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Introduction

Robust MV beamforming:

• earlier approaches include fixed diagonal loading

[Abramovich’81], [Carlson’88]; adaptive diagonal loading

[Cox Zeskind Owen’87]; eigenspace-based beamforming

[Feldman Griffiths’91], and other techniques.

• More recent approaches are based on worst-case designs

[Vorobyov Gershman Luo’01], [Lorenz Boyd’01], or can be

interpreted by means of such designs [Li Stoica Wang’02].

Our goal: to extend the worst-case MV beamformer designs to

multi-user MIMO space-time receivers to make them robust

against channel state information (CSI) errors.
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Traditional and Robust MV Beamforming

Classical (non-robust) MV beamforming:

min
w

w
H
Rw s.t. w

H
as = 1 → wMV = (aH

s R
−1

as)
−1

R
−1

as

Robust worst-case MV beamforming:

min
w

w
H
Rw s.t. |wH(as + δ)| ≥ 1 ∀ ‖δ‖ ≤ ε (1)

The latter problem can be transformed to

min
w

w
H
Rw s.t. w

H
as ≥ ε‖w‖ + 1 (2)

Problem (2) is convex and can be solved with the complexity

O(N3) by second-order cone programming (SOCP) algorithms

[Vorobyov Gershman Luo’01] or Newton-type algorithms

[Lorenz Boyd’01], [Li Stoica Wang’02]
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Array Processing-Type MIMO Model

Assumptions:

• uplink multi-user MIMO; block flat fading channel;

• P transmitters (users); each user has N antennas; the

receiver has M antennas

Tx 1

Tx 2

PTx

Rx

H

H

H

1

P

2
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Array Processing-Type MIMO Model Cont’d

Signal model:

Y(T×M) =
P∑

p=1

Xp(T×N)H(N×M) + V(T×M)

Let the transmitted symbols of the pth user be given by the

vector sp , [sp,1 · · · sp,K ]T and let an orthogonal space-time

code (OSTBC) [Tarokh Jafarkhani Calderbank’98],

[Alamouti’98] be used:

Xp = X(sp), X
H(sp)X(sp) = ‖sp‖

2
IN
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Array Processing-Type MIMO Model Cont’d

The matrix X(sp) can be written as

X(sp) =

K∑

k=1

(CkRe{sp,k} + DkIm{sp,k}) (3)

where Ck , X(ek) and Dk , X(jek).

Using (3) yields the following array processing-type model:

Y(2MT×1) =
P∑

p=1

Ap(2MT×2K)sp(2K×1)
+ V(2MT×1)

Ap = A(Hp) , [C1Hp · · · CKHp D1Hp · · · DKHp]

, [ap,1 · · · ap,2K ]

where P , [vec{Re(P)}T vec{Im(P)}T ]T for any matrix P.
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Linear Receivers

The ML decoder may be prohibitively expensive in the

multi-user case. Simpler suboptimal linear receivers can be

used:

ŝ1 = W
T
Y

where w.l.g. user # 1 is assumed to be the user-of-interest

(UOI) and W is the 2MT × 2K matrix of receiver coefficients.

Example: the matched filter (MF) receiver

ŝ1 =
1

‖H1‖2
F

A
T
1 Y

• optimal in the ML sense in the single user case,

• far away from the optimality in the multi-user case.
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Linear Receivers Cont’d

The MV receiver was used in [Shahbazpanahi et al’05]:

min
wk

w
T
k Rwk s.t. a

T
1,kwk = 1 → wMV,k = (aH

1,kR
−1

a1,k)
−1

R
−1

a1,k

where R , E{Y Y
T}. Then, WMV = [wMV,1 · · · wMV,2K ]

Self-interference zero-forcing by additional constraints:

a
T
1,lwk = 0 for all l 6= k

Generalized MV (GMV) receiver [Shahbazpanahi et al’05]:

min
W

tr{WT
RW} s.t. A

T
1 W=I2K → WGMV =R

−1
A1(A

T
1 R

−1
A1)

−1

How to add robustness against CSI errors at the receive side?
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Robust MV Receivers

Let

H1 true channel matrix of the UOI

Ĥ1 presumed channel matrix of the UOI

∆ , H1 − Ĥ1 CSI error

The worst-case robust modification of WMV:

min
wk

w
T
k Rwk s.t. w

T
k ak(Ĥ1 + ∆) ≥ 1 ∀ ‖∆‖F ≤ ε (4)

where ak(·) is the kth column of A(·).
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Robust MV Receivers Cont’d

Lemma: For any OSTBC,

‖∆‖F = ‖δk‖ for all k = 1, . . . , 2K

where δk , ak(H1) − ak(Ĥ1).

Using this lemma, we can prove that problem (4) takes the

following form [Rong Shahbazpanahi Gershman’05]:

min
wk

w
T
k Rwk s.t. w

T
k (ak(Ĥ1) + δk) ≥ 1 ∀ ‖δ‖ ≤ ε (5)

which is mathematically identical to the robust MV

beamforming problem in (1)! Hence, (5) can be directly solved

using the algorithms developed in [Vorobyov Gershman

Luo’01], [Lorenz Boyd’01], and [Li Stoica Wang’02].
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Robust MV Receivers Cont’d

• A robust formulation has also been developed for the

GMV receiver: more complicated formulation, but still

convertible to the SOCP form [Rong Shahbazpanahi

Gershman’05].

• As the worst-case designs may be overly conservative,

chance programming designs with probabilistic constraints

have been proposed in [Rong Vorobyov Gershman’05]:

min
wk

w
T
k Rwk s.t. Pr{wT

k (ak(Ĥ1) + δk) ≥ 1} > po

where 1 − po can be viewed as the outage probability. More

flexibility, but still convertible to convex optimization

problems. More work on this idea is required.
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Numerical Examples

Example # 1:

• P = 2 users of N = 2 antennas each; M = 8 receive

antennas, Alamouti’s code (T = 2, K = 2), QPSK symbols,

INR = 20 dB.

• UOI channel matrix is drawn from a zero-mean Gaussian

unit-variance distribution.

• UOI channel matrix is known up to CSI errors drawn from

a zero-mean Gaussian distribution with variance σ2
e = 0.1

Example # 2: the same as Example # 1 except that P = 3

users of N = 3 antennas each and Tarokh’s 3/4-rate OSTBC

(T = 4, K = 3) are assumed.
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Numerical Examples Cont’d

Example # 1: Alamouti’s OSTBC, J = 35.
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Numerical Examples Cont’d

Example # 1: Alamouti’s OSTBC, SNR = 18 dB.
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Numerical Examples Cont’d

Example # 2: Tarokh’s OSTBC, J = 70.
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Numerical Examples Cont’d

Example # 2: Tarokh’s OSTBC, SNR = 18 dB.
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Conclusions

• Worst-case robust beamformer designs have been

extended to multi-user receivers for orthogonally

space-time block coded MIMO systems.

• Further extensions: non-orthogonal high-rate space-time

codes, outage probability based formulations,

computationally efficient on-line algorithms, combining

linear and non-linear receivers.
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