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Abstract— Impulsive noise can greatly affect the performance
of underwater acoustic (UA) orthogonal frequency-division mul-
tiplexing (OFDM) systems. In this paper, by utilizing the sparsity
of the UA channel impulse response and impulsive noise, we first
propose a novel sparse Bayesian learning (SBL) based expectation
maximization (EM) algorithm for joint channel estimation and
impulsive noise mitigation in UA OFDM systems. Secondly,
considering that the UA channel and impulsive noise are fast
time-varying, we develop a new approach which combines the
SBL with the forward-backward Kalman filtering to track
the UA channel and impulsive noise. To further improve the
system performance, we utilize the information available on data
subcarriers for joint time-varying channel estimation and data
detection, based on the SBL algorithm and the Kalman filter.
The performance of our proposed algorithms is verified through
both numerical simulations and by data collected during a UA
communication experiment conducted in the estuary of the Swan
River, Perth, Australia. The results demonstrate that compared
with existing approaches, the proposed algorithms achieve a
better system bit-error-rate and frame-error-rate performance.

Index Terms— Kalman filter, impulsive noise, OFDM, sparse
Bayesian learning, underwater acoustic communication.

I. INTRODUCTION

IT IS well known that the underwater acoustic (UA) chan-
nel is one of the most challenging channels for wireless

communication because of severe fading, extremely limited
bandwidth, significant Doppler spread, and strong multipath
interference [1]. In the past decades, the orthogonal frequency-
division multiplexing (OFDM) technology has been applied
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to mitigate the inter-symbol interference (ISI) in high-rate
UA communication systems [2]. However, impulsive noise
introduced by human activities and natural sources can greatly
affect the performance of UA OFDM systems [3]–[5]. Thus,
it is essential to estimate and mitigate impulsive noise in UA
communication systems.

One type of commonly used impulsive noise mitigation
methods firstly find the samples of the received signals
possibly contaminated by impulsive noise through threshold
testing, and then use nonlinear blanking or clipping methods to
adjust impulsive noise dominated samples [6]–[8]. However,
these methods may destroy the received signals. Moreover,
a fixed threshold is usually used in these methods which is
not adaptive to the time-varying received signals and noise.
Another type of impulsive noise reduction techniques utilize
the structure of OFDM signals and the sparsity of impulsive
noise [9]–[15]. Recently, a joint channel estimation and impul-
sive noise mitigation method has been proposed in [16], which
has an improved performance compared with traditional least-
squares (LS) based channel estimation methods and blanking
based impulsive noise mitigation approaches.

In this paper, we study joint channel and impulsive noise
estimation and tracking in UA OFDM systems. The con-
tributions of this paper over existing works [9]–[16] are
summarized below.

• The performance of existing algorithms on UA chan-
nel and impulsive noise estimation (eg. [12] and [15])
degrades in low signal-to-noise ratio (SNR) and/or highly
impulsive noise environments. To improve the perfor-
mance of the estimator in these environments, we propose
a sparse Bayesian learning (SBL) [17] based expectation
maximization (EM) algorithm to jointly estimate the
sparse UA channel impulse response and the impulsive
noise, by utilizing the received signals at the pilot sub-
carriers.

• Different to existing works in [11]–[16], we explicitly
consider that the UA channel and impulsive noise are fast
time-varying and develop a new algorithm to track the
UA channel and impulsive noise by combining the SBL
approach with the forward-backward Kalman filtering.
This new algorithm has not been presented in [11].
Compared with conventional Kalman filtering, the pro-
posed algorithm exploits the sparsity of the UA channel
and impulsive noise during tracking [18]. Moreover, the
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proposed UA channel tracking algorithm is more general
compared with [18].

• The existing works [11]–[14] only use pilot subcarriers to
estimate the channel and the impulsive noise. Considering
the limited number of pilot subcarriers in UA OFDM
systems, to further improve the system performance,
we propose a new joint channel estimation and data
detection algorithm based on the SBL method where the
information available on all subcarriers is utilized for a
more accurate channel and impulsive noise estimation.

• The method above using all subcarriers is further
extended to jointly detect the data and track the time-
varying UA channel and impulsive noise based on the
SBL algorithm and the Kalman filter.

• The proposed algorithms are assessed and compared with
existing methods through both numerical simulations
and by real data recorded during a UA communication
experiment conducted in the estuary of the Swan River,
Perth, Australia. Both simulation and experiment results
demonstrate that compared with existing approaches,
the proposed algorithms are more effective in mitigating
the impulsive noise in UA OFDM systems, and achieve
an improved system bit-error-rate (BER) and frame-error-
rate (FER) performance.

We would like to note that SBL has been used in [19]
for impulsive noise mitigation in powerline communications.
Recently, SBL has been applied for channel estimation in
OFDM systems [20], multiple-input multiple-output (MIMO)-
OFDM systems [21], millimeter wave hybrid MIMO sys-
tems [22], and UA OFDM systems [23]. It has been shown
in [19]– [23] that the SBL-based approaches perform better
than traditional compressed sensing based algorithms in sparse
channel environments. However, [19]–[23] only perform either
channel estimation or impulsive noise mitigation separately.
To the best of our knowledge, SBL is applied for the first time
in this paper on joint channel and impulsive noise estimation
and tracking in UA OFDM systems.

The rest of this paper is organized as follows. The model
of a UA OFDM system is shown in Section II. The proposed
joint channel and impulsive noise estimation and tracking
algorithms are developed in Section III. Numerical simulation
and river experiment results are presented in Section IV and
Section V, respectively. We draw conclusions in Section VI.

