot, the 𝑘th relay node linearly amplifies
y𝑟,𝑘 and broadcasts the signal vector

x𝑟,𝑘 = F𝑘 y𝑟,𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 (2)

to nodes 1 and 2, where F𝑘 is the 𝐿 × 𝐿 amplifying matrix
at the 𝑘th relay node. The received signal vector y𝑖 at node 𝑖
can be written as

y𝑖 =

𝐾∑
𝑘=1

H𝑖𝑟,𝑘x𝑟,𝑘 + v𝑖, 𝑖 = 1, 2 (3)

where H𝑖𝑟,𝑘 is the 𝑁 ×𝐿 MIMO channel from the 𝑘th relay
node to node 𝑖 and v𝑖 is the additive Gaussian noise vector at
node 𝑖.

Substituting (1) and (2) into (3) and after the self-
interference removal we obtain that

y1 = H̃2s2 + ṽ2, y2 = H̃1s1 + ṽ1 (4)

where H̃𝑖 ≜
∑𝐾

𝑘=1(H�̄�𝑟,𝑘F𝑘H𝑟𝑖,𝑘)B𝑖, 𝑖 = 1, 2, is the
equivalent MIMO channel between the 𝑖th transmit node and
the �̄�th receive node, and ṽ�̄� ≜

∑𝐾
𝑘=1 H𝑖𝑟,𝑘F𝑘v𝑟,𝑘 + v𝑖,
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𝑖 = 1, 2, is the equivalent noise vector at node 𝑖. Here, �̄� = 2
for 𝑖 = 1, and �̄� = 1 for 𝑖 = 2. We assume that all noises are
independent and identically distributed (i.i.d.) Gaussian noise
with zero mean and unit variance.

Using linear receivers at both nodes 1 and 2, the estimated
signal waveforms are given by ŝ1 = W𝐻

1 y2 and ŝ2 = W𝐻
2 y1,

where W𝑖 is an 𝑁×𝑀𝑖 weight matrix for retrieving s𝑖. From
(4), the two-way sum MSE of the signal waveform estimation
can be written as

MSE =

2∑
𝑖=1

tr
(
E
[
(ŝ𝑖 − s𝑖)(ŝ𝑖 − s𝑖)

𝐻
])

=

2∑
𝑖=1

tr
(
(W𝐻

𝑖 H̃𝑖 − I𝑀𝑖)(W
𝐻
𝑖 H̃𝑖 − I𝑀𝑖)

𝐻

+W𝐻
𝑖 C𝑣𝑖W𝑖

)
(5)

where tr(⋅) denotes matrix trace and C𝑣𝑖 is the equiva-
lent noise covariance matrix given by C𝑣𝑖 = E

[
ṽ𝑖ṽ

𝐻
𝑖

]
=∑𝐾

𝑘=1 H�̄�𝑟,𝑘F𝑘F
𝐻
𝑘 H𝐻

�̄�𝑟,𝑘
+ I𝑁 , 𝑖 = 1, 2. From (1) and (2), the

transmission power consumed by each relay node is given by
tr
(
F𝑘

(∑2
𝑖=1 H𝑟𝑖,𝑘B𝑖B

𝐻
𝑖 H𝐻

𝑟𝑖,𝑘 + I𝐿
)
F𝐻

𝑘

)
, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 .

III. PROPOSED SOURCE, RELAY, AND RECEIVE MATRICES

DESIGN

The joint source, relay, and receive matrices optimization
problem can be written as

min
{W𝑖},{B𝑖},{F𝑘}

2∑
𝑖=1

tr
(
(W𝐻

𝑖 H̃𝑖 − I𝑀𝑖)(W
𝐻
𝑖 H̃𝑖 − I𝑀𝑖)

𝐻

+W𝐻
𝑖 C𝑣𝑖W𝑖

)
(6)

s.t. tr

(
F𝑘

( 2∑
𝑖=1

H𝑟𝑖,𝑘B𝑖B
𝐻
𝑖 H𝐻

𝑟𝑖,𝑘 + I𝐿

)
F𝐻

𝑘

)

≤ 𝑃𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 (7)

tr(B𝑖B
𝐻
𝑖 ) ≤ 𝑄𝑖, 𝑖 = 1, 2 (8)

where {F𝑘} ≜ {F𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾}, {W𝑖} ≜ {W1,W2},
{B𝑖} ≜ {B1,B2}, (7) and (8) are the transmission power con-
straints at the relay nodes and the source nodes, respectively,
and 𝑃𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 , 𝑄𝑖, 𝑖 = 1, 2, are the corresponding
power available.

