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Multihop Nonregenerative MIMO Relays—
QoS Considerations

Yue Rong, Member, IEEE

Abstract—For nonregenerative multihop multiple-input mul-
tiple-output (MIMO) relay communication systems, the optimal
source precoding matrix and the optimal relay amplifying matrices
have been recently established for a broad class of objective func-
tions subjecting to the transmission power constraint at each node.
However, existing works do not consider any quality-of-service
(QoS) constraints, which are important in practical communica-
tion systems. In this paper, we derive the optimal source and relay
matrices of a multihop MIMO relay system that guarantee the
predetermined QoS criteria be attained with the minimal total
transmission power. In particular, we consider two types of re-
ceivers at the destination node: the linear minimal mean-squared
error (MMSE) receiver and the nonlinear decision feedback
equalizer (DFE) based on the MMSE criterion. We show that for
both types of receivers, the solution to the original optimization
problem can be upper-bounded by using a successive geometric
programming (GP) approach and lower-bounded by utilizing
a dual decomposition technique. Simulation results show that
both bounds are tight, and to obtain the same QoS, the MIMO
relay system using the nonlinear MMSE-DFE receiver requires
substantially less total transmission power than the linear MMSE
receiver-based system.

Index Terms—Linear nonregenerative relay, majorization, min-
imal mean-squared error (MMSE), multihop relay, multiple-input
multiple-output (MIMO) relay, QoS.

I. INTRODUCTION

A S an efficient solution for wireless backhaul networks,
nonregenerative multiple-input multiple-output (MIMO)

relay communication systems recently have attracted much re-
search interest [1]–[13]. For a two-hop MIMO relay system, the
optimal relay amplifying matrix is obtained in [1]–[4] to maxi-
mize the mutual information (MI) between source and destina-
tion. In [5]–[7], optimal algorithms are developed to minimize
the mean-squared error (MSE) of the signal waveform estima-
tion at the destination.

The works of [1]–[7] have been generalized by [8], where
a unified framework is established for two-hop linear nonre-
generative MIMO relay systems with a broad class of objective
functions. The framework in [8] has been further extended to
multihop nonregenerative MIMO relay systems with arbitrary
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number of hops [9]. Both [8] and [9] consider a linear minimal
mean-squared error (MMSE) receiver at the destination node.
Recently, it has been shown in [10] that by using a nonlinear
decision feedback equalizer (DFE) based on the MMSE crite-
rion (referred to as the MMSE-DFE receiver) at the destination
node, the system bit-error-rate (BER) performance can be sig-
nificantly improved. Other recent works on multihop nonregen-
erative MIMO relay systems are found in [11]–[13].

The aim of [1]–[13] is to optimize a given objective function,
subjecting to the transmission power constraint at each node.
However, the quality-of-service (QoS) constraints are not ad-
dressed by [1]–[13]. Note that in practical communication sys-
tems, QoS criteria are very important. In this paper, we derive
the optimal source and relay matrices of a multihop MIMO relay
system which guarantee that the predetermined QoS criteria be
attained with the minimal total transmission power. Based on
the strong link between the diagonal elements of the MMSE
matrix and most commonly used MIMO communication system
objective functions [8]–[10], the QoS criteria are set up as the
upper-bound of the MSE of each data stream. Moreover, we
consider two types of receivers at the destination node: the linear
MMSE receiver and the nonlinear MMSE-DFE receiver. For
both receiver schemes, we show that the optimal source pre-
coding matrix and the optimal relay amplifying matrices have
a similar structure. In fact, the optimal source precoding ma-
trix is the product of three matrices: the right singular matrix
of the first-hop channel, a diagonal power loading matrix, and
a (semi)-unitary matrix. The optimal amplifying matrix at any
relay node is the product of the right singular matrix of its direct
forward channel, a diagonal power loading matrix, and the Her-
mitian transpose of the left singular matrix of the direct back-
ward channel. Compared with the linear MMSE receiver, an ad-
vantage of using the nonlinear MMSE-DFE receiver is that there
is no constraint on the number of data streams. Note that the
DFE receiver is also well-known as the successive interference
cancellation (SIC) receiver [14].

After the optimal structure of the source and relay matrices
is determined, the relay design problems boil down to optimal
power loading problems with QoS constraints, which are
nonconvex for both types of receivers and the globally optimal
solution is difficult to obtain with a reasonable computational
complexity. We show that the solution to the original optimiza-
tion problems can be upper-bounded by using a successive
geometric programming (GP) approach and lower-bounded
by utilizing a dual decomposition technique. A theoretical
analysis of the tightness of the upper and lower bounds is
very difficult. Instead, we resort to numerical simulation to
study the tightness of the bounds. Interestingly, we find that
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the upper and lower bounds are very close to each other. For
practical applications the successive GP approach is preferred,
since it has a lower computational complexity than the dual
decomposition technique. Simulation results also demonstrate
that to obtain the same QoS, the MIMO relay system using
the nonlinear MMSE-DFE receiver requires substantially less
total transmission power than the linear MMSE receiver-based
system.

We would like to mention that the optimal source matrix
design for a single-hop (point-to-point) MIMO system under
QoS constraints is addressed in [15] for linear MMSE receiver,
and in [16] for nonlinear MMSE-DFE receiver. Both [15] and
[16] are summarized in [17]. Our paper generalizes the results
in [15]–[17] from single-hop MIMO channels to multihop
nonregenerative MIMO relay communication systems with any
number of hops. Note that due to the introduction of multiple
relay nodes, a rigorous proof of the theorems for multihop
MIMO relay system is much more challenging than that for
the single-hop MIMO channel, and is one contribution of this
paper. The generalization from a single-hop MIMO system to
multihop MIMO relay systems is significant.

