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ABSTRACT

Traditional receiver algorithms developed for multiple-in-

put multiple-output (MIMO) wireless systems are based on

the assumption that the channel state information (CSI) is

precisely known at the receiver. However, in real environ-

ments the exact CSI may be unavailable. In this paper, we

address the problem of robustness of multi-access space-

time block coded (STBC) MIMO systems against imperfect

CSI. We propose a class of linear receivers which guaran-

tee the robustness against CSI errors with a certain selected

probability. The proposed formulations of robust receivers

are given by probability-constrained optimization problems

which can be simplified to convex forms. The latter convex

problems can be efficiently solved using standard optimiza-

tion methods.

1. INTRODUCTION

In uplink cellular communications with multiple receive an-

tennas at the base station and transmit antennas at each mo-

bile station, spatial diversity techniques can be employed to

increase the capacity [1] and improve the immunity to fad-

ing [2], [3]. Among numerous space-time codes developed

up to date, orthogonal space-time block codes (OSTBCs)

[2], [3] are particularly attractive for practical applications

because they enable a very simple (linear) maximum like-

lihood (ML) decoding in the point-to-point communication

case and, at the same time, achieve the full diversity order.

Unfortunately, in the multi-access MIMO case, the opti-

mal ML receiver becomes prohibitively expensive and, hen-

ce, suboptimal linear multiuser receivers have gained re-

cently much interest as computationally attractive alterna-

tives [4], [5]. However, most of known multi-access MIMO

receivers assume the exact knowledge of the channel state

information (CSI) of at least the user of interest. When the

exact CSI is unavailable, the performance of these receivers

may degrade severely.

Motivated by the latter fact, the problem of robust lin-

ear multiuser MIMO receiver design has been recently ad-

dressed in [6], where the worst-case optimization approach

[7] has been used to improve the robustness of the minimum

variance (MV) receivers of [5] against the CSI mismatches.

However, the worst-case approach appears to be overly pes-

simistic and, therefore, it may lead to unnecessary perfor-

mance degradation.

In this paper, we propose a class of robust linear multi-

user MIMO receivers which are less conservative than the

worst-case receivers of [6]. They guarantee the robustness

against CSI errors with a certain selected probability. The

earlier (high-complexity) versions of such receivers have

been reported in [8]. The mathematical formulation of the

receiver design problem is given in terms of probability-

constrained stochastic optimization problem (the so-called

chance programming) [9]. We prove the convexity of the

corresponding stochastic optimization problems and deve-

lop techniques to solve them, based on the assumption that

the CSI mismatch is Gaussian. They convert the original

stochastic optimization problems into the second-order cone

programming (SOCP) problems which can be efficiently

solved using modern convex optimization methods [10].

2. BACKGROUND

Let us consider an uplink multiuser MIMO communication

system. The transmitters are assumed to have the same

number of antennas and to encode information-bearing sym-

bols using the same OSTBC1. The received signal is given

by

Y =

I∑

i=1

XiHi + V (1)

where

Y , [yT (1) · · · yT (T )]T

Xi , [xT

i
(1) · · · xT

i
(T )]T

V , [vT (1) · · · vT (T )]T

are the matrices of the received signals, transmitted signals

of the ith transmitter, and white Gaussian noise, respec-

tively; Hi is the N × M complex channel matrix between

1These assumptions are only needed for notational simplicity and can

be relaxed [5].
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the ith transmitter and the receiver; I is the number of trans-

mitters; T is the block length; and (·)T denotes the trans-

pose. Here

y(t) , [y1(t) · · · yM (t)]

xi(t) , [xi,1(t) · · · xi,N (t)]

v(t) , [v1(t) · · · vM (t)]

are the complex row vectors of the received signals, trans-

mitted signals of the ith transmitter, and noise, respectively.