II. SYSTEM MODEL

We study a coded frame based UA OFDM system with
Nc subcarriers [16], which contains Ns subcarriers for data
transmission, Np uniformly spaced pilot subcarriers and Nu

null subcarriers at edges of the passband. The Nc subcarriers
are located at the frequencies of

fk = fc +
k

T
, k = −Nc

2
+ 1, . . . ,

Nc

2
where fc is the center carrier frequency and T is the length
of one OFDM symbol. At the transmitter, an Lb long binary
source data stream b is encoded, interleaved, and (possibly)
punctured to generate a coded bit sequence c with a length
of Lc = RmNsNb, where Rm is the modulation order and

Nb is the number of OFDM symbols in one data frame. Then
the coded bit sequence c is mapped into NsNb data symbols
by either the phase-shift keying (PSK) or the quadrature
amplitude modulation (QAM) constellations. The bandwidth
of the OFDM symbols is B = Nc/T . To prevent the ISI
caused by multipath fading, the transmitter inserts a cyclic
prefix (CP) with the length of Tcp to each OFDM symbol.
Thus, the passband transmitted signal in one OFDM block
can be presented as

x̃(t)

=

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

2Re

⎧⎨
⎩

ej2πfct

√
Nc

Nc
2�

k=− Nc
2 +1

d[k+
Nc

2
]ej2π k

T
t

⎫⎬
⎭ , 0 ≤ t ≤ T ;

x̃(t + T ), −Tcp≤ t <0
(1)

where Re{·} denotes the real part of a complex number, d[n],
n = 1, . . . , Nc, is the symbol of the nth subcarrier.

We adopt the following commonly applied assumptions on
UA channels [15], [24], [25]

1) The delay of the ith path is a first order function of t as
τi(t) = τi − at, where a is the Doppler scaling factor.
All paths have the same Doppler scaling factor during
one OFDM block.1

2) The gain of the ith path remains constant during one
OFDM block as Ai(t) = Ai.

Thus, the impulse response of the time-varying UA channel
can be expressed as

h(t) =
L�

i=1

Aiδ(t − (τi − at)) (2)

where L is the number of paths and δ(·) denotes the Dirac
delta function. From (2), the passband signal received through
the UA channel can be written as

r̃(t) =
L�

i=1

Aix̃((1 + a)t − τi) + ṽ(t) + w̃(t) (3)

where ṽ(t) and w̃(t) are the impulsive noise and the back-
ground Gaussian noise at the passband, respectively.

By cross-correlating r̃(t) with the known preamble block in
a data frame, the time duration of one received data frame T̂rx

can be estimated. Then by comparing T̂rx with the known time
duration of one transmitted data frame Ttx, the Doppler scaling
factor can be estimated as â = T̂rx

Ttx
−1. The received signal is

resampled with â. Then after removing the CP, downshifting,
and low-pass filtering (LPF), the baseband received signal can

1Under the assumption of an identical Doppler scaling factor for all paths,
the inter-carrier interference (ICI) can be compensated after resampling with
the estimated Doppler scaling factor. When this is not the case, part of useful
signals will be treated as additive noise due to the presence of the ICI, which
can increase the overall noise variance. Alternatively, a more complex receiver
needs to be developed, which has been shown in [26] and [27], to deal with
path-specific Doppler scaling factors.
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be obtained from (1) and (3) as2

r(t) = LPF


r̃

�
t

1 + â

�
e−j2πfct



≈ ej2πΔf t

√
Nc

Nc
2�

k=− Nc
2 +1

�
d
�
k+

Nc

2

�
ej2π k

T t
L�

i=1

Aie
−j2πfkτi

�

+v(t) + w(t) (4)

where Δf = a−â
1+â fc is the carrier frequency offset (CFO) intro-

duced by the Doppler shift, v(t) and w(t) are the baseband
impulsive noise and background Gaussian noise, respectively.
Similar to [15, p. 8192] and [24, p. 200], (4) is obtained by
approximating ej2π k

T (1+a)t/(1+â) as ej2π k
T t, as a is very close

to â. By sampling the baseband received signal r(t) at the rate
of 1/B, the discrete time samples of one OFDM symbol can
be obtained from (4) as

rt[n] =
ej2πΔf n/B

√
Nc

Nc
2�

k=−Nc
2 +1

d
�
k+

Nc

2

�
ej2π kn

Nc h
�
k+

Nc

2

�

+vt[n] + wt[n], n = 1, . . . , Nc (5)

where h[n] =
�L

i=1 Aie
−j2πτif

n− Nc
2 , n = 1, . . . , Nc, is the

channel frequency response at the nth subcarrier. Hereafter,
the subscript “t” is used to denote samples obtained in the
time-domain. The matrix-vector form of (5) is given by

rt = Ψ(Δf )FHDh + vt + wt (6)

where (·)H stands for the Hermitian transpose, F is an Nc×Nc

normalized discrete Fourier transform (DFT) matrix with the
(n, k)th element of 1/

√
Nce

−j2πn(k−Nc/2), and

Ψ(Δf ) = diag(ej2πΔf /B , . . . , ej2πΔf Nc/B)
D = diag(d[1], . . . , d[Nc])
rt = (rt[1], . . . , rt[Nc])T

vt = (vt[1], . . . , vt[Nc])T

wt = (wt[1], . . . , wt[Nc])T

h = (h[1], . . . , h[Nc])T.

Here diag(·) stands for a diagonal matrix and (·)T denotes the
matrix transpose.

To obtain an accurate estimation of the channel impulse
response and the impulsive noise, the CFO Δf needs to be
properly estimated and compensated [15], [24]. In this paper,
we apply the “clipping-blanking and Doppler” method in [15]
to estimate and compensate Δf by using the null subcarriers.
After the CFO estimation and compensation, the residual CFO
is very small. We will show in Section IV-B and Section V-A
that such small residual CFO has negligible influence on the
system performance.

After the CFO compensation and omitting the residual CFO,
from (6), the time domain and frequency domain received
signal vectors are given respectively by

rt = FHDFht + vt + wt (7)

r = Dh + v + w (8)

2We assume that there is no phase offset between the transmitter and receiver
carriers.

where ht = FHh denotes the time domain channel impulse
response, v = Fvt, and w = Fwt.

III. THE PROPOSED ALGORITHMS

In this section, we propose the following new algorithms
based on the SBL framework and the Kalman filter to jointly
estimate the UA channel and impulsive noise.