The rest of this paper is organized as follows. In Section II,
we introduce the model of a multihop linear nonregenerative
MIMO relay communication system. The structures of the
optimal source and relay matrices are shown in Section III
for systems using the linear MMSE receiver and the nonlinear
MMSE-DFE receiver, respectively. In Section IV, we show
some numerical examples. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a wireless communication system with one
source node, one destination node, and relay nodes

. We assume that due to the propagation path-loss, the
signals transmitted by the node can only be received by
its direct forward node, i.e., the th node. Thus, signals
transmitted by the source node pass through hops until they
reach the destination node. We also assume that the number of
antennas at each node is , , and the number
of source symbols in each transmission is . Like [1]–[10], a
linear nonregenerative relay matrix is used at each relay.

The signal vector transmitted by the source node is

(1)

where is the source symbol vector, and is the
source precoding matrix. We assume that ,

where stands for the statistical expectation, denotes
the Hermitian transpose, and is an identity matrix. The

signal vector received at the node is written as

(2)

where is the quasi-static MIMO fading channel
matrix between the and the th nodes, i.e., the th
hop, is the independent and identically distributed
(i.i.d.) additive white Gaussian noise (AWGN) vector at the
node, and is the signal vector transmitted by the

th node. We assume that the noises are complex circularly
symmetric with zero mean and unit variance.

The input-output relationship at node is given by

(3)

where is the amplifying matrix at node . Combining
(1)–(3), we obtain the received signal vector at the destination
node (the th node) as

(4)

where and are the equivalent MIMO channel matrix and
the noise vector, and given, respectively, by

Here for matrices , .
From (1), we know that the power of the signals transmitted

by the source node is , where denotes the trace
of a matrix. Based on (2) and (3), the power of the signal trans-
mitted by the relay node , , is given by

(5)

III. OPTIMAL SOURCE AND RELAY MATRICES WITH QOS
CONSTRAINTS

In this section, we design nonregenerative multihop MIMO
relay systems that meet the QoS requirements with the minimal
(weighted) total transmission power. Based on the strong link
between the diagonal elements of the MMSE matrix and most
commonly used MIMO communication system objective func-
tions such as the system BER and the source-destination MI
[8]–[10], [15]–[17], the QoS criteria are set up as the upper-
bound of MSE of each data stream. In particular, we derive the
optimal source precoding matrix and the optimal relay ampli-
fying matrices for destinations with the linear MMSE receiver,
and the nonlinear MMSE-DFE receiver, respectively.

A. Linear MMSE Receiver at the Destination

Using a linear MMSE receiver, the estimated signal vector is

(6)

where is the weight matrix of the linear MMSE
receiver given by [18]

(7)
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Here denotes the matrix inversion, and is
the noise covariance matrix

(8)

Using (4) and (6)–(8), the MMSE matrix denoted as
, is given by [9]

(9)

where .
The QoS-constrained optimization problem for MIMO relay

systems using the linear MMSE receiver at the destination node
can be written as

(10)

(11)

where the objective function (10) is the weighted total transmis-
sion power consumed by the source node and all relay nodes in
the relay network with , , as weighting co-
efficients, is a column vector containing all main diagonal
elements of , and is the QoS require-
ment vector measured in terms of the MSE of each data stream
that must be satisfied. A larger over ,
, should be assigned to the node, if saving the power of

the node over that of other nodes is desired. In the fol-
lowing, we focus on the objective function (10) with ,

. Nonetheless, the algorithms developed in this
paper can be straightforwardly extended to the case of general
weighting coefficients. Note that due to the strong link between

and the system BER and the source-destination MI
[8]–[10], the QoS constraints in (11) can be equivalently repre-
sented as the BER and/or the MI constraint in each data stream.
Obviously, from (9) we can see that any meaningful should
satisfy , . Without loss of generality,
we assume that the elements of are arranged in an increasing
order. The following definition from [19] is required in order to
solve the problem (10), (11).

Definition 1 [19, 1.A.1, 1.A.2]: Consider any two real-valued
vectors , let ,

denote the elements of and sorted in
decreasing order, respectively, and ,

denote the elements of and sorted
in increasing order, respectively. We say that is additively ma-
jorized by , denoted as , if , for

, and . We say that
is weakly additively submajorized by , denoted as ,
if , for . We say that is
weakly additively supermajorized by , denoted as ,
if , or , for

.
Let us write the singular value decomposition (SVD) of

as

(12)

where the dimensions of , , are ,
, , respectively. We assume that the

main diagonal elements of , , are ar-
ranged in the decreasing order. Let us introduce

, where
denotes the rank of a matrix. The following theorem establishes
the structure of the optimal source precoding matrix and relay
amplifying matrices when the linear MMSE receiver is applied
at the destination node.

Theorem 1: Assuming and
, for the linear nonregenerative multihop MIMO relay

design problem (10), (11), the optimal source and relay matrices
, , are given by

(13)

where , , are diagonal matrices, is
an unitary matrix such that ,

, and and contain the leftmost vectors
of and , respectively. Here for a matrix , stands
for the main diagonal element of .

Proof: See Appendix A.
The assumption of is motivated by the fact that

using a linear receiver at the destination, the maximal number
of independent data streams that can be sent from source to des-
tination for any given is no more than . Moreover, the
assumption of , is sufficient to
allow independent data streams to be sent from source to
destination.

