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Abstract— In this paper, three main criteria for the adap-
tive beamformer design are discussed: maximal signal-to-
interference-plus-noise ratio (MSINR), minimal mean-squared
error (MMSE), and minimal least-square error (MLSE). Al-
though in the case of exactly known power and steering vector
of the signal-of-interest (SOI), there are beamformers that can
simultaneously meet the MMSE and MSINR criteria, this is no
longer true when the exact knowledge of the steering vector is
unavailable. To account for steering vector errors, a meaningful
approach is to model the actual steering vector as random. In
this paper, it is shown that in the latter case, the MMSE and
MSINR criteria can not be simultaneously attained. We study
the achievable region in the MSE-SINR plane and propose a
new adaptive beamformer that can attain a frontier of operating
points on the boundary of this region and, therefore, provide
an optimal performance tradeoff among the MSINR and MMSE
criteria. It is also shown that in the random steering vector case,
the MLSE and MSINR criteria are simultaneously achievable
and a new adaptive beamformer is proposed that satisfies both
these criteria.

I. INTRODUCTION

In many applications such as radar and sonar, the main
criterion for beamformer design is to maximize the output
signal-to-interference-plus-noise ratio (SINR). This class of
beamformers is called maximal SINR (MSINR) techniques
[1]. However, maximizing SINR does not necessarily guar-
antee an acceptably good estimate of the signal waveform
[2]. Note that in many applications, it is more important to
minimize the signal estimation error rather than maximize the
SINR. For example, in digital communications the quality of
estimating the amplitude and phase of the received SOI is
crucial for the detection of the information-bearing symbols. In
such cases, minimal mean-squared error (MMSE) beamform-
ing is of great interest [2], [3]. Unfortunately, the signal power
needs to be known for the MMSE beamformer design, and in
many practical applications this knowledge may be difficult
to obtain. To avoid this difficulty, minimal least-square error
(MLSE) beamformers can be applied [2]. MLSE beamformers
are based on minimizing the LSE of the array observations,
and do not require any knowledge of the signal power.

An “ideal” beamforming approach should meet both the
MSINR and MMSE criteria, whenever possible. It is a well
known fact that if the SOI power and the steering vector are
known exactly, the MMSE beamformer also maximizes the
output SINR. If the signal power is unknown, then the MLSE
beamformer can be alternatively used. The latter beamformer

not only maximizes the SINR, but also asymptotically mini-
mizes the MSE in the high signal power case.

In practical applications, due to different reasons such as
signal pointing errors, imperfect array calibration, and en-
vironmental nonstationarities, errors between the actual and
the presumed steering vectors may occur [4]-[10]. A popular
approach to account for such errors is to model the actual
steering vector as random with known distribution [5]-[8].
In our paper, we assume that the actual steering vector is
Gaussian with known mean and covariance matrix. As will
be seen later, in this case the MMSE beamformer does not
maximize the output SINR. That is, the MMSE and MSINR
criteria can not be simultaneously achieved.

For the convenience of the following discussion, let us refer
to a plane whose two coordinates represent the values of MSE
and SINR as the MSE-SINR plane. In fact, any beamformer
is associated with a certain point on this plane. In the case of
a random steering vector, we show that not all points on the
MSE-SINR plane are achievable. Clearly, such beamformers
are of interest that yield small MSE and large SINR, thereby
achieving a proper MSE-SINR tradeoff.

With such a motivation, a new beamformer is proposed that
provides an optimal MSE-SINR tradeoff by minimizing the
MSE subject to a given SINR constraint. In terms of the MSE-
SINR plane, the points corresponding to the proposed beam-
former form an optimal tradeoff curve which is the frontier
that divides the whole MSE-SINR plane into two parts that
contain achievable and non-achievable points, respectively.

The knowledge about the optimal tradeoff between the MSE
and SINR is quite important for practical applications where
the objective is to optimize a combination of these two criteria.
In what follows, it will be shown that such a beamformer can
be easily obtained using the optimal tradeoff curve.

As mentioned above, in the case of unknown signal power
the MLSE beamformer can be used instead of the MMSE
beamformer. It is proven that in the considered case of
random steering vector, the MLSE and MSINR criteria can be
simultaneously achieved and a new beamformer is proposed
that achieves both these criteria.

II. BACKGROUND

The M×1 observation vector of an M -sensor antenna array
at the time t is given by

y(t) = s(t)a + i(t) + v(t)
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where a is the SOI steering vector, s(t) is the SOI waveform,
and i(t) and v(t) are the interference and noise vectors,
respectively. In the sequel, we will omit the dependence of
t for notational simplicity.