1) By exploiting the sparsity of the UA channel impulse
response and the impulsive noise, we propose a novel
SBL based channel and impulsive noise estimation algo-
rithm using the pilot subcarriers.

2) Considering that the UA channel and impulsive noise are
time-varying, we develop a new algorithm to track the
time-varying UA channel and impulsive noise by com-
bining the SBL algorithm with the forward-backward
Kalman filtering utilizing the pilot subcarriers.

3) Noting the above algorithms only use pilot subcarriers,
we propose a novel algorithm for joint channel and
impulsive noise estimation and data detection by exploit-
ing all subcarriers.

4) Combining the advantages of the algorithms above,
we propose a new algorithm for joint time-varying
channel and impulsive noise tracking and data detection
by employing all subcarriers.

A. Sparse Bayesian Learning Based Channel and Impulsive
Noise Estimation Algorithm Using Pilot Subcarriers

We introduce an Np ×Nc matrix P which selects Np pilot
subcarriers out of total Nc subcarriers. From (8), the received
signal vector at the pilot subcarriers is given by

rp = Dphp + vp + wp (9)

where Dp = diag(dp), dp is the pilot sequence, hp is the
channel frequency response at the pilot subcarriers, vp = Pv,
and wp = Pw.

By introducing hp,t = FH
p hp and vp,t = FH

p vp, where Fp

is an Np × Np DFT matrix, (9) can be rewritten as

rp = DpFphp,t + Fpvp,t + wp

= Mpθp + wp (10)

where Mp = (DpFp,Fp) and θp = (hT
p,t,v

T
p,t)

T. Since
(10) represents an under-determined system, θp cannot be
estimated from (10) using the conventional LS method [16].
However, as the UA channel is typically sparse with only a
few non-zero entries in hp,t, and vp,t is a ‘fold-and-add’ of
vt which is also sparse,3 θp is a sparse vector, and therefore
can be estimated by the SBL method. Using the estimated θp,
the impulsive noise vt can be estimated and subtracted from
the received signals, and ht can be estimated and used for the
equalization and demodulation operations.

We assume that wp has independent and identically distrib-
uted complex Gaussian entries with zero mean and variance
1/β. Thus, the likelihood of (10) can be written as

p(rp|θp, β) = (β/π)Np exp(−β�rp − Mpθp�2) (11)

3As the pilot subcarriers are uniformly spaced among all subcarriers, vp

can be viewed as under-sampled v. As a result, vp,t is a time-aliased version
of vt, which is a “fold-and-add” of vt.
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where � · � denotes the Euclidean norm of a vector. To avoid
over-fitting, we assume that θp has a complex Gaussian prior
distribution with zero mean and variance 1/α[i] for its ith
entry as

p(θp|α) = π−2Np

2Np�
i=1

αi exp(−θH
p diag(α)θp) (12)

where α = (α[1], . . . , α[2Np])T. We treat the parameters α
and β as random variables with Gamma distributions as

p(α) =
2Np�
i=1

γ(α[i]; a, b), p(β) = γ(β; c, d) (13)

where γ(·) denotes the Gamma distribution and a, b, c, d
are parameters of the Gamma distributions. The reason of
choosing the Gamma distribution is that under the Bayesian
framework, Gamma distribution is the conjugate prior for
Gaussian parameters α and β. Moreover, with a Gamma prior
distribution, the posterior is more flexible to represent a heavy-
tail distribution and can have a more sparse solution.

The estimation of θp requires the calculation of the posterior
distribution, which from the Bayes’ rule is given by

p(θp, α, β|rp) =
p(rp|θp, α, β)p(θp, α, β)

p(rp)

where p(rp) =
�

p(rp|θp, α, β)p(θp, α, β) dθpdαdβ cannot
be directly calculated. Interestingly, p(θp, α, β|rp) can be
decomposed as

p(θp, α, β|rp) = p(θp|rp, α, β)p(α, β|rp) (14)

where

p(θp|rp, α, β) =
p(rp|θp, β)p(θp|α)

p(rp|α, β)

=
p(rp|θp, β)p(θp|α)�

p(rp|θp, β)p(θp|α) dθp
. (15)

Note that the numerator of (15) is the product of two Gaussian
density functions and the denominator of (15) is the convolu-
tion of them. By substituting (11) and (12) into (15), we find
that p(θp|rp, α, β) is a Gaussian density function as

p(θp|rp, α, β)
= π−2Np|Σp|−1exp(−(θp−μp)

HΣ−1
p (θp−μp)) (16)

where (·)−1 and | · | denote the matrix inversion and determi-
nant, respectively, and

Σp = (βMH
p Mp + diag(α))−1, μp = βΣpMH

p rp. (17)

Based on (16), the optimal θp is given by

θp = μp (18)

which depends on α and β as can be seen from (17).
The optimal α and β can be obtained by maximizing

p(α, β|rp) in (14). However, p(α, β|rp) cannot be expressed
in analytic form. To solve this issue, we apply the EM
algorithm as follows. From (11)-(13), we obtain the log-
likelihood function as

L = ln(p(rp|θp, β)p(θp|α)p(α)p(β)). (19)

By ignoring the terms in (19) that are independent of α,
we can obtain the optimal α by maximizing

Ep(θp|rp,α,β)[ln(p(θp|α)p(α))] (20)

where Ep(θp|rp,α,β)[·] stands for the expectation with respect
to the distribution in (16). By setting the derivative of (20)
with respect to α[i] to zero, we obtain

α[i] =
a

b + Σp[i, i] + |μp[i]|2 , i = 1, . . . , 2Np (21)

where Σp[i, i] and μp[i] denote the (i, i)th element of Σp and
the ith element of μp in (17), respectively. Similarly, β can be
optimized by maximizing Ep(θp|rp,α,β)[ln(p(rp|θp, β)p(β))],
leading to

β =
c + Np − 1

d̃
(22)

where

d̃ = d + rH
p rp − rH

p Mpμp − μH
p MH

p rp

+tr(MpΣpMH
p )+μH

p MH
p Mpμp

and tr(·) denotes the matrix trace. We update Σp, μp, α,
and β iteratively following (17), (21), and (22). After the
convergence of the algorithm, the sparse θp is obtained
as (18).