From Theorem 1 we find that the optimal source precoding
matrix, the optimal relay amplifying matrices, and the MMSE
receiver matrix jointly diagonalize the multihop MIMO relay
channel after a rotation of the source precoding matrix.
Substituting (13) back into (5), the transmission power at the
source and relay nodes can be, respectively, written as

(14)

(15)

where and , , are the
main diagonal elements of and , respectively. Using
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(14), (15), and (93) in Appendix A, the optimal power loading
parameters can be obtained by solving
the following problem:

(16)

(17)

(18)

where in (17) for a scalar , .
Here the objective function (16) is obtained from (14) and (15),
while the constraint (17) is obtained from (93) and (100) in
Appendix A. Note that due to the constraint (18), the rank of

, , is guaranteed to be .
To simplify notations, let us introduce the following variable

substitutions for

(19)

(20)

Applying (19), (20) to (16)–(18) and expanding (17) using Defi-
nition 1, the optimization problem (16)–(18) can be equivalently
written as

(21)

(22)

(23)

where . It can be shown that the Hessian

matrix of is indefi-
nite for and , , . Thus,
the constraints in (22) are nonconvex and difficult to handle for

. Consequently, the problem (21)–(23) is a nonconvex
optimization problem and the globally optimal solution is dif-
ficult to obtain. In the following, we provide two numerical
methods to solve the problem (21)–(23). The first method is
based on a successive application of geometric programming
(GP) [20]–[22]. While the second method utilizes the dual de-
composition technique [23].

For the first method, let us introduce an auxil-
iary variable vector with

, .
Then the problem (21)–(23) can be equivalently written as

(24)

(25)

(26)

(27)

The objective function (24) is a posynomial. The constraints
in (26) are posynomial upper-bound constraints [20]. However,
constraints in (25) make the problem (24)–(27) a signomial pro-
gramming (SP) problem, which is very difficult to solve [22].
If the constraints in (25) can also be converted to posynomial
upper-bound constraints, then the problem (24)–(27) becomes
a GP problem. Towards this end, we apply the geometric in-
equality to the left-hand side of (25) such that

(28)

where , and
. Note that an approach similar

to (28) has been applied to solve the power control problem in
multiuser communication [22]. The major difference between
[22] and the optimization problem (24)–(27) is that the power
control problem in [22] may have infeasible constraints, while
the problem (24)–(27) is always feasible. Substituting (25) with
the inequalities , we have

(29)

(30)

(31)

(32)

where

(33)

The problem (29)–(32) is a GP problem in standard form, which
can be converted to a convex optimization problem and effi-
ciently solved by the interior-point method [20].

The procedure of applying the successive GP approach to
solve the problem (21)–(23) is summarized in Table I. Here
is a small positive number close to zero and the superscript
denotes the number of iterations.

Using (26) with , a feasible
can be obtained as ,

. We use the MOSEK convex
optimization MATLAB toolbox [24] to solve the problem
(29)–(32). Note that since the constraints in (30) are stricter
than those in (25), the solution to the problem (24)–(27)
is upper-bounded by that of the problem (29)–(32) before
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TABLE I
PROCEDURE OF APPLYING THE SUCCESSIVE GP APPROACH TO

SOLVE THE PROBLEM (21)–(23)

the convergence of the successive GP procedure. The tight-
ness of this upper-bound depends on the coefficients ,

, . By using the successive GP
approach, are adaptively chosen to match the value of ,

, at each iteration. Moreover, when the succes-
sive GP procedure converges, i.e., when , we

have . Thus, (24)–(27)
and (29)–(32) are equivalent at the convergence point of the
successive GP procedure, since at the convergence point, the
constraint (25) is identical to the constraint (30). A rigorous
analysis of the convergence of the successive GP algorithm
is not available. However, we observed in the numerical sim-
ulations that a monotonic convergence of the successive GP
algorithm is always achieved. The successive GP approach is
also known as iterative monomial approximation in geometric
programming literature [21], and its convergence has been
observed for solving the power control problem in multiuser
communication [22].

Now let us have a closer look at (21)–(23). Interestingly, the
variables are coupled only through the summations in (21)
and (22). Such structure facilitates the application of the dual
decomposition technique. First, the Lagrangian function asso-
ciated with the problem (21), (22) can be written as

(34)

where , are the Lagrangian multipliers,
, , ,

, and

(35)

The dual function [20] associated with the original problem
(21)–(23) is given by . Now the optimiza-
tion of is carried out in two levels. At the lower level, we

TABLE II
PROCEDURE OF APPLYING THE DUAL DECOMPOSITION APPROACH TO SOLVE

(21)–(23)

solve for , , from the following decoupled sub-
problem with given .

(36)

The problem (36) does not have a closed-form solution. We
should resort to numerical methods such as the projected gra-
dient algorithm [25] to solve it. The projected gradient method
starts at an initial point . At the iteration, is up-

dated as , where

is a step size and . Here
, is a positive scalar, is a small positive

number close to zero, and denotes the gradient
with respect to . At the higher level, we update the dual vari-
able by solving the master dual problem

(37)

The problem (37) can be solved by the sub-gradient method
[23].

The procedure of applying the dual decomposition technique
to solve (21)–(23) is summarized in Table II. Note that the
constraints in (22) are absorbed into the Lagrangian func-
tion (34), and when this algorithm converges, (22) is always
satisfied. Since the dual decomposition method essentially
solves the dual optimization problem, the result we obtain is
a lower-bound of the original problem (21)–(23). Moreover,
since the dual problem is always convex, the convergence of
the dual decomposition algorithm is guaranteed.