We denote the complex information-bearing symbols of

the ith transmitter prior to space-time encoding as si ,

[si,1 · · · si,K ]T . It can be readily verified that the matrix

X(si) can be written as [11], [12]

X(si) =
K∑

k=1

(CkRe{si,k} + DkIm{si,k}) (2)

where Ck , X(ẽk), Dk , X(jẽk), j =
√

−1 and ẽk is

the K × 1 vector having one in the kth position and zeros

elsewhere. Using (2), one can rewrite (1) as [5], [12]

Y =

I∑

i=1

A(Hi)si + V (3)

where the “underline” operator for any matrix P is defined

as

P =

[
vec(Re{P })
vec(Im{P })

]
(4)

vec(·) is the vectorization operator stacking all columns of a

matrix on top of each other, and the 2MT × 2K real matrix

A(Hi) is defined as [5], [12]

A(Hi) , [C1Hi · · · CKHi D1Hi · · · DKHi]

, [a1(Hi) · · · a2K(Hi)].

Without any loss of generality, we can assume that the first

user is the desired one. The estimate of the data vector ŝ1 at

the output of a linear receiver can be expressed as [5]

ŝ1 = W T Y

where W = [w1 · · · w2K ] is the 2MT ×2K real matrix of

the receiver weight coefficients, and wk is the 2MT ×1 real

weight vector that corresponds to decoding the kth entry of

s1. The problem is to find the matrix W that separates the

signals from different users.

The similarity of the vectorized multiple-access MIMO

model (3) and models used in array processing gives an op-

portunity to design the matrix W using the MV principle.

In particular, in [5] it has been proposed to estimate each

entry of s1 by minimizing the receiver output power while

preserving a unity gain for this particular entry of s1, that

is,

min
wk

wT

k
R̂wk subject to aT

k
(H1)wk = 1 (5)

for all k = 1, . . . , 2K, where

R̂ =
1

J

J∑

i=1

Y i Y i
T

is the sample estimate of the 2MT ×2MT full rank covari-

ance matrix R , E{Y Y T
} of the vectorized data, Y i is

the ith received data block, and E{·} denotes the statistical

expectation.

The solution to (5) is given by [5]

wk =
1

aT

k
(H1)R̂

−1

ak(H1)
R̂

−1

ak(H1) (6)

for k = 1, . . . , 2K.

To incorporate the self-interference cancellation feature

into (5), it has been proposed in [5] to use additional zero-

forcing constraints wT

k
al(H1) = 0 for all l 6= k. These

constraints guarantee that self-interference is completely re-

jected. With such additional constraints, the problem (5) can

be reformulated as

min
W

tr{W T R̂W } subject to AT (H1)W = I2K

(7)

where tr{·} denotes the trace of a matrix. The solution to

(7) can be written in the form of the following MV receiver

[5]

W MV = R̂
−1

A(H1)(A
T (H1)R̂

−1

A(H1))
−1

. (8)

To improve the performance of (5) and (7) in case of

small sample size, it has been additionally proposed in [5]

to apply ad hoc diagonal loading, i.e., to use matrix R̂ +
νI2MT instead of R̂ in (6) and (8), where ν is the diagonal

loading factor.

It can be seen from (5) and (7) that the MV receivers re-

quire the CSI of the user of interest. However, in practice, it

is unrealistic to obtain the exact CSI at the receiver. There-

fore, the performance of the MV receivers may be subject to

a severe degradation due to CSI imperfections. To improve

the robustness of these receivers against CSI errors, mod-

ifications of (5) and (7) based on worst-case performance

optimization have been proposed in [6], [13]. However, the

worst-case approach may be overly pessimistic because the

probability of occurrence of the worst-case mismatch may

be quite low. Therefore, it may lead to unnecessary per-

formance degradation. In this paper, we develop another,

less conservative approach to robust linear MIMO receivers

design which is based on stochastic programming [9].
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3. ROBUST LINEAR RECEIVERS BASED ON

STOCHASTIC PROGRAMMING

Let us consider the CSI error matrix ∆i , Hi − Ĥi where

Hi and Ĥi denote the true channel matrix of the ith user

and its estimate, respectively. Using the notations of model

(3), we can write

ek(∆i) , ak(Hi) − ak(Ĥi) = F kHi − F kĤi

= F k∆i (9)

for all k = 1, . . . , 2K, where

F k =

{
Ck, k = 1, . . . ,K

Dk−K , k = K + 1, . . . , 2K.

Note, that the last equality in (9) follows from the linearity

of underline operator (4).

