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Abstract—In this paper, we present a new wearable mul-
tichannel phonocardiography (PCG) and electrocardiography
(ECG) device for cardiovascular disease (CVD) pre-screening
and monitoring developed recently by researchers at Curtin
University in collaboration with Ticking Heart, a health-tech
start-up. An iterative Wiener filter based noise cancelation
algorithm is proposed to improve the integrity of heart sound
signals. We show that compared with an existing approach, the
proposed algorithm has a better performance in suppressing
the noise at 200-300 Hz. A convolutional neural network based
classifier is implemented which exploits both the ECG and PCG
signals to improve the pre-screening accuracy of CVD.

Index Terms—auscultation, cardiovascular disease, electrocar-
diography, phonocardiography.

I. INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mor-
tality and morbidity in the world, contributing 32% towards
all global deaths [1]. Early diagnosis of CVD is important to
prevent further development of this disease. Standard methods
for diagnosis of CVD such as coronary angiography and
myocardial perfusion imaging require specialized equipment
and clinical setting. Although these methods are effective in
diagnosing CVD, they are highly costly and expose patients
to radiation.

On the other hand, heart auscultation is a cost-effective
noninvasive tool for the pre-screening of CVD. However, the
heart sound acquired by a stethoscope is often contaminated
by various internal and external noises, making it hard for
the human auditory system to identify abnormal heart sounds
related to CVD. With the aid of computer technology and
highly sensitive electronics, digital stethoscopes can be used
to detect sounds that are low in volume which can be below the
human hearing threshold. As a result, phonocardiogram (PCG)
signal processing combined with computer-aided classification
attract much interest over the last decade.

Sub-band based spectral features have been proposed in [2]
to classify coronary artery disease using multi-channel PCG
signals. A deep learning-based classifier for detecting abnor-
mal heart sounds has been developed in [3]. A large public

database was created for the 2016 PhysioNet/Computing in
Cardiology (CIC) challenge to classify normal and abnormal
heart sound recordings [4]. In [5], an adaptive noise cancela-
tion algorithm has been proposed and analyzed in detecting
coronary artery disease using PCG.

In this paper, we present a multi-channel PCG and elec-
trocardiography (ECG) based CVD pre-screening instrument,
developed by researchers at Curtin University in collaboration
with Ticking Heart, a health-tech start-up. With the aid of
a background-noise microphone integrated into each digital
stethoscope, an iterative Wiener filter based signal processing
method is proposed to suppress the environmental noise to
improve the integrity of the recorded heart sound signal.
Experiment results show an improved noise suppression ca-
pability of the proposed algorithm. Moreover, we develop a
convolutional neural network (CNN) based CVD classifier
using both the PCG and ECG signals, which achieves a higher
classification specificity and accuracy compared with classifier
based on only the PCG signals.

The rest of the paper is organized as follows. An in-
troduction of the multichannel PCG and ECG instrument
is presented in Section II. An iterative Wiener filter based
PCG noise cancelation algorithm is proposed in Section III
to improve the integrity of the signal-of-interest. A CNN
based CVD classification algorithm is presented in Section IV.
Conclusions are drawn in Section V.

II. MULTICHANNEL PCG AND ECG INSTRUMENT

A multichannel PCG and ECG measurement system has
been built by Ticking Heart [6], a health-tech start-up. The
system incorporates six digital stethoscopes and one three-
lead ECG sensor onto a wearable vest that simultaneously
measures heart sound signals (see Fig. 1) and applies machine
learning methodologies for pre-screening CVD. The digital
stethoscopes are placed in clinically advised positions. All
signals from the stethoscopes and the ECG sensor are routed
to a data collection board shown in Fig. 1. Compared with
systems having only a single stethoscope or two stethoscopes
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Fig. 1. Prototype wearable vest holding six digital stethoscopes and one
three-lead ECG sensor.