Both the successive GP and the dual decomposition algo-
rithms can be applied in wireless backhaul communications. We
assume that the source node has the channel state information
(CSI) knowledge of , the destination node knows , and the

node, , knows the CSI of its backward channel
and its forward channel . In practice, the backward CSI

can be obtained through standard training methods [26]. The
forward CSI required at the node is exactly the back-
ward CSI at the th node, and thus can be obtained by a
feedback from the th node. It is shown that at high training
signal-to-noise ratio (SNR), the required CSI can be estimated
with a high precision [26]. The iteration computations can be
carried out at any node depending on the capability of all nodes.
The selected node first collects the information on
and from the th node, . Then it deter-
mines and performs the optimization and com-
putes . Finally, it sends the optimal , ,
to the node, , and to the source node. At
the node, after the optimal , , are received,



RONG: MULTIHOP NONREGENERATIVE MIMO RELAYS 295

the optimal matrix is assembled using (13). Substituting (13)
back into (7), we have , where is a di-
agonal matrix with the diagonal elements given by

, .
Thus, at the destination node, is estimated through channel
training, while and are forwarded by the selected node.

Note that since in (35) is nonconvex with respect
to , , solving the subproblems (36) has a
higher computational complexity than solving the GP problem
(29)–(32), which can be converted to a convex optimization
problem and efficiently solved by the interior-point method.
Thus, in practice, the successive GP approach is preferred.
The contribution of the dual decomposition method is that it
establishes a lower-bound for the globally optimal solution to
the original optimization problem (21)–(23). It is observed in
Section IV through numerical simulations that this lower-bound
is very close to the upper-bound obtained by the successive GP
approach. Thus, the successive GP approach can be used with
confidence in practice.

A suboptimal MIMO relay scheme can be developed by as-
suming a diagonal , i.e., , , are given by (13)
with . Thus, in this scheme the QoS constraint (11)
is equivalent to

Using the variable substitutions in (19), (20), the power loading
problem for the suboptimal scheme is written as

(38)

(39)

(40)

Note that constraints in (39) are equivalent to
, .

Thus, (38)–(40) can be converted to

(41)

(42)

(43)

Since the objective function (41) is a posynomial and (42) are
posynomial upper-bound inequality constraints, the problem
(41)–(43) is a GP problem in standard form [20]. We use the
MOSEK GP optimization MATLAB toolbox [24] to solve
(41)–(43).

It can be seen that (38)–(40) has a smaller feasible region
than that of (21)–(23). Thus, we expect that the suboptimal
scheme has a worse performance than the optimal approach in

(21)–(23). However, the computational complexity of solving
(38)–(40) is in the same order of one iteration of the successive
GP approach in Table I. Such performance-complexity tradeoff
is very useful for practical MIMO relay systems.

B. Nonlinear MMSE-DFE Receiver at the Destination

Using a nonlinear MMSE-DFE receiver and assuming that
there is no error propagation, the estimated signal can be repre-
sented as [14]

where and are the feed-forward and feedback matrix of the
DFE receiver, respectively. In practice, the error propagation of
the DFE receiver can be minimized by detecting the substream
with the smallest error probability first. To minimize the MSE,
the optimal is given by , where denotes
the strictly upper-triangular part of . Let us introduce the fol-
lowing QR decomposition [27]

(44)

where is an upper-triangular matrix, is an
semi-unitary matrix with , is a

matrix containing the first rows of , and contains the
last rows of . It has been shown in [10], [17] that , ,
and the MMSE matrix can be represented as

where is a matrix taking the diagonal elements of as the
main diagonal and zero elsewhere.

The QoS-constrained optimization problem for MIMO relay
systems using the nonlinear MMSE-DFE receiver at the desti-
nation node can be written as

(45)

(46)

(47)

where . In the following, we
focus on the objective function (45) with , .
Nonetheless, the algorithms developed later can be straightfor-
wardly extended to the case of general weighting coefficients.

Let us introduce the following definition that will be used to
solve (45)–(47).

Definition 2 [17, p. 33]: For any two real-valued vec-
tors and , we say that is multiplicatively majorized by

, denoted as , if , for
, and . We say that is
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weakly multiplicatively submajorized by , denoted as
, if , for .
The following theorem establishes the structure of the optimal

source precoding matrix and relay amplifying matrices when the
nonlinear MMSE-DFE receiver is used at the destination node.

Theorem 2: For the nonregenerative multihop MIMO relay
design problem (45)–(47), assuming that

, , the optimal source and relay ma-
trices , , are given by

(48)

where are diagonal ma-
trices, and is an semi-unitary matrix

such that the QR decomposition in (46) holds. In particular,
is obtained by solving the following op-

timization problem:

(49)

(50)

(51)

where denotes a vector with all 1 elements.
Proof: See Appendix B.

The motivation of the assumption is to
avoid any transmission power loss at each node. In practice,
the node selected for performing the optimization first collects
the information on , . Then it deter-
mines and performs the optimization by
solving (49)–(51). Due to the constraint (51), the rank of ,

, is guaranteed to be . Comparing (48) with
(13), we find that the optimal source and relay matrices have a
similar structure for both the linear MMSE and the nonlinear
MMSE-DFE receivers. The major differences are the power
loading matrices and , , and the rotation
matrices at the source node and . An intuitive expla-
nation is that the structure of the relay matrices in (13) and
(48) minimizes the total transmission power, while together
with the relay matrices, the rotation matrix at the source node
is used to guarantee the QoS constraints for different type of
receivers. Moreover, as proved in [9] and [10], the source and
relay matrices structure in (13) and (48) is optimal for most
commonly used MIMO design criteria. Thus, we expect that the
optimal source and relay matrices structure derived in this paper
should be applicable in scenarios where the objective function
is not the total transmission power (such as maximizing the
source-destination mutual information subjecting to the QoS

constraint on the MSE of each data stream). A rigorous proof
of the optimal structure in such scenarios is an important future
research topic.