B. Forward-Backward Kalman Filtering Based Channel and
Impulsive Noise Tracking Algorithm Using Pilot Subcarriers

In this subsection, we propose an SBL based forward-
backward Kalman filtering algorithm to track the time-varying
sparse channel and impulsive noise in each data frame.
We assume that θp,m remains fixed in one OFDM symbol,
but varies from symbol to symbol according to a state-space
model, where the subscript m = 1, . . . , Nb denotes the index
of OFDM symbols in one data frame. Thus, for the time-
varying UA channel, the system model in (10) can be modified
as

rp,m = Mp,mθp,m + wp,m, m = 1, . . . , Nb (23)

θp,m = θp,m−1 + qp,m, m = 1, . . . , Nb (24)

where wp,m ∼ CN (0, β−1
m INp), qp,m ∼ CN (0,A−1

m ),
Am = diag(αm), In denotes the n × n identity matrix, and
CN denotes the complex Gaussian distribution.

In the forward filtering, the tracking process is initialized
with Ωp,0|0 = I2Np and θp,0|0 = 0. For m = 1, . . . , Nb,
a prediction step and an update step are performed at each m.
In particular, in the prediction step, we have

θp,m|m−1 = θp,m−1|m−1 (25)

Ωp,m|m−1 = Ωp,m−1|m−1 + A−1
m (26)

rp,m|m−1 = Mp,mθp,m|m−1 (27)

ep,m = rp,m − rp,m|m−1 (28)

where m|m−1 means the prediction of the mth symbol given
the previous measurements [rp,1, . . . , rp,m−1], Ωp,m|m−1 and
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Ωp,m−1|m−1 are covariance matrices of estimation errors.
In the update step, we compute

Km=Ωp,m|m−1MH
p,m(β−1

mINp+Mp,mΩp,m|m−1MH
p,m)−1

(29)

θp,m|m=θp,m|m−1 + Kmep,m (30)

Ωp,m|m=(I2Np − KmMp,m)Ωp,m|m−1 (31)

where Km is the Kalman gain.
Note that the value of αm and βm are needed in (26) and

(29), respectively. From (23)-(28), we have

ep,m =Mp,m(qp,m+θp,m−1−θp,m−1|m−1)+wp,m. (32)

We can apply the SBL algorithm developed in Section III-A to
obtain αm and βm from (32) by considering the log-likelihood
function expressed as

L = ln(p(ep,m|qp,m, βm;Ωp,m−1|m−1)
×p(qp,m|αm)p(αm)p(βm)). (33)

Then αm can be obtained by maximizing

Ep(qp,m|ep,m,αm,βm;Ωp,m−1|m−1)[ln(p(ep,m|αm)p(αm))]
(34)

where p(qp,m|ep,m, αm, βm;Ωp,m−1|m−1) can be calculated
similar to (15) and turns out to be a Gaussian probability
density function with the mean vector νp,m and the covariance
matrix Cp,m as below

νp,m = Cp,mMH
p,mBp,mep,m (35)

Cp,m = (MH
p,mBp,mMp,m + Am)−1. (36)

Here Bp,m = (Mp,mΩp,m−1|m−1MH
p,m + β−1

m INp)−1.
We would like to note that in [18], it is assumed that

θp,m−1 = θp,m−1|m−1 in (32), i.e., Ωp,m−1|m−1 = 0.
Interestingly, in this case, there is Bp,m = βmINp , thus (35)
and (36) are similar to (17). Therefore, our algorithm is more
general than the approach in [18]. By setting the derivative of
(34) with respect to αm[i] to zero, we obtain

αm[i] =
a

b + Cp,m[i, i] + |νp,m[i]|2 , i = 1, . . . , 2Np. (37)

We can obtain βm by maximizing

Ep(qp,m|ep,m,αm,βm;Ωp,m−1|m−1)[ln(p(βm)
×p(ep,m|qp,m, βm;Ωp,m−1|m−1))]. (38)

By setting the derivative of (38) with respect to βm to zero,
we obtain

c − 1
βm

+
∂ ln |Bp,m|

∂βm

= d + Ep(qp,m|ep,m,αm,βm;Ωp,m−1|m−1)[(ep,m − Mp,m)H

×Bp,m(ep,m − Mp,m)]. (39)

Let us introduce the eigenvalue decomposition of
Mp,mΩp,m−1|m−1MH

p,m = UmΛmUH
m. It can be shown

from (39) that βm can be obtained through solving the
following equation

Np�
i=1

�
λm[i, i]

βmλm[i, i] + 1
+

Zm[i, i]
(βmλm[i, i] + 1)2

�
+ d

=
Np + c − 1

βm
(40)

where λm[i, i], i = 1, . . . , Np, is the ith diagonal element of
Λm and Zm[i, i] is the ith diagonal element of

Zm = UH
m(ep,meH

p,m − ep,mνH
p,mMH

p,m − Mp,mνp,meH
p,m

+Mp,m(νp,mνH
p,m + Cp,m)MH

p,m)Um. (41)

For the case of Ωp,m−1|m−1 = 0 [18], there are λm[i, i] = 0,
i = 1, . . . , Np, and (40) becomes

Np + c − 1
βm

= d + tr(Zm)

= d + eH
p,mep,m − νH

p,mMH
p,mep,m

− eH
p,mMp,mνp,m + νH

p,mMH
p,mMp,mνp,m

+ tr(Mp,mCp,mMH
p,m)

which is similar to (22). Therefore, our algorithm is more
general than [18]. Finally, αm and βm are obtained iteratively
from (37), (40), and (35), (36).