[7], using multiple stethoscopes can improve the performance
of classification [2]. Moreover, multichannel PCG and ECG
signal processing has potential to separate the heart sound
signals with a stronger mapping to the cause of the signal
waveform.

Each stethoscope has two microphones, where one is the
heart-sensor microphone (HM) located behind a diaphragm
(facing towards chest), and the other one is the background-
noise microphone (BNM) located at the other end of the
stethoscope (facing away from chest). The HM acquires the
heart signal plus part of the background noise, while the
BNM mainly picks up the background noise. Using such two-
microphone configuration, the background noise can be re-
duced from the HM, which contributes to successful diagnosis
techniques, as acquired signals from the system are cleaner
with higher signal integrity.

An example of the PCG and ECG signals measured simul-
taneously by the first author from the six digital stethoscopes
and one ECG sensor held by Ticking Heart’s wearable vest is
given in Fig. 2, which shows the waveforms of the signals
acquired by the HM of each stethoscope. As the three-
electrode configuration [8] is used for the ECG sensor to
improve the common mode interference rejection, there is only
one ECG signal. The positions of the six stethoscopes are
shown in Fig. 1. In particular, stethoscopes 1-4 are located on
the left side of the chest to detect sounds from the tricuspid,
mitral, pulmonary, and aortic valves, while stethoscopes 5 and
6 are placed on the right side of the chest to detect sounds
from the ascending aorta artery. The positions of the three
electrodes of the ECG sensor are chosen mainly for fitting
into the vest with the stethoscopes. We do not observe much
difference in the ECG signal when electrodes are placed on
different parts of the chest.

We can observe that in one heart cycle, the first peak in
the ECG signal (i.e., the R peak) appears slightly ahead of
the S1 peak in the PCG signals, while the second peak in
the ECG signal nearly coincides with the S2 peak in the PCG
signals. In the case of Fig. 2, the ECG signal appears to be less
noisy than PCG signals, indicating that jointly processing the
ECG and PCG signals would provide more information on the
feature of the heartbeat. Both the PCG and ECG signals can

be fed into a classifier to improve the performance of CVD
classification.
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Fig. 2. Waveform of PCG signals and ECG signal recorded simultaneously.

In the two sections below, we focus on systems with a
single stethoscope and a single ECG sensor. Extension to
multichannel PCG and ECG system will be presented in our
future work.

III. STETHOSCOPE NOISE CANCELATION

Background noise can decrease heart signal integrity and
affect the outcome of diagnosis. Conventional frequency-
selective filters cannot filtered out noises that lie in the
frequency band of interest. By using the BNM as a reference
for noise, noise cancelation filtering techniques can be applied
to attenuate unwanted background noise and restore integrity
to the desired signal.

A normalized least mean squares (NLMS) based adaptive
noise cancelation algorithm has been proposed in [5] as below

e(i) = x(i)−wT(i)v2(i) (1)

w(i+ 1) = (1− α)w(i) + µ
v2(i)e(i)

‖v2(i)‖2
(2)

where x(i) is the signal acquired by the HM, w(i) denotes the
coefficients of the NLMS filter, v2(i) is the noise measured
by the BNM, α is the leakage coefficient, (·)T denotes matrix
transpose, ‖ · ‖ stands for the vector Euclidean norm, and µ is
the step size determining the size at which the filter coefficients
are updated. Usually α is a very small number and µ can be
tuned following [5].

In the NLMS algorithm (1)-(2), the filter coefficients are
updated sample-by-sample. In this section, we develop an
iterative Wiener filter based noise cancelation algorithm which
processes the heart signals in batch. The filter coefficients w
are given by

w = (Rv2 + βλM (Rv2)I)
−1rxv2

(3)
β = rx − 2wT rxv2

+wTRv2w (4)

where Rv2 is the estimated covariance matrix of v2(i), rxv2
is

the estimated cross-correlation vector between v2(i) and x(i),
rx is the estimated power of x(i), λM (·) stands for the largest
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eigenvalue of a matrix, (·)−1 denotes matrix inversion, and I
is an identity matrix. The diagonal loading factor β in (3) is
the estimation error of the Wiener filter as shown in (4), and
is calculated iteratively by (3) and (4).

