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Abstract—In this paper, the problem of blind spatial signa-
ture estimation using the parallel factor (PARAFAC) analysis
model is addressed in application to wireless communications.
A time-varying user power loading in the uplink mode is pro-
posed to make the model identifiable and to enable application
of PARAFAC analysis. Then, identifiability issues are studied in
detail and closed-form expressions for the corresponding modified
Cramér–Rao bound (CRB) are obtained. Furthermore, two blind
spatial signature estimation algorithms are developed. The first
technique is based on the PARAFAC fitting trilinear alternating
least squares (TALS) regression procedure, whereas the second
one makes use of the joint approximate diagonalization algorithm.
These techniques do not require any knowledge of the propagation
channel and/or sensor array manifold and are applicable to a
more general class of scenarios than earlier approaches to blind
spatial signature estimation.

Index Terms—Blind spatial signature estimation, parallel factor
analysis, sensor array processing.

I. INTRODUCTION

THE USE of antenna arrays at base stations has recently
gained much interest due to their ability to combat fading,

increase system capacity and coverage, and mitigate inter-
ference [1]–[5]. In the uplink communication mode, signals
from different users can be separated at the base station an-
tenna array based on the knowledge of their spatial signatures
[5]–[8]. In particular, known spatial signatures can be used
for beamforming to separate each user of interest from the
other (interfering) users. However, user spatial signatures are
usually unknown at the base station and, therefore, have to be
estimated.
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Traditional (nonblind) approaches to spatial signature esti-
mation make use of training sequences that are periodically
transmitted by each user and are known at the base station [6].
However, the use of training sequences reduces the information
transmission rate, and strict coordination of the training epochs
of several users in a multiuser setting requires tight synchroniza-
tion. As a result, blind spatial signature estimation techniques
have attracted significant attention in the literature [8]–[16].

There are several blind approaches to spatial signature es-
timation. The most common one is based on the parametric
modeling of spatial signatures using direction-of-arrival (DOA)
parameters [5], [8], [9]. For example, in [5], the coherently dis-
tributed source model is used to parameterize the spatial signa-
ture. Unfortunately, the source angular spread should be small
for the first-order Taylor series expansion used in [5] to be valid.
This is a limitation for mobile communications applications in
urban environments with low base station antenna mast heights,
where angular spreads up to 25 are typically encountered [17],
[18]. Furthermore, the approach of [5] requires precise array
calibration.

Two other DOA-based blind spatial signature estimation
methods are developed in [8] and [9]. In these papers, the
source spatial signature is modeled as a plane wave distorted
by unknown direction-independent gains and phases. The latter
assumption can be quite restrictive in wireless communica-
tions where spatial signatures may have an arbitrary form,
and therefore, such gains and phases should be modeled as
DOA-dependent quantities. As a result, the techniques of [8]
and [9] are applicable to a particular class of scenarios only.

Another popular approach to blind spatial signature estima-
tion makes use of the cyclostationary nature of communica-
tion signals [10], [11]. This approach does not make use of any
DOA-based model of spatial signatures, but it is applicable only
to users that all have different cyclic frequencies. The latter con-
dition implies that the users must have different carrier frequen-
cies [which is not the case for Space-Division Multiple Access
(SDMA)] and/or baud rates [11]. This can limit practical appli-
cations of the methods of [10] and [11].

One more well-developed approach to this problem employs
higher order statistics (cumulants) to estimate spatial signatures
in a blind way [12]–[16]. Cumulant-based methods are only ap-
plicable to non-Gaussian signals. Moreover, all such algorithms
are restricted by the requirement of a large number of snapshots.
This requirement is caused by a slow convergence of sample es-
timates of higher order cumulants.

The aforementioned restrictions of cumulant-based methods
have been a strong motivation for further attempts to develop
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blind spatial signature estimators that are based on second-order
statistics only and do not require any DOA-related or cyclo-
stationarity assumptions. In [15], such a method was proposed
using joint approximate diagonalization of a set of spatial auto-
and cross-covariance matrices. This method requires an exis-
tence of a long-time coherence of the source signals to obtain
enough cross-covariance matrices at multiple lags for the joint
diagonalization process and to guarantee identifiability. In prac-
tical wireless communication systems, the signal time coher-
ence is severely limited, i.e., the correlation time of the received
signals typically does not largely exceed the sampling interval.
For example, communication signals sampled at the symbol
rate are uncorrelated,1 and hence, higher lag correlations are all
zero. In such cases, multiple covariance matrices are unavail-
able, and the method of [15] is not applicable. Furthermore, [15]
offers limited identifiability—for example, it requires that the
matrix of spatial signatures be full column rank, and therefore,
the number of sources should be less or equal to the number of
antennas.