The procedure of the forward Kalman filtering in (25)-(31)
can be similarly applied to the backward Kalman filtering from
time m = Nb to time m = 1. The results of the forward and
backward Kalman filtering of θp,m can be optimally combined
as shown below. We assume that we have the following
forward and backward systems

rp,f = Mp,fμ + wp,f (42)

rp,b = Mp,bμ + wp,b (43)

where μ needs to be estimated, the subscripts f and b denote
variables in the forward and backward systems, respectively,
the noise vectors wp,f and wp,b are independent of each other.
We can apply the linear minimum mean-squared (LMMSE)
estimator for each linear system to estimated μ. For the
forward system (42), μ can be estimated as

μ̂f = ΣfMH
p,fR

−1
wp,f

rp,f (44)

where Σf = (R−1
μ + MH

p,fR
−1
wp,f

Mp,f)−1 is the estimation
error matrix, Rμ and Rwp,f

are the covariance matrices of
μ and wp,f , respectively. Similar to (44), we can estimate μ
from the backward system (43) as

μ̂b = ΣbMH
p,bR

−1
wp,b

rp,b

where Σb = (R−1
μ + MH

p,bR
−1
wp,b

Mp,b)−1 and Rwp,b
is the

covariance matrix of wp,b.
Combining (42) and (43), we have

�
rp,f

rp,b

�
=

�
Mp,f

Mp,b

�
μ +

�
wp,f

wp,b

�
. (45)
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The LMMSE estimation of μ from (45) is given by

μ̂c =
��

MH
p,f MH

p,b

� 

R−1

wp,f
0

0 R−1
wp,b

 

Mp,f

Mp,b


+R−1

μ

�−1

× �
MH

p,f MH
p,b

� 

R−1

wp,f
0

0 R−1
wp,b

 

rp,f

rp,b



= (MH
p,fR

−1
wp,f

Mp,f + MH
p,bR

−1
wp,b

Mp,b + R−1
μ )−1

×(MH
p,fR

−1
wp,f

rp,f + MH
p,bR

−1
wp,b

rp,b)

= (Σ−1
f + Σ−1

b − R−1
μ )−1(Σ−1

f μ̂f + Σ−1
b μ̂b). (46)

Since Kalman filtering is a generalization of sequential
LMMSE estimation, the forward and backward estimations
can be combined following (46) as

θc
p,m =

��
Ωf

p,m|m
�−1+

�
Ωb

p,m|m
�−1

�−1��
Ωf

p,m|m
�−1

θf
p,m|m

+
�
Ωb

p,m|m
�−1

θb
p,m|m

�

where the subscripts f and b denote the values from the
forward and backward filtering, respectively, with θf

p,m|m and

Ωf
p,m|m given by (30) and (31), respectively, and θb

p,m|m and
Ωb

p,m|m obtained in a similar way. Note that we set R−1
μ = 0

in (46) as there is no prior auto-correlation information
about μ.

C. SBL Based Joint Data Detection and Channel and
Impulsive Noise Estimation Algorithm Using All Subcarriers

The performance of the SBL based channel and impulsive
noise estimation algorithm proposed in Section III-A can be
improved by increasing the number of pilot subcarriers. How-
ever, the number of pilot subcarriers is limited in UA OFDM
systems due to bandwidth and spectral efficiency constraints.
In this subsection, we develop a joint data detection and
channel estimation algorithm which utilizes all subcarriers
to improve the accuracy of channel and impulsive noise
estimation. From (8), the received signals on all Nc subcarriers
can be expressed as

r = Mθ + w (47)

where

M = (DF,F), θ = (hT
t ,vT

t )T. (48)

As D contains both the known pilot information and the
unknown data, we estimate the unknown part of D using the
EM procedure. In the E-step, similar to (17), we have

Σ = (βMHM + diag(α))−1

=
�

Σ1,1 Σ1,2

ΣH
1,2 Σ2,2

�
(49)

μ = βΣMHr = [μT
1 , μT

2 ]T (50)

where Σi,j , i, j = 1, 2, are Nc×Nc sub-matrices of Σ, μ1 and
μ2 contain the first and the last Nc elements of μ, respectively.
In the M-step, similar to (19), the log-likelihood function of
(47) can be written as

L = ln(p(r|θ, β;D)p(θ|α)p(α)p(β)). (51)

Fig. 1. Block diagram of the proposed SBL based joint data detection and
channel and impulsive noise estimation algorithm with all subcarriers.

By ignoring the terms in (51) that are independent of D,
we can obtain the optimal D by maximizing

Ep(θ|r,α,β;D)[ln(p(r|θ, β;D))]

which is equivalent to solving the following problem

min
D

�r − Mμ�2 + tr(MΣMH). (52)

By substituting (48), (49), and (50) into (52), we have

�r − Mμ�2 + tr(MΣMH)
= �r − DFμ1 − Fμ2�2 + tr(DFΣ1,1FHDH

+FΣH
1,2F

HDH + DFΣ1,2FH + FΣ2,2FH). (53)

Let us introduce Id as the indices of subcarriers with data
symbols. From (53), the data symbol d[i], i.e., the ith diagonal
element of D, i ∈ Id, can be obtained by solving the problem
of

min
d[i]

|r[i] − d[i]F[i, :]μ1 − F[i, :]μ2|2 + C1[i, i]|d[i]|2

+d[i]C2[i, i] + d∗[i]C∗
2 [i, i] (54)

where C1 = FΣ1,1FH, C2 = FΣ1,2FH, F[i, :] is the ith row
of F, and (·)∗ stands for complex conjugate.

Similar to (21) and (22), α and β are optimized as

α[i] =
a

b + Σ[i, i] + |μ[i]|2 , i = 1, . . . , 2Nc (55)

β =
c + Np − 1

d̄
(56)

where Σ[i, i] and μ[i] denote the (i, i)th element of Σ in (49)
and the ith element of μ in (50), respectively, and

d̄ = d+rHr−rHMμ−μHMHr+tr(MΣMH)+μHMHMμ.