Let us obtain the receiver coefficient vector wk for the

kth entry of s1 as the solution of the following probability-

constrained optimization problem

min
wk

wT

k
R̂wk (10)

s.t. Pr{wT

k
(ak(Ĥ1) + ek(∆1)) ≥ 1} ≥ p (11)

where p is a certain probability value which should be se-

lected according to the quality of service (QoS) require-

ments, and Pr{·} denotes the probability operator whose

form is assumed to be known. It is important to note that

the probability bound p in the problem (10)-(11) can be se-

lected from the interval (0, 1) and it determines the amount

of channel mismatch that is allowed at the receiver.

In the formulation (10)-(11), the receiver output power

is minimized, while the distortionless response for kth entry

of s1 is kept with a certain probability. Problem (10)-(11) is

called in the optimization literature the chance-constrained

or probability-constrained stochastic programming problem

[9]. The constraint (11) can be also called non-outage prob-

ability constraint.

THEOREM 1: If [∆i]n,m ∼ CN (0, σ2

h
), where CN (·, ·)

stands for complex Gaussian distribution, and p ∈ (0.5, 1),
then the optimization problem (10)-(11) is convex.

PROOF: The objective function (10) is a quadratic func-

tion of wk, and R̂ is positive definite. Therefore, (10) is

convex.

Now we prove that the constraint (11) is also convex

under the assumptions of the theorem. First, we note that

ek(∆i) depends linearly on ∆i. Indeed, applying the un-

derline operator (4) to (9) and using well-known properties

of Kronecker product (denoted hereafter as ⊗) and vec(·)
operation, we can write that

ek(∆i) =

[
vec(Re{F k∆i})
vec(Im{F k∆i})

]
(12)

=

[
Re{IM ⊗ F k} −Im{IM ⊗ F k}

Im{IM ⊗ F k} Re{IM ⊗ F k}

][
vec(Re{∆i})
vec(Im{∆i})

]
.

Thus, (12) explicitly shows that ek(∆i) is a linear combi-

nation of the real and imaginary parts of the elements of the

channel mismatch matrix ∆i. If the elements of ∆i are un-

correlated and have circular complex Gaussian distribution

[∆i]n,m∼CN (0, σ2

h
), n = 1, . . . N, m = 1, . . . ,M

then, using (12), we find that ek(∆i) has multivariate real

Gaussian distribution

ek(∆i)∼N
(
02MT ,

σ
2

h

2
(I2M ⊗ GkGT

k
)
)

where N (·, ·) stands for real Gaussian distribution, and

Gk =

{
Ck, k = 1, . . . ,K

Im{Dk−K}, k = K + 1, . . . , 2K.

Since only ek(∆i) is a random variable in the prod-

uct wT

k
(ak(Ĥi) + ek(∆i)), and both wk and ak(Ĥi) are

deterministic values, the random variable wT

k
(ak(Ĥi) +

ek(∆i)) has real Gaussian distribution

wT

k
(ak(Ĥi) + ek(∆i)) ∼

N

(
wT

k
ak(Ĥi),

σ
2

h

2
‖(I2M ⊗ GT

k
)wk‖

2

)
(13)

where ‖ · ‖ denotes the Euclidian norm of a vector.

Using the standard error function for Gaussian distribu-

tion

erf(x) =
2
√

π

∫
x

0

e
−t

2

dt (14)

the left hand side of the constraint (11) can be written as

Pr{wT

k
(ak(Ĥ1) + ek(∆1)) ≥ 1} =

1

2
−

1

2
erf

(
1 − wT

k
ak(Ĥ1)

σh‖(I2M ⊗ GT

k
)wk‖

)
. (15)

Substituting (15) into (11), after some straightforward ma-

nipulations, we obtain the following constraint

erf

(
wT

k
ak(Ĥ1) − 1

σh‖(I2M ⊗ GT

k
)wk‖

)
≥ 2p − 1. (16)

If p > 0.5, then (16) is convex and can be written as

σh‖(I2M ⊗ GT

k
)wk‖ ≤

wT

k
ak(Ĥ1) − 1

erf−1(2p − 1)
(17)

where erf−1(·) denotes the inverse error function. The con-

straint (17) is called second-order cone (SOC) constraint.