In this paper, we develop a new bandwidth-efficient approach
to blind spatial signature estimation using PARAFAC analysis
[20]–[23]. Our approach does not require any restrictive as-
sumptions on the array geometry and the propagation environ-
ment. Time-varying user power loading is exploited to obtain
multiple spatial zero-lag covariance matrices required for the
PARAFAC model.

Blind PARAFAC multisensor reception and spatial sig-
nature estimation have been considered earlier in [21] and
[23]. However, the approach of [21] is applicable to direct
sequence-code division multiple access (DS-CDMA) systems
only, as spreading is explicitly used as the third dimension of the
data array, whereas [23] requires multiple shifted but otherwise
identical subarrays and a DOA parameterization. Below, we
show that the proposed user power loading enables us to give
up the CDMA and multiple-invariance/DOA parameterization
assumptions and extend the blind approach to any type of
SDMA system employing multiple antennas at the receiver.

Blind source separation of nonstationary sources using mul-
tiple covariance matrices has also been considered in [24] but,
again, under limited identifiability conditions, stemming from
the usual ESPRIT-like solution. Our identifiability results are
considerably more general as they do not rely on this limited
viewpoint.

The rest of this paper is organized as follows. The signal
model is introduced in Section II. Section III formulates the
spatial signature estimation problem in terms of three-way anal-
ysis using time-varying user power loading. The identifiability
of this model is studied in Section IV. Two spatial signature es-
timators are presented in Section V: PARAFAC fitting based on
the trilinear alternating least squares (TALS) regression proce-
dure and a joint approximate diagonalization-based estimator. A
modified deterministic CRB for the problem at hand is derived
in Section VI. Simulation results are presented in Section VII.
Conclusions are drawn in Section VIII.

1Channel-coded signals, which include redundancy for error correction, are
in fact interleaved before transmission, with the goal of making the transmitted
signal approximately uncorrelated.

II. DATA MODEL

Let an array of sensors receive the signals from nar-
rowband sources. We assume that the observation interval is
shorter than the coherence time of the channel (i.e., the sce-
nario is time-invariant), and the time dispersion introduced by
the multipath propagation is small in comparison with the re-
ciprocal of the bandwidth of the emitted signals [5]. Under such
assumptions, the snapshot vector of antenna array outputs
can be written as [5]

(1)

where is the matrix of the user spa-
tial signatures, is the spa-
tial signature of the th user,

is the vector of the equivalent baseband user waveforms,
is the vector of addi-

tive spatially and temporally white Gaussian noise, and de-
notes the transpose. Note that in contrast to direction finding
problems, the matrix is unstructured. Assuming that there is
a block of snapshots available, the model (1) can be written
as

(2)

where is the array data matrix,
is the user waveform matrix,

and is the sensor noise matrix.
A quasistatic channel is assumed throughout the paper. This as-
sumption means that the spatial signatures are block time-in-
variant (i.e., the elements of remain constant over a block of

snapshots).
Assuming that the user signals are uncorrelated with each

other and sensor noise, the array covariance matrix of the re-
ceived signals can be written as

(3)

where is the diagonal covariance matrix of
the signal waveforms, is the sensor noise variance, is the
identity matrix, and denotes the Hermitian transpose.

The problem studied in this paper is the estimation of the
matrix from noisy array observations .

III. PARAFAC MODEL

Before proceeding, we need to clarify that by identifiability,
we mean the uniqueness (up to inherently unresolvable source
permutation and scale ambiguities) of all user spatial signatures
given the exact covariance data. Identifiability in this sense is
impossible to achieve with only one known covariance matrix
(3) because the matrix can be estimated from only up to
an arbitrary unknown unitary matrix [22]. The approach we will
use to provide a unique user spatial signature estimation is based
on an artificial user power loading and PARAFAC model anal-
ysis. Therefore, next, we explain how this model is related to
our problem.