Therefore, we update Σ, μ, D, α, and β iteratively following
(49), (50), (54), (55), and (56). Note that the unknown data
symbols in D need to be initialized. Towards this end, we can
apply the SBL joint estimation algorithm using pilot subcar-
riers in Section III-A to obtain an estimation of hf and vf .
Then the initial value of data symbols can be obtained after
channel equalization and symbol detection. Fig. 1 shows the
block diagram of the proposed SBL based joint data detection
and channel and impulsive noise estimation algorithm with
all subcarriers. Compared with the algorithm in Section III-A,
it will be shown in Section IV and Section V that by using
all subcarriers, the algorithm in this section has better BER
and FER performance, at the price of a higher computational
complexity.
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D. SBL and Kalman Filtering Based Joint Data Detection
and Channel Tracking Algorithm Using All Subcarriers

In this subsection, we combine advantages of the Kalman
filtering and the algorithm in Section III-C, and propose a
new algorithm for joint time-varying channel and impulsive
noise estimation/tracking and data detection using all subcar-
riers. From (47), the time-varying system model with all Nc

subcarriers can be written as

rm = Mmθm + wm, m = 1, . . . , Nb (57)

θm = θm−1 + qm, m = 1, . . . , Nb (58)

where Mm = [DmF, F].
This algorithm is initialized with Ω0|0 = I2Nc , θ0|0 = 0,

and M1 is obtained using the algorithm in Section III-C. The
prediction and update processes are similar to (25)-(31) but
without the subscript ‘p’. It is also essential to estimate the
hyperparameters αm and βm and the unknown data symbols
in Dm in the M-step. Similar to (32), from (57) and (58) we
have

em = Mm(qm + θm−1 − θm−1|m−1) + wm. (59)

Based on (59), αm and βm can be estimated following the
steps from (33) to (40) without the subscript ‘p’. Similar to
(54), the unknown data symbols in Dm can be obtained by
solving the optimization problem of

min
dm[i]

|rm[i] − dm[i]F[i, :]θm|m,1 − F[i, :]θm|m,2|2

+ Cm,1[i, i]|dm[i]|2 + dm[i]Cm,2[i, i] + d∗m[i]C∗
m,2[i, i]

where

Cm,1 = FΩm|m,1,1FH

Cm,2 = FΩm|m,1,2FH

Ωm|m =
�

Ωm|m,1,1 Ωm|m,1,2

ΩH
m|m,1,2 Ωm|m,2,2

�

θm|m = [θT
m|m,1, θ

T
m|m,2]

T.

Here θm|m is the estimated θm and Ωm|m is the covariance
matrix of the estimation error.

E. Computational Complexity of the Proposed Algorithms

In this subsection, we analyze the computational complexity
of the four proposed algorithms.

• The complexity of the SBL algorithm using pilot subcar-
riers proposed in Section III-A is dominated by (17) in
the EM process. Thus, the computational complexity of
this algorithm for each OFDM symbol can be estimated
as O(I1 N3

p), where I1 is the average number of iterations
of the EM process till convergence.

• As all subcarriers are used for joint data detection and
channel and impulsive noise estimation, the number of
subcarriers used is increased from Np to Nc. Therefore,
for each OFDM symbol, the complexity order of the
algorithm in Section III-C is O(I2 N3

c ), where I2 is the
average number of iterations required by the EM process
till convergence.

• The SBL based Kalman filtering algorithm in
Section III-B includes three major steps: filtering
(predicting and updating), smoothing, and EM parameters
estimation. In the filtering step, most of the computation
is spent on calculating the Kalman gain Km (29), which
has a complexity of O(N3

p ) for each OFDM symbol.
Based on the analysis above, the complexity of the EM
step is O(I1 N3

p). Moreover, the backward filtering in
the smoothing step has a computational complexity of
O(N3

p) for each OFDM symbol. Thus, for each OFDM
symbol, the computational complexity order of the
algorithm in Section III-B is O((I1 + 2)N3

p ).
• As all Nc subcarriers are used for the SBL based forward-

backward Kalman filtering algorithm in Section III-D,
the computational complexity of this algorithm is
O((I2 + 2)N3

c ) per OFDM symbol.

From the analysis above, we can see that the compu-
tational complexity of the proposed algorithms is practical
considering that UA communication systems usually have a
much lower data rate than terrestrial radio systems. Moreover,
compared with the estimators using only pilot subcarriers,
estimators using all subcarriers have a higher complexity.
However, it will be shown in Sections IV and V that the
latter algorithms have a better BER and FER performance.
Similarly, compared with the original SBL based algorithms,
the algorithms with forward-backward Kalman filtering have
a higher computational complexity and a better performance,
by using filtering and smoothing operations for tracking the
time-varying channel and impulsive noise. These performance-
complexity tradeoffs are interesting for practical UA OFDM
systems.

IV. NUMERICAL SIMULATION RESULTS

In this section, we present numerical simulation results of
the four proposed algorithms.

A. Simulation Setup

An OFDM system with Nc = 512, Ns = 325,
Np = 128, and Nu = 59 is simulated. The data symbols are
modulated by 1/3 rate turbo encoded QPSK constellations,
while the pilot symbols are modulated by QPSK constella-
tions without channel coding. Considering the code punctur-
ing, the number of information-carrying bits in each frame
is Lb = 1088.

The multipath channel consists of 15 discrete paths, where
the time delay between two adjacent paths follows the expo-
nential distribution with a mean value of 1 ms. The phase of
each path is uniformly distributed between −π and π. The
paths amplitudes have Rayleigh distribution whose variances
have an exponentially decreasing profile with a total decay
of 20 dB from t = 0 to t = Tcp. The system bandwidth B is
4 kHz. Thus, the subcarrier spacing fsc is 7.8 Hz. The CFO
Δf is randomly generated in [−fsc/2, fsc/2].