Summarizing, both the objective function and the con-

straint are convex. Therefore, the problem (10)-(11) is con-

vex. �
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Although the problem (10)-(11) is convex, it is nonlin-

ear and does not have closed-form solution. However, it can

be equivalently converted to the following SOCP problem

min
wk,χ

χ (18)

s.t. ‖Zwk‖ ≤ χ (19)

σh‖(I2M ⊗ GT

k
)wk‖ ≤

wT

k
ak(Ĥ1) − 1

erf−1(2p − 1)
(20)

where

R̂ = ZT Z (21)

is the Cholesky factorization of R̂.

Using the standard optimization tools [15], the prob-

lem (18)-(20) can be solved with the complexity order of

O(M3
T

3) [14].

It is interesting to note that for the Alamouti code [2],

the constraint (20) is equivalent to

erf−1(2p − 1)σh‖wk‖ ≤ wT

k
ak(Ĥ1) − 1 . (22)

The expression (22) follows directly from the fact that for

the Alamouti code GkGT

k
= I2.

It is important to establish a connection between the re-

ceiver (18)-(20) for the case of the Alamouti code and the

receiver developed in [6] based on the worst-case approach.

The latter receiver can be represented as the following opti-

mization problem

min
wk,χ

χ (23)

s.t. ‖Zwk‖ ≤ χ (24)

ε‖wk‖ ≤ wT

k
ak(Ĥ1) − 1 (25)

where ε is a constant which bounds the uncertainty region of

the CSI mismatch, i.e., ‖∆1‖ ≤ ε. The problem (23)-(25)

is equivalent to the problem (18)-(20) if (20) is substituted

by (22) and if

ε = erf−1(2p − 1)σh . (26)

Equation (26) shows the link between the probability p (wh-

ich is used in the proposed approach) and the parameter ε of

the worst-case-based receivers design in the case of Alam-

outi code.

In the problem (10)-(11), the self-interference and multi-

access interference are suppressed by minimizing the objec-

tive function (10). However, the guaranteed self-interfer-

ence suppression is very important for the performance of

multiuser MIMO receivers. See the discussion in [5]. Moti-

vated by this, we propose to suppress self-interference with

a certain selected probability, similar to the way how the

distortionless response is maintained in the problem (10)-

(11). With such additional constraints, the new problem can

be written as

min
wk,δ

wT

k
R̂wk + ‖δ‖2 (27)

s.t. Pr{wT

k
(ak(Ĥ1) + ek(∆1)) ≥ 1} ≥ p, (28)

Pr{σ1|w
T

k
(al(Ĥ1) + el(∆1))| ≤ δl} ≥ p, (29)

l = 1, . . . , 2K, l 6= k

where δ = [δ1, . . . , δk−1, δk+1, · · · , δ2K ]T is the (2K −

1) × 1 vector whose values limit the contribution of self-

interference, and σ1 is the standard deviation of the wave-

form of the desired user.

THEOREM 2: If [∆i]n,m ∼ CN (0, σ2

h
) and p ∈ (0.5, 1),

then the optimization problem (27)-(29) is convex.

PROOF: The objective function (27) is obviously con-

vex. It has been proven earlier in this paper that the con-

straint (28) is convex if [∆i]n,m ∼ CN (0, σ2

h
) and p ∈

(0.5, 1). Moreover, it has been proven in [8] that the con-

straints (29) are also convex if [∆i]n,m ∼ CN (0, σ2

h
) and

p ∈ (0.5, 1). Therefore, the problem (27)-(29) is convex. �

The problem (27)-(29) can be simplified to SOCP prob-

lem [10], [14] in the following way. Let us use the Cholesky

factorization of R̂ (21) and introduce a new vector

ζ , [(Zwk)T
, δ

T ]T .

Then, minimizing ‖ζ‖ is equivalent to minimizing (27).

The deterministic equivalent form of the constraint (28)

is given by (17), which is a SOC constraint. However, the

constraints (29) can not be equivalently converted to SOC

constraints. To enable such conversion, we apply the Cheby-

shev inequality to the constraint (29). The latter inequality

states that for any random variable ξ and any positive real

number α,

P{|ξ| ≥ α} ≤

E{ξ2
}

α2
. (30)

Since the constraints (29) share the same structure, we fur-

ther discuss only the lth constraint pointing that the same

manipulations can be applied to other constraints. Under

the assumption that el(∆1) has Gaussian distribution, we

have

E{|wT

k
(al(Ĥ1) + el(∆1))|

2
} = wk

T Q
l
(Ĥ1)wk (31)

where

Q
l
(Ĥ1) , al(Ĥ1)a

T

l
(Ĥ1) +

σ
2

h

2
(I2M ⊗ GlG

T

l
).