Let us divide uniformly the whole data block of snapshots
into subblocks so that each subblock contains
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snapshots, where denotes the largest integer less than .
We fix the transmit power of each user within each subblock
while changing it artificially2 between different subblocks. It
should be stressed that the proposed artificial time-varying user
power loading does not require precise synchronization among
the users, but the users should roughly know the boundaries of
epochs over which the powers are kept constant (this can be
achieved, for example, using the standard power control feed-
back channel). Therefore, a certain level of user coordination is
required from the transmitter side.3 We stress that the proposed
user power loading can be easily implemented by overlaying a
small power variation on top of the usual power control, without
any other modifications to existing hardware or communication
system/network parameters. In addition, as it will be seen in the
sequel, the user powers need not vary much to enable blind iden-
tification. In particular, power variations that will be used are on
the order of 30%. Such power variations will not significantly
affect the bit error rate (BER), which is seriously affected only
when order-of-magnitude power variations are encountered.

If power control is fast enough (in the sense that there are
several power changes per channel coherence dwell), we can ex-
ploit it as a sort of user power loading. However, power control is
usually much slower than the channel coherence time, because
its purpose is to combat long-term shadowing. For this reason,
in practice, it may not be possible to rely on the power control
variations, and we need to induce a faster (but much smaller in
magnitude) power variation on top of power control. This extra
power variation need not “follow the channel”, i.e., it can be
pseudo-random, and hence, the channel need not be measured
any faster than required for regular power control.

Using the proposed power loading, the received snapshots
within any th subblock correspond to the following covariance
matrix:

(4)

where is the diagonal covariance matrix of the user wave-
forms in the th subblock. Using all subblocks, we will have

different covariance matrices . Note that
these matrices differ from each other only because the signal
waveform covariance matrices differ from one subblock
to another.

In practice, the noise power can be estimated and then
subtracted from the covariance matrix (4). Let us stack the

matrices , together to form a
three-way array , which is natural to call the covariance
array. The th element of such an array can be written as

(5)

2Note that the effect of time-varying user powers has been exploited in [24],
where an ESPRIT-type algorithm has been proposed for blind source separa-
tion of nonstationary sources. Similar ideas have been used in [15] and [25].
However, the authors of [15], [24], and [25] assume that the source powers vary
because of signal nonstationarity rather than artificial power loading.

3As it will be seen from our simulations, the methods proposed in the present
paper will work well, even in the case when there is no user coordination (i.e.,
in the unsynchronized user case).

where is the power of the th user in the
th subblock, and denotes the complex conjugate. Defining

the matrix as

...
. . .

... (6)

we can write the following relationship between and :

(7)

for all . In (7), is the operator that makes
a diagonal matrix by selecting the th row and putting it on the
main diagonal while putting zeros elsewhere.

Equation (5) implies that is a sum of rank-1 triple prod-
ucts. If is sufficiently small,4 (5) represents a low-rank de-
composition of . Therefore, the problem of spatial signature
estimation can be reformulated as the problem of low-rank de-
composition of the three-way covariance array .

IV. PARAFAC MODEL IDENTIFIABILITY

In this section, we study identifiability of the PARAFAC
model-based spatial signature estimation. Toward this end, we
discuss conditions under which the trilinear decomposition
of is unique. Identifiability conditions on the number of
subblocks and the number of array sensors are derived.

We start with the definition of the Kruskal rank of a matrix
[20].

Definition: The Kruskal rank (or -rank) of a matrix is
if and only if every columns of are linearly independent
and either has columns or contains a set of
linearly dependent columns. Note that -rank is always less than
or equal to the conventional matrix rank. It can be easily checked
that if is full column rank, then it is also full rank.

Using (7) and assuming that the noise term is subtracted from
the matrix , we can rewrite (4) as

(8)

for all . Let us introduce the matrix

...

...

(9)

where is the Khatri–Rao (column-wise Kronecker) matrix
product [23].

To establish identifiability, we have to obtain under which
conditions the decomposition (9) of the matrix via matrices

and is unique (up to the scaling and permutation ambi-
guities). In [20], the uniqueness of trilinear decomposition for

4Exact conditions forM are given in the next section.
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the case of real-valued arrays has been established. These re-
sults have been later extended to the complex-valued matrix case
[21]. In the context of our present application, which involves a
conjugate-symmetric PARAFAC model, the results of [20] and
[21] specialize to the following Theorem (see also [28] for a dis-
cussion of the corresponding real-symmetric model).