We apply the Gaussian mixture model [15] to simulate the
composite noise u = vt + wt in (7) with

u[i] ∼ (1 − η)CN (0, θ2
b ) + ηCN (0, θ2

I ), i = 1, . . . , Nc (60)
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Fig. 2. The effect of residual CFO on the system BER performance.

where η is the probability of the impulsive noise, θ2
b and θ2

I

are the variance of the background noise and impulsive noise,
respectively. The SNR is defined as

SNR =
θ2

s

ηθ2
I + (1 − η)θ2

b

where θ2
s is the signal power, and the impulsive noise to

background noise ratio (INR) is defined as INR = θ2
I/θ2

b .
Similar to [12], we choose η = 0.02 and INR = 26 dB.

B. Residual Carrier Frequency Offset

In this subsection, we study the impact of the residual CFO
on the system BER after the CFO estimation and compensation
using the null subcarriers. We adopt the “clipping-blanking
and Doppler” method in [15] to estimate the CFO. The
“LS + blanking” approach is applied to detect the received
signals, where the blanking method is used to suppress the
impulsive noise, followed by the LS method for channel
estimation. We compare the system BER in the following two
scenarios to analysis the influence of the residual CFO.

1) The OFDM signals are transmitted through the multipath
UA channel with Gaussian mixture noise (60), but the
CFO is set to zero. We consider the BER of such
system without any Doppler shift as a benchmark for
comparison.

2) We add random CFO in [−fsc/2, fsc/2] to the
OFDM symbols received by the system above. A one-
dimensional search method [15], [24] is used to estimate
the CFO with a step size of 0.25 Hz.

Fig. 2 shows the system BER versus SNR for the two
scenarios above with INR = 26 dB. It can be seen that
the Doppler shift in the second scenario can be mitigated
effectively, since after the CFO estimation and compensation,
the system BER is almost identical to the first scenario without
any CFO. Moreover, Fig. 2 indicates that the small residual
CFO after the CFO compensation is not a limiting factor of
the BER performance of UA OFDM systems [25].

Fig. 3. BER performance of various algorithms versus SNR.

C. BER Performance Comparison

In this subsection, we compare the BER performance
of the following seven algorithms versus the SNR with
INR = 26 dB. Except for the first algorithm, the other six
algorithms perform the CFO estimation and compensation
before channel estimation.

• JCINE + LS INC without CFO compensation (JCINE
w/o CFO comp.): This receiver uses the joint channel
and impulsive noise estimation (JCINE) and LS-based
impulsive noise cancelation (INC) algorithm [16], but
bypasses the CFO estimation and compensation step.

• LS + blanking with CFO compensation (LS with CFO
comp.): This algorithm performs the CFO estimation and
compensation followed by the LS + blanking channel
estimation.

• JCINE + LS INC algorithm (JCINE): This receiver
uses the JCINE algorithm for the channel and impulsive
noise estimation, followed by the LS impulsive noise
cancelation [16].

• SBL algorithm using pilot subcarriers (SBL (pilot)): This
algorithm is developed in Section III-A.

• SBL+Kalman filtering (KF) using pilot subcarriers
(SBL+KF (pilot)): This algorithm is proposed in
Section III-B.

• SBL based joint channel estimation and data detection
using all subcarriers (SBL (all)): This algorithm is pre-
sented in Section III-C.

• SBL+KF joint channel tracking and data detection using
all subcarriers (SBL+KF (all)): Details of this algorithm
are explained in Section III-D.

It can be seen from Fig. 3 that the UA OFDM system yields
a poor BER performance when the CFO compensation is not
performed. Although the LS + blanking algorithm carries
out the CFO compensation, it has a higher BER than the
other five algorithms. In fact, the LS + blanking algorithm
suffers from an obvious BER floor with an increasing SNR.
Compared with the JCINE + LS INC algorithm, the proposed
SBL (pilot) algorithm has a 3 dB gain at high SNRs. More-
over, we can see that the SBL+KF (pilot) algorithm further
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Fig. 4. Placement of the transmitter and receiver during the experiment.

reduces the system BER, because the Kalman filter exploits
the knowledge of the time-varying channel to improve the
accuracy of channel estimation. We can also observe from
Fig. 3 that by utilizing the data subcarriers, the SBL based
joint channel estimation and data detection algorithm can
obtain a 1 dB gain compared with the SBL algorithm using
pilot subcarriers. Finally, the proposed SBL + KF using all
subcarriers algorithm outperforms the other six algorithms
by combining the advantages of the Kalman filter and all
subcarriers for channel and impulsive noise estimation.

V. EXPERIMENT RESULTS

We apply the proposed algorithms to process the signals
recorded during a UA communication experiment conducted
in the estuary of the Swan River, Perth, Australia, which has
brackish water with varying salinity. The transmitter-receiver
distance was around 936 meters measured from Google Maps
as shown in Fig. 4. Since the receiver hydrophone was placed
in shallow warm water close to a jetty, there was a significant
amount of highly impulsive snapping shrimp noise during
the experiment. Another source of impulsive noise was from
waves breaking at the jetty piers whose intensity increases
with the wind speed.

Key parameters of the experimental system4 are: Nb = 5,
bandwidth = 4 kHz, carrier frequency = 12 kHz, Nc = 512,
and length of CP = 25 ms. Each frame contains a preamble
block in front of 5 OFDM data blocks. The information bits
are coded by 1/2 or 1/3 rate turbo codes and then modulated by
QPSK constellations. Each transmission contains 500 frames
with 250 frames for each coding rate. The data files recorded
at the receiver during three transmissions were named T83,
T84, and T85, respectively.

A. Channel Conditions

In this subsection, we analyze the channel conditions and
the features of received signals during the experiment.

4There are short-range UA modems which can achieve a higher data rate
than this experimental system. Nevertheless, the purpose of this experimental
system is to test the performance of the proposed algorithms, not particularly
aiming at short-range high-rate transmissions.