In many practical applications, it is difficult to obtain
the information about the actual steering vector because of
pointing errors, imperfect array calibration, environmental
nonstationarities, etc. Many authors addressed the problem
of robust beamformer design when only a partial information
about the actual steering vector is available [4]-[10]. In this
paper, we consider the scenario where the SOI steering vector
is complex Gaussian distributed [5]-[7] with the mean m

and the covariance matrix C, that is, a ∼ CN (m,C). In
particular, the mean vector m corresponds to the perturbation-
free steering vector, while the covariance matrix C captures
uncertainties in this vector. We assume that m and C are
known and that C � 0.

The output of a narrow-band beamformer is given by

ŝ = wHy

where ŝ is the estimated signal waveform, w is the M × 1
weight vector, and (·)H stands for the Hermitian transpose.

The MSINR beamformer aims at maximizing the output
SINR. In the case of random steering vector, the expectation
of the output SINR with respect to a is given by

SINR = Ea

{ σ2
s |w

Ha|2

wHRi+nw

}
=

σ2
sw

HRaw

wHRi+nw
(1)

where σ2
s denotes the signal power, Ri+n = E{(i + v)(i +

v)H} represents the interference-plus-noise covariance matrix,
Ra = Ea{aaH} = (C + mmH) is the correlation matrix of
the steering vector, and Ea{·} denotes the statistical expecta-
tion with respect to the random vector a. Maximizing (1) with
respect to w, the weight vector of the MSINR approach can
be written as [1]

wMSINR = αP{R−1
i+nRa} (2)

where α is an arbitrary nonzero scalar and P{·} stands for
the principal eigenvector of a matrix. A common approach
to choose α is to use the minimum variance distortionless
response (MVDR) formulation of the MSINR problem:

min
w

wHRi+nw s.t. wHRaw = 1 . (3)

According to (3), the scalar α in (2) is given by

α =
(
P{R−1

i+nRa}
HRaP{R−1

i+nRa}
)−1/2

. (4)

Substituting (2) back into (1), the maximal output SINR can
be expressed as

SINRo = σ2
sλ{R−1

i+nRa} (5)

where λ{·} stands for the maximal eigenvalue of a matrix.
As mentioned above, maximizing the output SINR does not

necessarily lead to a good estimate of the signal waveform,
and in some cases it is more important to have the lowest
waveform estimation error than the highest SINR. In such

cases, the MMSE beamformer can be used. The MSE of the
signal waveform estimation for one realization of the steering
vector a is given by

E{|ŝ − s|2} = σ2
s |1 − wHa|2 + wHRi+nw (6)

where the expectation E{·} is defined with respect to the
random noise, interference, and the signal waveform. Using
(6), the expectation of (6) with respect to a is given by

MSE = Ea{σ
2
s |1 − wHa|2 + wHRi+nw}

= wH(Ri+n + σ2
sRa)w − 2Re{σ2

sw
Hm} + σ2

s (7)

where Re{·} denotes the real part. The MMSE beamformer
weight vector is obtained by minimizing (7) and can be
expressed as [2]

wMMSE = σ2
s(Ri+n + σ2

sRa)−1m . (8)

Substituting (8) back into (7), we obtain that the minimal MSE
is given by

MSEo = σ2
s − σ4

sm
H(Ri+n + σ2

sRa)−1m .

From (8), we can see that the knowledge of the signal
power is required in the MMSE beamformer. However, in
practice this knowledge may be difficult to obtain. To avoid
this difficulty, the MLSE approach can be applied. It minimizes
the LSE of the array observations and does not require any
knowledge of the signal power.

Assuming that the signal waveforms are independent at
different sampling times, the expectation of the LSE of a single
snapshot of the array observation with respect to a is given
by

LSE = Ea{(y − aŝ)HR−1
i+n(y − aŝ)}

= (y − mŝ)HR−1
i+n(y − mŝ) + ŝ2Tr{R−1

i+nC} . (9)

Differentiating (9) with respect to ŝ and equating to 0, we have
that

ŝ =
1

mHR−1
i+nm + Tr{R−1

i+nC}
mHR−1

i+ny .

Thus, the MLSE beamformer is

wMLSE =
1

mHR−1
i+nm + Tr{R−1

i+nC}
R−1

i+nm . (10)

Substituting (10) back into (9), the minimal LSE is given by

LSEo = yHR−1
i+ny −

|yHR−1
i+nm|2

mHR−1
i+nm + Tr{R−1

i+nC}
.