Theorem 1: Consider the set of matrices (8). If for

(10)

then and are unique up to inherently unresolvable permu-
tation and scaling of columns, i.e., if there exists any other pair

that satisfies (10), then this pair is related to the pair
via

(11)

where is a permutation matrix, and and are diagonal
scaling matrices satisfying

(12)

For , and are always unique, irrespective of (10).
Note that the scaling ambiguity can be easily avoided by

taking one of the array sensors as a reference and normalizing
user spatial signatures with respect to it. The permutation
ambiguity is unremovable, but it is usually immaterial because
typically, the ordering of the estimated spatial signatures is
unimportant.

It is worth noting that condition (10) is sufficient for identi-
fiability and is necessary only if or but is not
necessary if [27]. Furthermore, for , the condi-
tion becomes necessary [26]. In terms of the number of
subblocks, the latter condition requires that

(13)

The practical conclusion is that in the multiuser case, not
less than two covariance matrices must be collected to uniquely
identify , which means that the users have to change their
powers at least once during the transmission. Similarly, it is nec-
essary that .

The following result gives sufficient conditions for the
number of sensors to guarantee almost sure identifiability.5

Theorem 2: Suppose the following.

• The elements of are drawn from distribution
, which is assumed continuous with respect to

the Lebesgue measure in .
• The elements of are drawn from distribution ,

which is assumed continuous with respect to the Lebesgue
measure in .

Then, we have the following.

• For , the value of

(14)

is sufficient for almost sure identifiability.

5The definition of almost sure identifiability in the context discussed is given
in [29].

• For and , the value of

(15)

is sufficient for almost sure identifiability.
Proof: The assumptions of Theorem 2 mean that the fol-

lowing equalities hold almost surely [29]:

rank (16)

rank (17)

Substituting (16) and (17) into (10), we have

(18)

The following cases should be considered:

1) . In this case, . Furthermore, as ,
we have that . Therefore, (18) is always satisfied.

2) ; . In this case, , , and
(18) becomes

(19)

This inequality is equivalent to (14).
3) ; . In this case, , , and

(18) can be written as

(20)

This inequality is equivalent to (15).

V. ESTIMATORS

We will now develop two techniques for blind spatial signa-
ture estimation based on the PARAFAC model of Section III.

In practice, the exact covariance matrices are unavail-
able but can be estimated from the array snapshots ,

. The sample covariance matrices are given by

(21)

These matrices can be used to form a sample three-way covari-
ance array denoted as .

If , then the noise power can be estimated as the
average of the smallest eigenvalues of the matrix

(22)

and the estimated noise component can be subtracted from
subblocks of the sample covariance array . In case ,
noise power can be estimated on system start-up before any
transmission begins.

To formulate our techniques, we will need “slices” of the ma-
trices and along different dimensions [21]. Toward this end,
let us define the “slice” matrices as

(23)

(24)

(25)
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where ; ; and .
Similarly

(26)

(27)

(28)

where ; ; and .

For the sake of convenience, let us introduce and
rewrite (9) as

...
(29)

In the same way, let us define the matrices

...
(30)

...
(31)

and their sample estimates

...
...

...

(32)
Note that for the sake of algorithm simplicity, we will not exploit
the fact that our PARAFAC model is symmetric. For example,
the algorithm that follows in the next subsection treats and

as independent variables; symmetry will only be exploited in
the calculation of the final estimate of .

A. TALS Estimator

The basic idea behind the TALS procedure for PARAFAC fit-
ting is to update each time a subset of parameters using LS re-
gression while keeping the previously obtained estimates of the
rest of parameters fixed. This alternating projections-type pro-
cedure is iterated for all subsets of parameters until convergence
is achieved [19], [21], [23], [30].

In application to our problem, the PARAFAC TALS proce-
dure can be formulated as follows.

• Step 1: Initialize and .
• Step 2: Find the estimate of by solving the following

LS problem:

(33)

whose analytic solution is given by

(34)

where denotes the matrix pseudoinverse. Set .
• Step 3: Find the estimate of by solving the following

LS problem:

(35)

whose analytic solution is given by

(36)

Set .
• Step 4: Find the estimate of by solving the following

LS problem:

(37)

whose analytic solution is given by

(38)

Set .
• Step 5: Repeat steps 2–4 until convergence is achieved,

and then compute the final estimate of as
.

The complexity of the TALS algorithm is
per iteration. It is worth noting that when is small relative
to and , only a few iterations of this algorithm are usually
required to achieve convergence [23].