Interestingly, when the nonlinear MMSE-DFE receiver is
used at the destination, there is no constraint on . In fact,
as can be seen from Appendix B, can be greater than .
Since the elements of are arranged in an increasing order,
the elements of are sorted in a decreasing order. Using the
variable substitutions in (19), (20), and expanding (50) using
Definition 2, (49)–(51) can be equivalently rewritten as

(52)

(53)

(54)

(55)

where the constraint (54) is obtained since ,
, and thus .

Similar to Section III-A, (52)–(55) can be solved by the suc-
cessive GP approach and the dual decomposition method. We
first discuss the successive GP approach. By introducing the
auxiliary variables ,

, (52)–(55) is equivalent to

(56)

(57)

(58)

(59)

(60)

Obviously, constraints in (57) and (58) are not yet posynomial
upper-bound constraints. Let us introduce an auxiliary variable
vector , with , ,
the constraints in (57) and (58) can be equivalently written as

(61)

(62)

(63)

To convert the constraints in (63) to posynomial upper-bound
constraint, we apply the following geometric inequality
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TABLE III
PROCEDURE OF APPLYING THE SUCCESSIVE GP APPROACH TO SOLVE (52)–(55)

, where , , and
. Now a tightened version of (56)–(60) is given by

(64)

(65)

(66)

(67)

(68)

(69)

The problem (64)–(69) is a GP problem in standard form. In
a similar fashion to Section III-A, the power loading problem
(52)–(55) can be solved by a successive GP approach, where in
each iteration, the GP problem (64)–(69) is solved. The steps
are summarized in Table III.

To solve the problem (52)–(55) using the dual decomposi-
tion technique, we first apply the operation to both sides of
the constraints in (53) and (54). The problem (52)–(55) is now
equivalent to

(70)

(71)

(72)

(73)

The Lagrangian function associated with (70)–(72) is

TABLE IV
PROCEDURE OF APPLYING THE DUAL DECOMPOSITION APPROACH TO SOLVE

(52)–(55)

where , are the Lagrangian multipliers,
, , ,

, and

(74)

Now the decoupled subproblem with given is

(75)

The master dual problem is given by

(76)

where . The procedure of applying the
dual decomposition approach to solve (52)–(55) is listed in
Table IV.

It will be shown in Section IV that although the successive GP
and the dual decomposition approaches provide an upper-bound
and a lower-bound of (52)–(55), respectively, their performance
are almost identical. Note that since in (74) is non-
convex with respect to , , solving the subprob-
lems (75) has a higher computational complexity than solving
the GP problem (64)–(69). Thus, in practice, the successive GP
approach should be used.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
algorithms. In the simulations, all channel matrices have i.i.d.
complex Gaussian entries with zero-mean and variances
for , . All simulation results are averaged over
1000 independent channel realizations. Unless mentioned ex-
plicitly, we set , .

In the first example, we compare the performance of the suc-
cessive GP approach and the dual decomposition technique. We
simulate a 2-hop relay system with

, . The MSE requirement at each data stream is
set to be identical, i.e., , . Table V shows
the performance of both approaches in terms of total transmis-
sion power (dB) versus MSE for the linear MMSE receiver
and the nonlinear MMSE-DFE receiver. It can be seen that the
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TABLE V
EXAMPLE 1: COMPARISON OF THE SUCCESSIVE GP AND THE DUAL DECOMPOSITION APPROACHES; � � �, � � �

TABLE VI
EXAMPLE 3: POWER ALLOCATION AMONG THE FIRST THREE NODES; � � �, � � �, � � � � � � �

Fig. 1. Example 2: Total power versus MSE ���; � � �, � � �, � � � �
� � �.

Fig. 2. Example 3: Total power versus MSE ���; � � �, � � �, � � � �
� � �.

dual decomposition technique is only slightly better than the
successive GP approach. Since the former approach provides a
lower-bound and the latter approach establishes an upper-bound
for the system performance, the results in Table V indicate that
both bounds are tight. Thus, either of the approaches can be

applied to solve the original optimization problem. In the fol-
lowing examples, for clarity, we only show the performance of
the successive GP approach.

In the second example, we compare the performance of
MIMO relay systems with the linear MMSE receiver, MIMO
relay systems using the nonlinear MMSE-DFE receiver, and
MIMO relay systems with the suboptimal scheme (38)–(40).
We choose , , and identical MSE requirement at
all streams. Fig. 1 shows the total transmission power required
by three systems versus MSE. From Fig. 1 we find that the
system using the nonlinear MMSE-DFE receiver requires much
less total transmission power than that using the linear MMSE
receiver, especially at low MSEs.

In the third example, we simulate a 3-hop MIMO
relay system with and . From Fig. 2
we see that compared with , the total power required by
all three systems increases. This is expected, since for nonre-
generative relay systems, noises at all relay nodes are ampli-
fied and superimposed at the destination node. Thus, in order
to achieve the same MSE, a three-hop relay system requires
more total transmission power than a two-hop system. We also
observe from Fig. 2 that the relay system using the nonlinear
MMSE-DFE receiver has the best performance in terms of the
required total transmission power. For this example, the optimal
power allocation (dB) among the first three nodes (the source
node and two relay nodes) is listed in Table VI. It can be seen
from Table VI that for both the linear MMSE and the nonlinear
MMSE-DFE receivers, each node gets approximately the same
amount of power.