From (2), (8), and (10), it can be seen that, when the steering
vector is precisely known (i.e., C = 0), the MSINR, MMSE,
and MLSE beamformer weight vectors can be simplified to

wMSINR = α̃R−1
i+nm (11)

wMMSE =
σ2

s

1 + σ2
sm

HR−1
i+nm

R−1
i+nm (12)

wMLSE =
1

mHR−1
i+nm

R−1
i+nm (13)
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where α̃ is an arbitrary nonzero scalar. In the case of MVDR
beamformer, α̃ = 1/(mHR−1

i+nm). From (11)-(13) we can
see that these three weight vectors differ only in their scaling
factors. Therefore, when the steering vector and the signal
power are exactly known, we should choose the MMSE
beamformer, since it simultaneously minimizes the MSE and
maximizes the SINR. When the signal power is unknown,
we can use the MLSE beamformer, because it satisfies both
the MLSE and MSINR criteria. Moreover, comparing (12)
with (13) we have that the MLSE beamformer asymptotically
minimizes the MSE in the high signal power case.

III. PERFORMANCE TRADEOFFS

A. MMSE versus MSINR

Comparing (8) and (2), we see that when the steering vector
is random, the MMSE approach does not maximize the output
SINR. That is, the MMSE and MSINR criteria can not be
attained simultaneously. Since every beamformer results in a
certain MSE and SINR, it is associated with a point on the
MSE-SINR plane. Apparently, a beamformer providing good
MSE-SINR tradeoff should yield large SINR and small MSE.
However, these two objectives are contradictive to each other.
Therefore, not all points on this plane are achievable.

It is of interest to develop a beamformer which provides
an optimal MSE-SINR tradeoff. Such beamformer can, for
example, minimize the MSE subject to some given SINR
constraint. The MSE-SINR plane points associated with this
beamformer will form an optimal tradeoff curve which is the
frontier that divides the whole MSE-SINR plane into two parts.
All points on one part of the plane are achievable, while the
points on the other part can not be achieved.

Let us assume now that the signal power is known. The
weight vector of a beamformer which minimizes the MSE
subject to a SINR constraint can be formulated as the follow-
ing optimization problem

min
w

MSE s.t.
1

SINR
≤ γ (14)

where SINR and MSE are given by (1) and (7), respectively,
and γ is a given positive scalar. In order to have a feasible
optimization problem, γ should satisfy γ ≥ 1/SINRo, where
SINRo is given by (5).

Substituting (7) and (1) into (14), we have the following
optimization problem

min
w

wH(Ri+n + σ2
sRa)w − 2Re{σ2

sw
Hm} + σ2

s

s.t. wH(Ri+n − γσ2
sRa)w ≤ 0 . (15)

When γ = 1/SINRo, the problem (15) is equivalent to
the design of a beamformer that minimizes the MSE under
the maximal SINR constraint. The weight vector of such a
beamformer can be represented as w = cP{R−1

i+nRa}, where
c is a nonzero scalar that should be chosen to yield the minimal

MSE. Thus, the optimal c can be computed as

copt = arg min
c

wH(Ri+n + σ2
sRa)w

−2Re{σ2
sw

Hm} + σ2
s

∣∣∣
w=cP{R−1

i+n
Ra}

= arg min
c

t1c
2 + t2c + σ2

s

where

t1 � P{R−1
i+nRa}

H(Ri+n + σ2
sRa)P{R−1

i+nRa}

t2 � −2Re{σ2
sP{R−1

i+nRa}
Hm} .

Since t1 > 0, we have copt = −t2/2t1, and

w = −
t2
2t1

P{R−1
i+nRa} .

When γ > 1/SINRo, Ri+n − γσ2
sRa is an indefinite

matrix. Therefore, in general the problem (15) is a non-
convex optimization problem. However, there always exists
w satisfying wH(Ri+n − γσ2

sRa)w < 0. Therefore, the
optimization problem (15) is strictly feasible and belongs to
the class of quadratic optimization problems with a quadratic
constraint. It is known that these problems satisfy strong
duality even if they are not convex, provided that the problem
is strictly feasible [11], [12]. Hence, the solution to (15) exists
if and only if there exists µ ≥ 0 such that [11], [12][

Ri+n + σ2
sRa + µ(Ri+n − γσ2

sRa)
]
w = σ2

sm (16)

µwH(Ri+n − γσ2
sRa)w = 0 (17)

Ri+n + σ2
sRa + µ(Ri+n − γσ2

sRa) � 0 (18)

wH(Ri+n − γσ2
sRa)w ≤ 0 . (19)

If γ is larger than a certain threshold γt, then the inequality
(19) becomes inactive, i.e., wH(Ri+n−γσ2

sRa)w < 0. Then,
from (17) it follows that µ = 0. Substituting µ = 0 back into
(16), we obtain that such a beamformer is just the MMSE
beamformer given by (8). Moreover, the threshold γt can be
obtained by substituting (8) into wH(Ri+n−γtσ

2
sRa)w = 0,

and is given by

γt =
mH(Ri+n + σ2

sRa)−1Ri+n(Ri+n + σ2
sRa)−1m

σ2
sm

H(Ri+n + σ2
sRa)−1Ra(Ri+n + σ2

sRa)−1m
.