The problem (6)-(8) is a nonconvex problem with matrix
variables. The global optimum is difficult to obtain with a rea-
sonable computational complexity (non-exhaustive searching).
In the following, we develop an iterative algorithm to solve
the problem (6)-(8). This algorithm starts at a random {F𝑘}
and {B𝑖} satisfying (7) and (8). In each iteration, the source,
relay, and receive matrices are updated alternatingly through
solving convex subproblems. First, with given {F𝑘} and {B𝑖},
the optimal {W𝑖} are obtained by solving the unconstrained
convex problem (6), since {W𝑖} do not appear in constraints
(7) and (8). The solution is given by

W𝑖 = (H̃𝑖H̃
𝐻
𝑖 +C𝑣𝑖)

−1H̃𝑖, 𝑖 = 1, 2

where (⋅)−1 denotes matrix inversion.

Second, with fixed {W𝑖}, {B𝑖}, and F𝑗 , 𝑗 = 1, ⋅ ⋅ ⋅ ,𝐾, 𝑗 ∕=
𝑘, the optimal F𝑘 can be obtained by solving the problem of

min
F𝑘

2∑
𝑖=1

tr
(
(H𝑖,𝑘F𝑘G𝑖,𝑘 −A𝑖,𝑘)(H𝑖,𝑘F𝑘G𝑖,𝑘 −A𝑖,𝑘)

𝐻

+H𝑖,𝑘F𝑘F
𝐻
𝑘 H𝐻

𝑖,𝑘

)
(9)

s.t. tr

(
F𝑘

( 2∑
𝑖=1

G𝑖,𝑘G
𝐻
𝑖,𝑘 + I𝐿

)
F𝐻

𝑘

)
≤ 𝑃𝑘 (10)

where H𝑖,𝑘 ≜ W𝐻
𝑖 H�̄�𝑟,𝑘, G𝑖,𝑘 ≜ H𝑟𝑖,𝑘B𝑖, and A𝑖,𝑘 ≜ I𝑀𝑖−

W𝐻
𝑖

∑𝐾
𝑗=1,𝑗 ∕=𝑘(H�̄�𝑟,𝑗F𝑗H𝑟𝑖,𝑗)B𝑖. The structure of F𝑘 can be

derived by using the Lagrange multiplier method [11] to solve
the problem (9)-(10). After rearranging of terms, the optimal
f𝑘 ≜ vec(F𝑘) can be written as

f𝑘 =

[
2∑

𝑖=1

(
G𝑖,𝑘G

𝐻
𝑖,𝑘 + I𝐿

)𝑇⊗(H𝐻
𝑖,𝑘H𝑖,𝑘)

+𝜆𝑘

( 2∑
𝑖=1

(G𝑖,𝑘G
𝐻
𝑖,𝑘) + I𝐿

)𝑇
⊗I𝐿

]−1

vec
( 2∑

𝑖=1

H𝐻
𝑖,𝑘A𝑖,𝑘G

𝐻
𝑖,𝑘

)
(11)

where vec(⋅) stands for a vector obtained by stacking all
column vectors of a matrix on top of each other, (⋅)𝑇 denotes
the matrix (vector) transpose, and 𝜆𝑘 ≥ 0 is the unknown La-
grangian multiplier which can be found as follows. Assuming
𝜆𝑘 = 0, we have

f𝑘 =

[
2∑

𝑖=1

(
G𝑖,𝑘G

𝐻
𝑖,𝑘 + I𝐿

)𝑇⊗(H𝐻
𝑖,𝑘H𝑖,𝑘)

]−1

×vec
( 2∑

𝑖=1

H𝐻
𝑖,𝑘A𝑖,𝑘G

𝐻
𝑖,𝑘

)
. (12)

If f𝑘 in (12) satisfies the constraint (10), then (12) is
the solution to the problem (9)-(10). Otherwise 𝜆𝑘 > 0
can be obtained by substituting (11) into the equation of
tr
(
F𝑘

(∑2
𝑖=1 G𝑖,𝑘G

𝐻
𝑖,𝑘 + I𝐿

)
F𝐻

𝑘

)
= 𝑃𝑘. Since the left-

hand side of the obtained nonlinear equation is monotonically
decreasing with respect to 𝜆𝑘, it can be efficiently solved using
the bisection method [11].

Finally, using given {W𝑖} and {F𝑘}, we update {B𝑖} by
solving the following problem

min
{B𝑖}

2∑
𝑖=1

tr
(
(W̃𝑖B𝑖 − I𝑀𝑖)(W̃𝑖B𝑖 − I𝑀𝑖)

𝐻
)

(13)

s.t.