To study the effects of unequal weighting coefficients to the
power allocation among different nodes, we simulate the same
three-hop MIMO relay system with , , and

in the objective functions (10) and (45). The power
(dB) consumed by the first three nodes is listed in Table VII.
Compared with Table VI, it can be seen from Table VII that the
node with a larger coefficient (i.e., node 1) consumes less trans-
mission power, while the node having a smaller coefficient (i.e.,
node 3) requires more transmission power.

A 3-hop MIMO relay system with different QoS require-
ment at each stream is simulated in our fourth example. We set

and . The total power
required by three systems is displayed in Fig. 3. It can be seen
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TABLE VII
EXAMPLE 3: POWER ALLOCATION AMONG THE FIRST THREE NODES; � � �, � � �, � � ��, � � �, � � ���

Fig. 3. Example 4: Total power versus MSE ���; � � �, � � �, � � ���,
� � ���, � � �.

that due to the stricter MSE constraints for the first two streams,
all systems require more power than those in the third example.
Similar to previous examples, the system using the nonlinear
MMSE-DFE receiver requires the least amount of power. We
also observe from Fig. 3 that the gap of the required power be-
tween the system with the linear MMSE receiver and the subop-
timal scheme becomes smaller when the streams have different
QoS requirement. This is due to the fact that the amount of per-
formance gap between two algorithms depends on the difference
in the feasible regions of the optimization problems (38)–(40)
and (21)–(23) for two algorithms. When all data streams have
identical QoS constraints, such difference is quite big. The fea-
sible region difference becomes smaller when each data stream
has a different QoS constraint as in this example1.

From Figs. 1–3, we find that the system using the
MMSE-DFE receiver requires less total transmission power
than the system with the linear MMSE receiver. A similar
performance difference can be expected if the QoS constraints
are imposed upon the rate/BER of each data stream. The
reason is that as we mentioned, the rate/BER of each stream
can be directly represented as a function of the MSE of each
stream, and thus, the rate/BER constraint at each stream can be
equivalently converted to the MSE constraint at each stream.
However, if the QoS constraint is imposed upon the sum-rate
of all data streams, both systems require the same amount of
total transmission power. This is due to the fact that when the
sum-rate is used as the design metric, the optimal source pre-

1As an intuitive explanation, for any � � �, the difference between two
regions � � ��	 
 	 ��� � 	 � �
 � � 	 
 	 	 	 � ��� and
� � ��	 
 	 ��� � 	 � �
 � � 	 � �� is bigger than that of two
regions � � ��	 
 	 ��� � 	 � ���
 � � 	 
 	 	 	 � ����� and
� � ��	 
 	 ��� � 	 � ���
 � � 	 � ��.

coding matrix, the optimal relay amplifying matrices, and the
optimal feed-forward matrix of the nonlinear MMSE-DFE
receiver jointly diagonalize the multihop MIMO relay channel,
and thus, the linear MMSE and the nonlinear MMSE-DFE
receivers have exactly the same performance.

From Figs. 1–3, we also see that both the system using
the linear MMSE receiver and the system with the nonlinear
MMSE-DFE receiver tremendously outperform the subop-
timal scheme. However, the suboptimal scheme has a smaller
computational complexity than the former two schemes. Such
performance-complexity tradeoffs provide flexibility in prac-
tical MIMO relay systems.

V. CONCLUSION

We derived the optimal structure of source and relay matrices
for multihop MIMO relay systems with QoS constraints using
the linear MMSE receiver and the nonlinear MMSE-DFE re-
ceiver at the destination node, respectively. The successive GP
approach and the dual decomposition technique were used to
solve the optimization problem. We found that at the same MSE
level, the MIMO relay system using the nonlinear MMSE-DFE
receiver requires much less total transmission power than the
system with the linear MMSE receiver.

APPENDIX A
PROOF OF THEOREM 1

The following four lemmas are required to prove Theorem 1.
Lemma 1 [19, 9.H.2]: For complex matrices

, let , then
, where , and , , denote

vectors containing the singular values of and arranged in
the same order, respectively, and denotes the Schur (element-
wise) product of two vectors.

Lemma 2 [19, 9.B.1]: For a Hermitian matrix with the
vector of its main diagonal elements and the vector of its
eigenvalues , it follows that .

Lemma 3 [19, 5.A.9.a]: For two vectors and with
, there exists a vector such that and .

Lemma 4 [19, 9.H.1.h]: For two positive semidef-
inite matrices and with eigenvalues and ,

, arranged in the same order, respectively, it follows
that .

Now we set out to prove Theorem 1 by first considering the
constraint (11). Let us define

(77)

(78)

and write , as the eigende-
composition of , where is an diagonal ma-
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trix containing all nonzero eigenvalues of sorted in the de-
creasing order for all , and is the associated
matrix of eigenvectors. From (77) and (78), we have

(79)

(80)

where is an unitary matrix, , , are
semi-unitary matrices with . It will be

seen that the objective function (10) is invariant to and ,
. Substituting (79) and (80) into

(81)

we have

(82)

Applying Lemma 1 to in (82), we have

(83)

where is a diagonal matrix given by

(84)

Applying the matrix inversion lemma to (9), the MMSE ma-
trix can be written as

(85)

From (83) and (85) we obtain

(86)