TABLE I

ESTIMATED SBR AND SIR IN THREE FILES

Fig. 5 demonstrates the Doppler shift of the received signals
in the three recorded files estimated by the preamble block
in each frame through calculating the phase difference in the
time domain between halves of the received synchronization
training signals. This method is capable of estimating a small
frequency shift. It can be seen that depending on the wind
and wave conditions, the range of Doppler shifts is different
in the three recorded files. In particular, for the T83 and
T85 files, only a few frames of received signals have a
Doppler shift greater than 0.25 Hz. As shown in Section IV-B,
the step size of the one-dimensional search method used for
CFO estimation is set to 0.25 Hz, and the residue CFO does
not affect the system BER, the step of CFO estimation and
compensation can be skipped to reduce the computational
complexity at the receiver. For the T84 file, as around 10% of
the frames have a Doppler shift larger than 0.25 Hz, the CFO
estimation and compensation step is applied to process the
received signals.

Fig. 6 shows the amplitude of the received signals in one
typical data frame of each recorded file. The amplitude of the
impulsive noise in the corresponding data frames estimated by
the algorithm proposed in Section III-A is illustrated in Fig. 7.
By comparing Fig. 6 with Fig. 7, it can be seen that the
impulsive noise is correctly detected. Fig. 8 demonstrates the
amplitude of the channel impulse response estimated by the
algorithm in Section III-A for two consecutive OFDM blocks
in the T83 file. It can be seen that the dominant multipath
components of the channel essentially remain static for two
consecutive OFDM blocks, which supports the assumption on
UA channels in Section II. Table I illustrates the estimated
signal-to-background (non-impulsive) noise ratio (SBR) and
signal-to-impulsive noise ratio (SIR) of the received signals
in three recorded files. The SBR and SIR are defined as
SBR = θ2

s/θ2
b and SIR = θ2

s/θ2
I . From Figs. 6 and 7 and

Table I, it can be seen that the signals in the T83 file are
only slightly disturbed by impulsive noise during transmission.
The signals in the T84 file are contaminated by a significant
amount of impulsive noise, as they have the lowest estimated
SIR among the three recorded files. Moreover, it can be seen
that the signals in the T85 file undergo a medium level of
impulsive noise compared with the other two files.

B. Receiver Performance

In this subsection, the performance of the six algorithms
listed in Section IV-C except for the JCINE + LS INC without
CFO compensation algorithm is compared in terms of the
BER (uncoded and coded) and the frame error rate (FER).
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Fig. 5. Estimated Doppler shift from the three recorded files.

Fig. 6. Amplitude of the received signals in one frame of the three recorded files.

Fig. 7. Amplitude of the estimated impulsive noise in one frame of the three recorded files.

Fig. 8. Amplitude of the channel impulse response over two consecutive
OFDM blocks in the T83 file.

The results are shown in Tables II-IV for the three data files,
respectively.

We can observe from Table II that since the signals in
the T83 file are only slightly contaminated by impulsive
noise, all six algorithms obtain zero coded BER and FER

TABLE II

PERFORMANCE OF SIX ALGORITHMS FOR THE T83 FILE

for the recorded T83 file. The proposed SBL and SBL+KF
algorithms using pilot subcarriers yield a lower uncoded BER
than the existing LS+blanking and JCINE+LS INC methods.
Moreover, the proposed SBL and SBL+KF algorithms using
all subcarriers can obtain a further slight improvement in the
uncoded BER performance.

As signals in the T84 file are severely affected by impulsive
noise, we can see from Table III that the existing LS+blanking
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TABLE III

PERFORMANCE OF SIX ALGORITHMS FOR THE T84 FILE

TABLE IV

PERFORMANCE OF SIX ALGORITHMS FOR THE T85 FILE

and JCINE+LS INC algorithms have a very high FER with the
1/2 rate signals. Interestingly, compared with the JCINE+LS
INC algorithm, the proposed SBL algorithm using pilot sub-
carriers has a 2.1% reduction in the uncoded BER, 7%
reduction in the coded BER, and 35% reduction in the FER for
the 1/2 rate signals. Moreover, for the 1/3 rate signals, the SBL
algorithm using pilot subcarriers reduces the FER from 4.1%
to 0.4%. The proposed SBL+KF algorithm using the pilot
subcarriers obtains zero coded BER and FER for the 1/3 rate
signals recorded, and 11% reduction in the FER over the SBL
algorithm with pilot subcarriers for the 1/2 rate signals. After
utilizing the data subcarriers, the proposed SBL+KF algorithm
has a 1.5% reduction in the coded BER and 8% reduction in
the FER compared with the SBL+KF algorithm only using
pilot subcarriers in the 1/2 coding rate.

As the signals in the T85 file suffer from a medium level
of impulsive noise, we can see from Table IV that for the
1/3 rate signals, all six algorithms achieve zero coded BER and
FER for the data recorded. For the 1/2 rate signals, the SBL
algorithm using pilot subcarriers introduces around 3% reduc-
tion in the uncoded BER and FER. Moreover, the SBL+KF
algorithm using pilot subcarriers achieves 0.01% coded BER
and 0.4% FER. The proposed algorithms with all subcarri-
ers can achieve zero coded BER and FER in the 1/2 rate
signals.

From Tables II-IV, we can conclude that the proposed SBL
and SBL+KF algorithms effectively reduce the system BER
and FER compared with existing methods. Moreover, results
on the experimental data demonstrate that after using both pilot

and data subcarriers, the system BER and FER performance
can be further improved.

VI. CONCLUSION

In this paper, we have developed four new joint channel and
impulsive noise estimation and tracking algorithms for UA
OFDM systems. The proposed algorithms efficiently exploit
the sparsity of the UA channel and impulsive noise through the
sparse Bayesian learning framework. Furthermore, to track the
time-varying UA channel, we have proposed the SBL+Kalman
filtering algorithm to capture the temporal correlation of the
sparse time-varying channel. A joint data detection and chan-
nel estimation algorithm has also been proposed to improve the
accuracy of channel and impulsive noise estimation. Finally,
we have proposed a novel algorithm for joint time-varying
channel tracking and data detection with all subcarriers. The
performance of the proposed algorithms has been verified
through both numerical simulations and data collected during
a UA communication experiment. Compared with existing
methods, the proposed algorithms can greatly improve the
robustness of UA OFDM systems against impulsive noise.
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