When γ ≤ γt, the beamforming vector w can be obtained in
the following way. For the notational simplicity, let us define

T � Ri+n + σ2
sRa + µ(Ri+n − γσ2

sRa) . (20)

If T � 0, from (16) we have that the optimal w is given by

w = σ2
sT

−1m . (21)

Comparing the beamformers (8) and (21), it can be seen that
they have a similar structure. In particular, the beamformer
(21) has an additional term µ(Ri+n − γσ2

sRa) with respect
to (8). This term is related to the variables µ and γ, and
reflects the effect of taking into account both the SINR and
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MSE criteria in our design. Moreover, when the actual steering
vector is known (i.e., C = 0), (21) can be simplified as

w =
σ2

s

(1 + µ) + (σ2
s − µσ2

sγ)mHR−1
i+nm

R−1
i+nm . (22)

It can be seen that (22) is only different from the beamformers
(11)-(13) by its scaling factor.

If T � 0 (but T is not positive definite), then from (16) we
have

w = w1 + Bw2 (23)

where w1 = σ2
sT

†m, B = null{T}, w2 is an (M −
rank{T}) × 1 vector, (·)† is the pseudo-inverse, and null{·}
denotes the null space of a matrix. Clearly, w2 should be
chosen so that (23) satisfies (17) and (19).

The remaining problem is to find the Lagrange multiplier µ
in (21) and (23). It can be obtained by solving the correspond-
ing dual optimization problem of (15). This dual problem can
be written as [11]

max
δ,µ

δ s.t.

[
T σ2

sm

σ2
sm

H σ2
s − δ

]
� 0, µ ≥ 0 . (24)

This is a convex semidefinite programming (SDP) problem
that can be solved using modern numerical optimization soft-
ware such as SeDuMi [13].

B. MLSE versus MSINR

Following the idea above, let us consider a beamformer
which minimizes the LSE under the SINR constraint

min
w

LSE s.t.
1

SINR
≤ γ (25)

where SINR and LSE are given by (1) and (9), respectively.
Substituting (1) and (9) into (25), we can express the latter

problem as

min
w

wH(mHR−1
i+nm + Tr{R−1

i+nC})yyHw

−2Re{yHR−1
i+nmwHy} + yHR−1

i+ny

s.t. wH(Ri+n − γσ2
sRa)w ≤ 0 . (26)

When γ > 1/SINRo, the problem (26) is strictly feasible
and w is the optimal solution of (26) if and only if there exists
µ ≥ 0 such that[

a1yyH + µ(Ri+n − γσ2
sRa)

]
w = a2y (27)

µwH(Ri+n − γσ2
sRa)w = 0 (28)

a1yyH + µ(Ri+n − γσ2
sRa) � 0 (29)

wH(Ri+n − γσ2
sRa)w ≤ 0 (30)

where

a1 � mHR−1
i+nm + Tr{R−1

i+nC} (31)

a2 � yHR−1
i+nm . (32)

It can be seen from (31) that a1 > 0.
Left-multiplying both sides of (27) with wH and using (28),

we have
wHy(a1y

Hw − a2) = 0 .

It is obvious that wHy �= 0 as, otherwise, the beamformer
output is zero. Therefore, the following equation should hold

a1y
Hw − a2 = 0 . (33)

Substituting (32) into (33), we obtain the following equation

yH(w −
1

a1
R−1

i+nm) = 0 . (34)

From (34), it can be seen that the optimal w has the following
form

w =
1

a1
R−1

i+nm + P⊥
y u (35)

where u is an arbitrary M × 1 vector, and P⊥
y = IM −

(yHy)−1yyH is the orthogonal projector onto the subspace
orthogonal to that spanned by y.