Applying (30) and (31) to the lth constraint of (29), we

obtain

σ
2

1
wT

k
Q

l
(Ĥ1)wk ≤ (1 − p)δ2

l
. (32)

Finally, the constraint (32) can be converted into the fol-

lowing SOC constraint

σ1‖T
T

l
(Ĥ1)wk‖ ≤

√
(1 − p)δl
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Fig. 1. SER versus SNR; First example.

where T l(Ĥ1)T
T

l
(Ĥ1) = Q

l
(Ĥ1). Then, the optimiza-

tion problem (27)-(29) can be relaxed to the following SOCP

problem

min
wk,δ,τ

τ (33)

s.t. ‖ζ‖ ≤ τ (34)

σh‖(I2M ⊗ GT

k
)wk‖ ≤

wT

k
ak(Ĥ1) − 1

erf−1(2p − 1)
(35)

σ1‖T
T

l
(Ĥ1)wk‖ ≤

√
(1 − p)δl (36)

l = 1, . . . , 2K, l 6= k.

Note that the relaxed problem (33)-(36) can be easily

solved using standard and highly efficient interior-point me-

thods, for example, using SeDuMi package [15]. Using the

primal-dual potential reduction method, the problem (33)-

(36) can be solved with the complexity order O(M3
T

3
K

3)
[14].

4. SIMULATIONS

An uplink cellular communication system with multiple tra-

nsmitters is simulated in this section. Throughout the simu-

lations, we assume a single receiver equipped with M = 8
antennas. The number of transmitters varies in different

simulation examples. The interfering transmitters use the

same OSTBC as the transmitter of interest. The interfer-

ence-to-noise ratio (INR) is equal to 20 dB and the QPSK

modulation scheme is used. The MIMO channel between

the ith transmitter and the receiver is assumed to be quasi-

static Rayleigh flat fading with [Hi]n,m ∼ CN (0, 1). The

channel mismatch ∆i is assumed to be independent on Hi

with [∆i]n,m ∼ CN (0, σ2

h
). We set σ

2

h
= 0.1.
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Fig. 2. SER versus SNR; Second example.

The following receivers are compared in terms of sym-

bol error rates (SERs): the proposed SOCP-based receiver

(33)-(36), the worst-case-based receiver (see equation (46)

in [6]), and the diagonally loaded MV (DLMV) receiver

with diagonal loading factors ν = 10σ2

v
, where σ

2

v
is the

noise variance. The probability p in the proposed robust re-

ceivers is set to be equal to 0.99. For the worst-case-based

receiver, ε = 7σh, as suggested in [6]. 300 Monte Carlo

runs are used to obtain each point in the simulations.

In our first example, we simulate a scenario with I = 2
transmitters. Each transmitter uses N = 2 antennas. The

Alamouti code [2] is applied. Fig. 1 compares aforemen-

tioned receivers in terms of SER versus SNR for J = 35.

In the second example, a scenario with I = 4 trans-

mitters, where each transmitter is equipped with N = 3
antennas, is simulated. The half rate (K = 4, T = 8) OS-

TBC from [3] is used. Fig. 2 shows the SER performance of

the aforementioned methods versus SNR when J is equal to

130.

Figs. 1 and 2 clearly demonstrate that the proposed ro-

bust receiver consistently enjoy the best performance as com-

pared with other methods tested. Moreover, the proposed

receiver (33)-(36) outperforms the worst-case-based receiver,

especially in low and medium SNRs regions.

5. CONCLUSIONS

A new approach to design robust linear receivers for multi-

access space-time block coded MIMO wireless communi-

cation systems has been proposed. The receivers designed

based on this approach provide the robustness against CSI

errors with a certain selected probability, which can be de-

termined according to a given QoS. Such receivers can be
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written in terms of stochastic optimization problems with

probability constraints. Two such problems were formu-

lated and the connection of one of them to the receiver de-

signed based on the worst-case approach [6] has been shown.

Simulation results demonstrate an improved performance of

the proposed robust receiver as compared to other known re-

ceivers in the presence of CSI errors.
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