B. Joint Diagonalization-Based Estimator

Using the idea of [15], we can obtain the estimate of
by means of a joint diagonalizer of the matrices ,

.
The estimator can be formulated as the following sequence

of steps:

• Step 1: Calculate the eigendecomposition of , and find
the estimate of the noise power as the average of the

smallest eigenvalues of this matrix.
• Step 2: Compute the whitening matrix as

(39)

where are the largest (signal-subspace) eigen-
values of , and are the corresponding eigen-
vectors.

• Step 3: Compute the prewhitened sample covariance ma-
trices as

(40)

• Step 4: Obtain a unitary matrix as a joint diagonalizer
of the set of matrices .

• Step 5: Estimate the matrix as

(41)
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Several efficient joint diagonalization algorithms can be used
in Step 4; see [31] and [32]. For example, the complexity of the
ac-dc algorithm of [32] is per iteration.

It should be pointed out that the joint diagonalization-based
estimator requires stronger conditions in terms of the number of
sensors as compared to the TALS estimator. Indeed, is
required for the joint diagonalization algorithms [15] and [32],
whereas this constraint is not needed for TALS.

Both the TALS and joint diagonalization algorithms can be
initialized randomly [23]. Alternatively, if power control is fast
enough (in the sense that there are several power changes per
channel coherence dwell), we can use the fact that the power
changes are known at the base station to initialize the matrix
in TALS. However, as mentioned in Section III, power control
algorithms are usually much slower than the channel coherence
time because their purpose is to combat long-term shadowing.
For this reason, such an initialization of may not be possible.

VI. MODIFIED CRAMÉR–RAO BOUND

In this section, we present a modified deterministic CRB on
estimating the user spatial signatures.6 The model (1) for the th
sample of the th subblock can be rewritten as

(42)
where

(43)

is the vector of normalized signal waveforms, and the normal-
ization is done so that all waveforms have unit powers.

Hence, the observations in the th subblock satisfy the fol-
lowing model:

(44)

where

(45)

The unknown parameters of the model (42) are all entries of
, diagonal elements of , and the noise

power . Note that to make the model (42) identifiable, we
assume that the signal waveforms are known. Therefore, we
study a modified (optimistic) CRB. However, as follows from

6The deterministic CRB is a relevant bound in cases when the signal wave-
forms are unknown deterministic or random with unknown statistics; see, e.g.,
[33] and [34].

our simulation results in the next section, the performance of
the proposed estimators is rather close to this optimistic CRB,
and therefore, this bound is relevant.

In addition, note that the parameter is decoupled with other
parameters in the Fisher information matrix (FIM) [34]. There-
fore, without loss of generality, can be excluded from the
vector of unknown parameters.

A delicate point regarding the CRB for model (42) is the in-
herent permutation and scaling ambiguities. To get around the
problem of scaling ambiguity, we assume that each spatial sig-
nature vector is normalized so that its first element is equal
to one (after such a normalization the first row of becomes
[1, ,1]). To avoid the permutation ambiguity, we assume that
the first row of is known and consists of distinct elements.
Then, the vector of the parameters of interest can be written as

(46)

where

Re Im
(47)

The vector of nuisance parameters can be expressed as

(48)

where is the th row of the matrix .
Using (46) and (48), the vector of unknown parameters can

be written as

(49)

Theorem 3: The
Fisher Information Matrix (FIM) is given by (50),

shown at the bottom of the page, where

Re Im
Im Re

(51)

Re (52)

(53)

...
. . .

... (54)

...
. . .

... (55)

. . .

...
. . .

(50)
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Fig. 1. RMSEs versus N for K = 10 and SNR = 10 dB. First example,
synchronized users.

Re Im

Im Re
(56)

(57)

(58)

Re
Im

(59)

(60)

(61)

(62)

and denotes the Kronecker product.
The spatial signature-related block

of the CRB matrix is given in closed form as

CRB

Re (63)

where the upper-left block of (50) can be expressed as

. . .

Re Im
Im Re

(64)

Proof: See the Appendix.

Fig. 2. RMSEs versus the SNR for K = 10 and N = 1000. First example,
synchronized users.

Fig. 3. BERs versus the SNR for K = 10 and N = 1000. First example,
synchronized users.

The obtained CRB expressions will be compared with the per-
formance of the TALS and joint diagonalization-based estima-
tors in the next section.

VII. SIMULATIONS

In this section, the performance of the developed blind spatial
signature estimators is compared with that of the ESPRIT-like
estimator of [8], the generalized array manifold (GAM) MUSIC
estimator of [5], and the derived modified deterministic CRB.