In (86), is obtained at
, , where stands for an arbitrary

diagonal matrix with unit-norm main diagonal elements, i.e.,
. Without

affecting , we choose , .
For any given , there exists an unitary ma-

trix such that is diagonal. In other
words, there exists such that the rotated
MMSE matrix is diagonal. Using
and , the original MMSE matrix is equal to

. The objective function (10) is
same for and , and can be written as

(87)

Now the problem (10)–(11) can be equivalently written as

(88)

(89)

(90)

Note that the steps of (87)–(90) are also used in [15] for
single-hop MIMO communication systems. From Lemma 2 we
know that

(91)

Based on Lemma 3 and (90), (91), a matrix satisfying the
QoS constraint (90) can be found if and only if

(92)

Interestingly, combining (86) and (92), we find that for all
that satisfy (92), the following inequality also holds

(93)

In other words, (93) has a relaxed feasible region than that of
(92). Since (92) is equivalent to (90), we can replace the con-
straint (90) by (93) without increasing the value of the objective
function (88).

Now we set out to consider the objective function (88). First,
we introduce some notations: for , ,

, where and contain the left
singular vectors of associated with the nonzero and zero
singular values of , respectively, is a diagonal matrix
containing the nonzero singular values of , contains the
largest singular values of sorted in the same order as
the diagonal elements of . We also define ,
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. Substituting the SVD of in (12) into (79) and
left multiplying by on both sides, we have

(94)
Obviously, (94) is true if and only if
and has the following minimum norm solution

(95)

Similar to (94) and (95), from (80), we have that for
, and

(96)

Since , , , and , , result in
the same objective function (88), to determine in (95) and

in (96), , we substitute (95) and (96) into the
objective function (88) and have

(97)

We note that the transmission power (97) is invariant to
and , . Using Lemma 4, we know that

under , (97) is minimized if and only if
, , and the minimum

is . Without loss of generality, we choose
. Therefore, we have , . From

(95) we find that

(98)

Note that will be determined later. Together with
, we obtain from (96) that

(99)

Thus, the optimal structure of , , is given by (13)
with .

Finally, substituting (98) and (99) back into (81), we have
. Thus we obtain

. In order for the constraint (89) to hold,

should be . From (98), we obtain .
Thus we have proved that the optimal structure of is as in (13)
with . Consequently, using the optimal structure
of , , in (84) can be represented as

(100)

where and are diagonal matrices with
the diagonal elements , given by

and ,
respectively.

APPENDIX B
PROOF OF THEOREM 2

The following two lemmas are required to prove Theorem 2.
Lemma 5 [19, 9.H.1.b]: For complex matrices

, let , then
, where , and , , are defined in

Lemma 2.
Lemma 6 [10]: For two vectors and , if ,

then .
Let us introduce the SVD , where the

dimensions of , , are , , ,
respectively. We assume that the main diagonal elements of
are arranged in the decreasing order. Since ,
we also have , where ,

, . From (44) we have

where . Let us write the generalized tri-
angular decomposition (GTD) [28] of as

(101)

where is an semi-unitary matrix with
, and is an unitary matrix. It can be

shown from [28] that (101) holds if and only if ,
where is a column vector containing singular values of .
Without affecting the power constraints, we take ,
or equivalently

(102)

Then we can write the QR decomposition of as

(103)

Because and have the same singular values, from (101)
and (103) we know that the constraint (46) can be equivalently
written as

(104)

Applying Lemma 5 to (82) and taking into account that
, , we obtain that

(105)

where is a column vector containing all eigenvalues of .
Applying Lemma 6 to (105), we have

(106)
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where denotes the eigenvalue of and denotes the
th element of . From (44), we can write

(107)

where the matrix inversion lemma is applied to obtain the
second equation. From (107), we find that

, where is the singular
value of . Using (106) we obtain

. Moreover, since (104) is

equivalent to , we have

(108)

We would like to mention that for all and that satisfy
(104), inequality (108) also holds. In other words, (108) has a
relaxed feasible region than that of (104). Since (104) is equiva-
lent to (46), we can replace the constraint (46) by (108) without
increasing the value of the objective function (45). Moreover,

from (82) we see that holds

at , . Without affecting the objective
function (45), we choose , .

Now let us consider the objective function (45). In a way sim-
ilar to (94), (95), (97), (98), by solving (79), we obtain the op-
timal as

Note that does not affect . In fact, should be chosen
as in (102) such that the QR decomposition of in (103)

holds. Thus , and we have proved that

the optimal structure of is as in (48) with . In
a way similar to (96), (97), (99), we obtain the optimal ,

as (99). Thus, we have proved that the optimal structure
of is as in (48) with .

The constraint (47) is equivalent to , which
indicates that . From (108) we have

(109)

Finally, by applying (48) to in (109) we obtain (50).

REFERENCES

[1] X. Tang and Y. Hua, “Optimal design of nonregenerative MIMO wire-
less relays,” IEEE Trans. Wireless Commun., vol. 6, pp. 1398–1407,
Apr. 2007.

[2] Z. Fang, Y. Hua, and J. C. Koshy, “Joint source and relay optimization
for a nonregenerative MIMO relay,” in Proc. IEEE Workshop on Sens.
Array and Multi-Channel Signal Process., Waltham, WA, Jul. 2006,
pp. 239–243.

[3] O. Muñoz-Medina, J. Vidal, and A. Agustín, “Linear transceiver design
in nonregenerative relays with channel state information,” IEEE Trans.
Signal Process., vol. 55, pp. 2593–2604, Jun. 2007.

[4] I. Hammerström and A. Wittneben, “Power allocation schemes for am-
plify-and-forward MIMO-OFDM relay links,” IEEE Trans. Wireless
Commun., vol. 6, pp. 2798–2802, Aug. 2007.