An important observation from our analysis is that, since the
beamformer (35) always minimizes the LSE, we can choose
u such that the corresponding beamformer also maximizes
the output SINR. Comparing the weight vector of the MSINR
beamformer of (2) with that of (35), we find that such a desired
u exists if and only if there is a pair of (β,u) such that

βP{R−1
i+nRa} =

1

a1
R−1

i+nm + P⊥
y u . (36)

Orthogonally projecting both sides of (36) onto the subspace
spanned by y and its orthogonal subspace, respectively, we
have

1

a1
PyR

−1
i+nm = βPyP{R−1

i+nRa} (37)

1

a1
P⊥

y R−1
i+nm + P⊥

y u = βP⊥
yP{R−1

i+nRa} (38)

where Py = (yHy)−1yyH is the orthogonal projector onto
the subspace spanned by y. From (37), we find that β is given
by

β =
yHR−1

i+nm

a1yHP{R−1
i+nRa}

. (39)

Substituting (39) back into (38), we obtain

P⊥
y u =

1

a1

[
yHR−1

i+nm

yHP{R−1
i+nRa}

P{R−1
i+nRa} − R−1

i+nm

]
.

(40)
Finally, substituting (39) and (40) back into (35), we obtain
the weight vector

w =
yHR−1

i+nm

a1yHP{R−1
i+nRa}

P{R−1
i+nRa} . (41)

Comparing the scalar of (39) with that of the MVDR
beamformer (see (4)), we obtain that the former scalar depends
on the snapshot value y, while the latter does not. Moreover,
if C = 0, then P{R−1

i+nRa} = R−1
i+nm, and in this case (41)

is equivalent to the MVDR beamformer.
The beamformer (41) can be useful in the case of a random

steering vector because it maximizes the output SINR and
minimizes the LSE of the array observations. In fact, (41)
provides a way to find the scaling coefficient of the MSINR
beamformer (2) such that the LSE is also minimized.
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Fig. 1. MSE-SINR tradeoff with SNR=20 dB and INR=0 dB.

IV. SIMULATIONS

Since the MLSE and MSINR criteria can be achieved
simultaneously by the beamformer (35), we only need to study
the tradeoffs between the MMSE and MSINR criteria. In
our simulations, a uniform linear array (ULA) with M = 5
antenna elements spaced half a wavelength apart is used. In all
examples, a random SOI steering vector is assumed. Its mean
vector is given by m = [0, ejπ sin θs , · · · , ej(M−1)π sin θs ]T ,
where θs is the nominal direction of arrival (DOA) of the SOI
that is set to be 30◦ from the broadside of the antenna array.
The interference is given by i(t) = aii(t) where i(t) is a zero
mean complex Gaussian process, and ai is the interference
steering vector. We set ai =[0, ejπ sin θi , · · · , ej(M−1)π sin θi ]T

and θi = −30◦ from the broadside of the antenna array.
In each example, the results are averaged over 104 inde-

pendent simulation runs. In each simulation run, the actual
SOI steering vector a is generated by adding to m a complex
circular Gaussian distributed random vector with zero mean
the covariance matrix C = 0.7IM . In each run, the MSE and
the output SINR are averaged over L = 104 data realizations
and are calculated respectively as

MSE =
1

L

L∑
t=1

|wHy(t) − s(t)|2 (42)

SINR =
1

L

L∑
t=1

|wHas(t)|2

|wH(i(t) + v(t))|2
. (43)

Throughout all our examples, we assume that the required
quantities such as the interference-plus-noise covariance ma-
trix Ri+n and the signal power σ2

s are exactly known. In
particular, Ri+n is calculated without the presence of the
signal component, and is given by Ri+n = σ2

i aia
H
i + σ2

vIM ,
where σ2

i and σ2
v denote the interference and noise powers,

respectively.
In the first example, we simulate a low interference-to-noise

ratio (INR) scenario where the signal-to-noise ratio (SNR) is
20 dB and INR is 0 dB in a single antenna element. Fig. 1
compares the theoretical and simulated MSE-SINR tradeoff
curves. The theoretical MSE and SINR are calculated using

1 1.1 1.2 1.3 1.4 1.5
0.998

1

1.002

1.004

1.006

1.008

1.01

SINRo/SINR

M
SE

/M
SE

o

Simulation Results
Theoretical Analysis

Fig. 2. MSE-SINR tradeoff with SNR=20 dB and INR=15 dB.

(7) and (1), while the simulation results are obtained using (42)
and (43), respectively. The beamformer (15) has been used to
obtain the simulation points.

In the second example, we consider a high INR scenario
with SNR=20 dB and INR=15 dB in a single antenna element.
For these parameters, Fig. 2 displays the similar curves as
shown in Fig. 1. From both these figures it can be seen that our
numerical and theoretical results have a very good coincidence.
It is also worth noting that the shape of the tradeoff curves
depends on the particular scenario parameters, such as INR.
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