Although the proposed blind estimators are applicable to gen-
eral array geometries, the ESPRIT-like estimator is based on the
uniform linear array (ULA) assumption. Therefore, to compare
the estimators in a proper way, we assume a ULA of omnidi-
rectional sensors spaced half a wavelength apart and
binary phase shift keying (BPSK) user signals impinging on
the array from the angles and relative to the broadside,
where in each simulation run, and are randomly uniformly
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Fig. 4. RMSEs versus N for K = 10 and SNR = 10 dB. First example,
unsynchronized users.

Fig. 5. RMSEs versus the SNR for K = 10 and N = 1000. First example,
unsynchronized users.

drawn from the whole field of view . Throughout the
simulations, the users are assumed to be synchronized (except
Figs. 4 and 5, where the case of unsynchronized users is con-
sidered), subblocks are used in our techniques (except
Fig. 10, where is varied), and the user powers are changed
between different subblocks uniformly with a constant power
change factor (PCF) of 1.2 (except Fig. 9, where the PCF is
varied). Note that SNR , where SNR is
the average user SNR in a single sensor, is the matrix whose
elements are all equal to one, is a random matrix whose ele-
ments are uniformly and independently drawn from the interval
[ 0.5,0.5], and it is assumed that .

To implement the PARAFAC TALS and joint diagonaliza-
tion-based estimators, we use the COMFAC algorithm of [30]
and AC-DC algorithm of [32], respectively. Throughout the sim-
ulations, both algorithms are initialized randomly. The stopping
criterion of the TALS algorithm is the relative improvement in
fit from one iteration to the next. The stopping criterion of the

joint diagonalization algorithm is the relative improvement in
joint diagonalization error. The algorithms are stopped if such
errors become small. Typically, both algorithms converged in
less than 30 iterations.

In most figures, the estimator performances are compared in
terms of the root-mean-square error (RMSE)

RMSE (65)

where is the number of independent simulation runs,
and is the estimate of obtained from the th run. Note
that permutation and scaling of columns is fixed by means of
a least-squares ordering and normalization of the columns of

. A greedy least-squares algorithm [21] is used to match
the (normalized) columns of to those of . We first form
an distance matrix whose th element contains
the Euclidean distance between the th column of and the

th column of . The smallest element of this distance matrix
determines the first match, and the respective row and column
of this matrix are deleted. The process is then repeated with the
reduced-size distance matrix.

The CRB is averaged over simulation runs as well.
To verify that the RMSE is a proper performance measure

in applications to communications problems, one of our figures
also illustrates the performance in terms of the BER when the
estimated spatial signatures are used together with a typical de-
tection strategy to estimate the transmitted bits.

Example 1—Unknown Sensor Gains and Phases: Following
[8], we assume in our first example that the array gains and
phases are unknown, i.e., the received data are modeled as (2)
with

where is the matrix of nominal (plane-wavefront)
user spatial signatures, and is the diagonal matrix
containing the array unknown gains and phases, i.e.,

diag . The unknown gains
are independently drawn in each simulation run

from the uniform random generator with the mean equal to
and standard deviation equal to one, whereas the unknown

phases are independently and uniformly drawn
from the interval .

Fig. 1 displays the RMSEs of our estimators and the ESPRIT-
like estimator of [8] along with the CRB versus for ,
and SNR dB. Fig. 2 shows the performances of the same
estimators and the CRB versus the SNR for and

.
Fig. 3 illustrates the performance in terms of the BER when

the estimated spatial signatures are used to detect the transmitted

bits via the zero-forcing (ZF) detector given by sign .
To avoid errors in computing the pseudoinverse of the matrix ,

the runs in which was ill-conditioned have been dropped.
The resulting BERs are displayed versus the SNR for
and . Additionally, the results of the so-called clair-
voyant ZF detector sign are displayed in this figure.
Note that the latter detector corresponds to the ideal case when
the source spatial signatures are exactly known, and therefore,
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Fig. 6. RMSEs versus N for K = 4 and SNR = 10 dB. First example,
synchronized users.

Fig. 7. RMSEs versus the SNR for K = 4 and N = 1000. First example,
synchronized users.

it does not correspond to any practical situation. However, its
performance is included in Fig. 3 for the sake of comparison as
a benchmark.