[5] W. Guan and H. Luo, “Joint MMSE transceiver design in nonregenera-
tive MIMO relay systems,” IEEE Commun. Lett., vol. 12, pp. 517–519,
Jul. 2008.

[6] A. S. Behbahani, R. Merched, and A. M. Eltawil, “Optimizations of
a MIMO relay network,” IEEE Trans. Signal Process., vol. 56, pp.
5062–5073, Oct. 2008.

[7] Y. Rong, “Linear nonregenerative multicarrier MIMO relay communi-
cations based on MMSE criterion,” IEEE Trans. Commun., vol. 58, pp.
1918–1923, Jul. 2010.

[8] Y. Rong, X. Tang, and Y. Hua, “A unified framework for optimizing
linear nonregenerative multicarrier MIMO relay communication sys-
tems,” IEEE Trans. Signal Process., vol. 57, pp. 4837–4851, Dec. 2009.

[9] Y. Rong and Y. Hua, “Optimality of diagonalization of multihop
MIMO relays,” IEEE Trans. Wireless Commun., vol. 8, pp. 6068–6077,
Dec. 2009.

[10] Y. Rong, “Optimal linear nonregenerative multihop MIMO relays
with MMSE-DFE receiver at the destination,” IEEE Trans. Wireless
Commun., vol. 9, pp. 2268–2279, Jul. 2010.

[11] S. Yeh and O. Lévêque, “Asymptotic capacity of multilevel amplify-
and-forward relay networks,” in Proc. IEEE ISIT, Nice, France, Jun.
2007, pp. 1436–1440.

[12] S. Yang and J.-C. Belfiore, “Diversity of MIMO multihop relay chan-
nels,” IEEE Trans. Inf. Theory [Online]. Available: http://arxiv.org/PS_
cache/arxiv/pdf/0708/0708.0386v1.pdf. 2, submitted for publication

[13] N. Fawaz, K. Zarifi, M. Debbah, and D. Gesbert, “Asymptotic capacity
and optimal precoding strategy of multilevel precode and forward in
correlated channels,” in Proc. IEEE ITW, Porto, Portugal, May 2008,
pp. 209–213.

[14] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[15] D. P. Palomar, M. A. Lagunas, and J. M. Cioffi, “Optimum linear joint
transmit-receive processing for MIMO channels with QoS constraints,”
IEEE Trans. Signal Process., vol. 52, pp. 1179–1197, May 2004.

[16] Y. Jiang, W. Hager, and J. Li, “Tunable channel decomposition for
MIMO communications using channel state information,” IEEE Trans.
Signal Process., vol. 54, pp. 4405–4418, Nov. 2006.

[17] D. P. Palomar and Y. Jiang, MIMO Transceiver Design via Majoriza-
tion Theory. New York: Now, 2007.

[18] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cilffs, NJ: Prentice-Hall, 1993.

[19] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
its Applications. New York: Academic, 1979.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[21] C. S. Beightler and D. T. Philips, Applied Geometric Programming.
New York: Wiley, 1976.

[22] M. Chiang, Geometric Programming for Communication Systems.
New York: Now, 2005.

[23] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE J. Sel. Areas. Commun., vol.
24, pp. 1439–1451, Aug. 2006.

[24] The MOSEK Optimization Toolbox for MATLAB Manual. Version 5.0
[Online]. Available: http://www.mosek.com

[25] D. P. Bertsekas, Nonlinear Programming, Second ed. Belmont:
Athena Scientific, 1995.

[26] P. Lioliou and M. Viberg, “Least-squares based channel estimation for
MIMO relays,” in Proc. IEEE WSA 2008, Darmstadt, Germany, Feb.
2008, pp. 90–95.

[27] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[28] Y. Jiang, W. Hager, and J. Li, “The generalized triangular decomposi-
tion,” Math. Computat., vol. 77, pp. 1037–1056, Apr. 2008.



RONG: MULTIHOP NONREGENERATIVE MIMO RELAYS 303

Yue Rong (S’03-M’06) received the B.E. de-
gree from Shanghai Jiao Tong University, China, the
M.Sc. degree from the University of Duisburg-Essen,
Duisburg, Germany, and the Ph.D. degree (summa
cum laude) from Darmstadt University of Tech-
nology, Darmstadt, Germany, all in electrical
engineering, in 1999, 2002, and 2005, respectively.

From April 2001 to October 2001, he was a Re-
search Assistant with the Fraunhofer Institute of Mi-
croelectronic Circuits and Systems, Duisburg, Ger-
many. From October 2001 to March 2002, he was

with Nokia Ltd., Bochum, Germany. From November 2002 to March 2005, he
was a Research Associate with the Department of Communication Systems,
University of Duisburg-Essen. From April 2005 to January 2006, he was with

the Institute of Telecommunications, Darmstadt University of Technology, as
a Research Associate. From February 2006 to November 2007, he was a Post-
doctoral Researcher with the Department of Electrical Engineering, University
of California, Riverside. Since December 2007, he has been with the Depart-
ment of Electrical and Computer Engineering, Curtin University of Technology,
Perth, Australia, where he is now a Senior Lecturer. His research interests in-
clude signal processing for communications, wireless communications, wireless
networks, applications of linear algebra and optimization methods, and statis-
tical and array signal processing.

Dr. Rong received the 2001–2002 Graduate Sponsoring Asia scholarship of
DAAD/ABB (Germany) and the 2004 Chinese Government Award for Out-
standing Self-Financed Students Abroad (China).