2∑
𝑖=1

tr(F𝑘H𝑟𝑖,𝑘B𝑖B
𝐻
𝑖 H𝐻

𝑟𝑖,𝑘F
𝐻
𝑘 )≤𝑃𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾(14)

tr(B𝑖B
𝐻
𝑖 ) ≤ 𝑄𝑖, 𝑖 = 1, 2 (15)

where W̃𝑖 ≜ W𝐻
𝑖

∑𝐾
𝑘=1(H�̄�𝑟,𝑘F𝑘H𝑟𝑖,𝑘) and 𝑃𝑘 ≜ 𝑃𝑘 −

tr(F𝑘F
𝐻
𝑘 ), 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 . The problem (13)-(15) is a quadrat-

ically constrained quadratic programming (QCQP) problem
[11], which is a convex optimization problem and can be
efficiently solved by the interior-point method [11]. Since
all subproblems (6), (9)-(10), and (13)-(15) are convex, the
solution to each subproblem is optimal. Thus, the value of the
objective function (6) decreases after each iteration. Moreover,
the objective function is lower bounded by at least zero. There-
fore, the iterative algorithm converges. It can be easily shown
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Fig. 1. MSE versus 𝑃 . 𝐾 = 3, 𝐿 = 3, 𝑁 = 3, 𝑀 = 2, 𝑄 = 20dB.
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Fig. 2. BER versus 𝑃 . 𝐾 = 3, 𝐿 = 3, 𝑁 = 3, 𝑄 = 20dB.

that at the convergence point X0, tr(∇𝐽(X0)
𝑇 (X−X0)) ≥ 0,

where X ≜ [{W𝑖}, {B𝑖}, {F𝑘}] and ∇𝐽(X0) is the gradient
of (6) at X0. Moreover, it can be seen that X0 must be on
the edge of the feasible set specified by inequalities in (7)
and (8). This indicates that X0 can not be a saddle point and
is indeed the local-optimal solution. Therefore, the proposed
iterative algorithm monotonically converges to (at least) a
locally optimal solution.

IV. NUMERICAL EXAMPLES

We simulate a two-way MIMO relay system with 𝑁 =
𝐾 = 𝐿 = 3 and 𝑀1 = 𝑀2 = 𝑀 . All channel matrices have
i.i.d. complex Gaussian entries with zero-mean and variances
1/𝑁 for H𝑟𝑖,𝑘, 𝑖 = 1, 2, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 , and 1/𝐿 for
H𝑖𝑟,𝑘, 𝑖 = 1, 2, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 , respectively. The QPSK
constellations are used to modulate the source symbols. All
noises are i.i.d. Gaussian with zero mean and unit variance.
We set 𝑄1 = 𝑄2 = 20dB and 𝑃𝑘 = 𝑃 , 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 . The
CVX convex optimization software package [12] is applied to
solve the QCQP problem (13)-(15). All simulation results are
averaged over 1000 independent channel realizations.

We compare the performance of the proposed joint source,
relay, and receive matrices design algorithm and the gradient
algorithm developed in [9] using the MSE objective. Fig. 1
shows the MSE performance of both algorithms versus 𝑃 for

𝑀 = 2. It can be clearly seen that the performance of the
proposed algorithm is similar to that of [9] after 5 iterations.
And after 10 iterations, the proposed algorithm outperforms
[9] especially at large 𝑃 . The reason is that for the gradient
algorithm in [9], the source and relay matrices are essentially
updated in two steps. First, they are modified by moving one
step towards the gradient descent direction of the objective
function, without considering any power constraint at each
node. Then the power constraint is imposed by scaling the
source and relay matrices. Such two-step scheme is suboptimal
in terms of power loading at all data streams. While in the
proposed algorithm, the source and relay matrices are updated
directly considering the power constraints in each step, which
is optimal in power allocation. We observed in simulations that
for most channel realizations, the decreasing of the objective
function (6) is negligible after 10 iterations. Thus, for the
proposed algorithm, only a small number of iterations are
required to achieve a good performance. On the other hand,
the convergence of the gradient algorithm strongly depends on
the choice of the step size at each iteration.

The BER performance of both algorithms for 𝑀 = 2 and
𝑀 = 3 is shown in Fig. 2. It can be clearly seen that the
proposed algorithm has a better performance than that of [9].
From Fig. 2 we can also see that due to the increase of
effective spatial diversity, both algorithms yield smaller BER
when 𝑀 reduces from three to two.

V. CONCLUSION

We have studied two-way nonregenerative MIMO relay
communication systems with multiple relay nodes. A joint
source, relay, and receive matrices optimization algorithm has
been developed to minimize the two-way sum MSE of the
signal waveform estimation.
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