To demonstrate that the proposed techniques are insensitive
to user synchronization, Figs. 4 and 5 show the RMSEs of the
same methods and in the same scenarios as in Figs. 1 and 2,
respectively, but for the case of unsynchronized users.7

To evaluate the performance with a smaller number of sen-
sors, Fig. 6 compares the RMSEs of the estimators tested versus

for and SNR dB. Fig. 7 displays the per-
formances of these estimators versus the SNR for and

.
To illustrate how the performance depends on the number of

sensors, the RMSEs of the estimators tested are plotted in Fig. 8
versus . Figs. 9 and 10 compare the performances of the pro-
posed PARAFAC estimators versus the PCF and the number

7That is, the user powers vary without any synchronization between the users.

Fig. 8. RMSEs versus K for SNR = 10 dB and N = 1000. First example,
synchronized users.

Fig. 9. RMSEs versus the PCF for SNR = 10 dB and N = 1000. First
example, synchronized users.

of subblocks , respectively. In these figures, and
SNR dB.

Example 2—Unknown Coherent Local Scattering: In our
second example, we address the scenario where the spatial sig-
nature of each nominal (plane-wavefront) user is distorted by
local scattering effects [17], [18]. Following [35], the th user
spatial signature is formed in this example by five signal paths
of the same amplitude including the single direct path and four
coherently scattered paths. Each of these paths is characterized
by its own angle and phase. The angle of the direct path is equal
to the nominal user DOA, whereas the angles of scattered paths
are independently drawn in each simulation run from a uniform
random generator with the mean equal to the nominal user
DOA and the standard deviations equal to 8 and 10 for the
first and second users, respectively. The path phases for each
user are uniformly and independently drawn in each simulation
run from the interval .
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Fig. 10. RMSEs versus P for SNR = 10 dB and N = 1000. First example,
synchronized users.

Fig. 11. RMSEs versus N forK = 10 and SNR = 10 dB. Second example,
synchronized users.

Note that in the second example, it is improper to compare
the proposed techniques with the ESPRIT-like estimator of [8]
because the latter estimator is not a relevant technique for the
scenario considered. Therefore, in this example, we compare
our techniques to the GAM-MUSIC estimator of [5].

Fig. 11 displays the performance of the spatial signature esti-
mators tested versus the number of snapshots for and
SNR dB. Note that the SNR is defined here by taking into
account all signal paths. The performance of the same methods
versus the SNR for and is displayed in
Fig. 12.

Discussion: Our simulation results clearly demonstrate that
the proposed blind PARAFAC spatial signature estimators
substantially outperform the ESPRIT-like estimator and the
GAM-MUSIC estimator. These improvements are especially
pronounced at high values of SNR, number of snapshots, and
number of sensors.

Fig. 12. RMSEs versus the SNR for K = 10 and N = 1000. Second
example, synchronized users.

Comparing Figs. 1 and 2 with Figs. 4 and 5, respectively,
we observe that the requirement of user synchronization is not
critical to the performance of both the TALS and joint diag-
onalization-based algorithms. As a matter of fact, the perfor-
mances of these techniques do not differ much in the cases of
synchronized and unsynchronized users. This means that our
techniques can easily accommodate intercell interference, pro-
vided that out-of-cell users also play up and down their powers,
because the fact that out-of-cell users will not be synchronized
is not critical performance-wise.

From Fig. 9, it is clear that the performance of the proposed
techniques can be improved by increasing the PCF. This figure
clarifies that the performance improvements of our estimators
over the ESPRIT-like estimator are achieved by means of using
the power loading proposed. From Fig. 9, it follows that even
moderate values of PCF (1.2 1.4) are sufficient to guarantee
that the performances of the proposed PARAFAC estimators are
comparable with the CRB and are substantially better than that
of the ESPRIT-like estimator.

From Fig. 10, we can observe that the performance of the pro-
posed PARAFAC estimators is also improved when increasing
the number of subblocks while keeping the total block length
fixed. However, this is only true for small numbers of ; for

, curves saturate. Note that this figure makes it clear that
even a moderate number of subblocks is sufficient
to guarantee that the performance is comparable with the CRB
and is better than that of the ESPRIT-like estimator. We stress
that the effects of the PCF and cannot be seen from the CRB
in Figs. 9 and 10 because the time-averaged user powers and the
total number of snapshots do not change in these figures.

Figs. 11 and 12 show that both the TALS and joint-diago-
nalization based estimators substantially outperform the GAM-
MUSIC estimator if the values and SNR are sufficiently high.
Interestingly, the performance of GAM-MUSIC does not im-
prove much when increasing or SNR. This observation can
be explained by the fact that the GAM-MUSIC estimator is bi-
ased. Note that from Fig. 11, it follows that GAM-MUSIC may
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perform better than the proposed PARAFAC estimators in the
case when is small because the power loading approach does
not work properly if there are only a few snapshots per subblock
(in this case, the covariance matrix estimates for each subblock
become very poor).

Interestingly, as it follows from Fig. 3, the proposed
PARAFAC-based techniques combined with the zero forcing
(ZF) detector have the same BER slope as the clairvoyant ZF
detector, whereas the performance losses with respect to the
latter detector do not exceed 3 dB at high SNRs.

There are several reasons why the proposed techniques per-
form better than the ESPRIT-like algorithm. First of all, even in
the case when the array is fully calibrated, the performance of
ESPRIT is poorer than that of MUSIC and/or maximum like-
lihood (ML) estimator because ESPRIT does not take advan-
tage of the full array manifold but only of the array shift-invari-
ance property. Second, our algorithm takes advantage of the user
power loading, whereas the ESPRIT-like algorithm does not.

As far as the comparison GAM-MUSIC method is con-
cerned, better performances of the proposed techniques can
be explained by the above-mentioned fact that GAM-MUSIC
uses the first-order Taylor series approximation, which is only
adequate for asymptotically small angular spreads. As a result,
the GAM-MUSIC estimator is biased. In addition, similarly to
the ESPRIT-like algorithm, GAM-MUSIC does not take any
advantage of the user power loading.

Although the performances of the proposed estimators can
be made comparable to the CRB with proper choice of PCF and
system parameters, they do not attain the CRB. This can be par-
tially attributed to the fact that the modified CRB is an optimistic
one in that it assumes knowledge of the temporal source signals,
which are unavailable to the blind estimation algorithms. Fur-
thermore, the TALS estimator does not exploit the symmetry
of the model , whereas joint diagonalization re-
lies on an approximate prewhitening step. Both methods rely
on finite-sample covariance and noise-power estimates. This ex-
plains the observation that the CRB cannot be attained.

VIII. CONCLUSIONS

The problem of blind user spatial signature estimation
using the PARAFAC analysis model has been addressed. A
time-varying user power loading in the uplink mode has been
proposed to make the model identifiable and to enable the ap-
plication of the PARAFAC analysis model. Identifiability issues
and the relevant modified deterministic CRB have been studied,
and two blind spatial signature estimation algorithms have been
presented. The first technique is based on the PARAFAC fitting
TALS regression, whereas the second one makes use of joint
matrix diagonalization. These techniques have been shown to
provide better performance than the popular ESPRIT-like and
GAM-MUSIC blind estimators and are applicable to a much
more general class of scenarios.

APPENDIX

PROOF OF THEOREM 3

The th element of the FIM is given by [34]

FIM Re

(66)
Using (45) along with (66), we have

Re
(67)

Im
(68)

(69)

where is the vector containing one in the th position and
zeros elsewhere.

Using (67) and (68) along with (66), we obtain that

(70)

Re

Re (71)

where

(72)

Similarly

Im (73)

Therefore

Re Re

...
. . .

...
Re Re

Re (74)
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and

...
. . .

...

(75)

Using (74) and (75), we obtain (51). Note that the right-hand
side of (51) does not depend on the index . Hence

. . .

Re Im
Im Re

(76)

Next, using (69) along with (66), we can write, for
and

Re

Re (77)

where

(78)

Stacking all elements given by (77) in one matrix, we have

Re Re
...

. . .
...

Re Re

Re (79)

Finally, using (67)–(69) along with (66), we can write for
; and

Collecting all elements given by the last two equa-
tions in one matrix, we obtain

Re

Im

...
Re

Im
(80)

Observing that

Re

Im

Re Im

Im Re

Re

Im

(81)

we can further simplify (80) to

(82)

In addition, note that

(83)

Using (76), (79), (82), and (83), we obtain the expressions
(50)–(62).

Computing the CRB for requires the inverse of the
matrix (50).

Our objective is to obtain the CRB associated with the vector
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parameter only, avoiding the inverse of the full FIM matrix.
Exploiting the fact that the lower right subblock

. . . (84)

of (50) is a block-diagonal matrix and using the partitioned ma-
trix inversion lemma (see [34, p. 572]), after some algebra, we
obtain (63) and (64), and the proof is complete.
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