We test the performance of the NLMS and the proposed
iterative Wiener filter based noise cancelation algorithms with
practical hospital/clinic noise. Heartbeat measurements of 15-
second duration are taken from the second author. A FireFace
UCX collects data at 44.1 kHz sampling frequency, which is
re-sampled down to 2 kHz (heart murmurs are below 1 kHz
[9]). For both algorithms, the filter length is set to 512 samples.
For the NLMS filter (2), the leakage coefficient α = 0.001
is used and µ is set to 0.1. For the proposed algorithm, the
iteration between (3) and (4) terminates when the difference
between β in two consecutive iterations is less than 10−4.

The spectrograms of the BNM, unfiltered HM, and the HM
signal filtered by the NLMS algorithm are displayed side-
by-side in Fig. 3, while the spectrogram of the HM signal
filtered by the proposed algorithm is shown in Fig. 4. We
can see from both figures that the BNM mainly acquires the
background noise, as the heart sound signal is absent from the
BNM spectrogram. The background noise is also acquired by
the HM, particularly at the frequency bands around 200-300
Hz and 400-500 Hz.

We can see from Fig. 3 that the noise energy at 500 Hz and
the band between 200 Hz and 300 Hz is slightly suppressed
by the NLMS algorithm. Interestingly, it can be seen from
Fig. 4 that the noise energy at 400 Hz and 200-300 Hz is
further suppressed by the proposed iterative Wiener filter based
algorithm compared with the NLMS algorithm. However, by
carefully comparing Fig. 3 and Fig. 4, we can see that the
proposed algorithm introduces low frequency noise.
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Fig. 3. Spectrogram of BNM, unfiltered and filtered (NLMS) HM signals.

Fig. 5 shows the power spectral density (PSD) plots of
unfiltered HM signal and the signal filtered by the two noise
cancelation algorithms. There is visual evidence of noise atten-
uation displayed in Fig. 5. The proposed algorithm attenuates
the background noise in the 200-300 Hz band (which contains
heart murmur sounds [9]) better than the NLMS algorithm.
The results in Figs. 3-5 suggest that a sub-band filter could be
designed to further improve the noise cancelation performance.
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Fig. 4. Spectrogram of BNM, unfiltered and filtered (proposed iterative
Wiener filter) HM signals.
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We also test the performance of the NLMS algorithm in
other external noises and internal noise (e.g. breathing), and
find that as the BNM faces away from chest, it is better at
suppressing external noise than internal noise [5].

IV. MACHINE LEARNING BASED CVD CLASSIFICATION

Murmur sounds from the coronary arteries blockage affect
the basic characteristics of PCG signals, which provides the
opportunity to detect these changes using machine learning
techniques. In this section, we develop a CNN based CVD
classifier using both the PCG and ECG signals. The archi-
tecture of the neural network is similar to [3] with the main
difference that the ECG signal is added to the input of the
neural network to improve classification. As shown in the
MATLAB layer graph in Fig. 6, this multi-input deep neural
network consists of five inputs, four of which are used for
the PCG signal filtered at different non-overlapping frequency
bands, and the remaining one is for the ECG signal. The four
frequency bands of the PCG signals are 25-45 Hz, 45-80 Hz,
80-200 Hz, and 200-400 Hz, which are chosen according to the
spectral properties of heart sounds and PCG recording artifacts
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[9]. The ECG signal is bandpass filtered to the band of 2-60
Hz. ECG and PCG signals are segmented into sequences of
2500 samples for the input of the neural network.

Fig. 6. Architecture of the proposed CNN based CVD classifier.

Each of the five input signal sequences is passed through
a CNN network of two convolutional layers. The first convo-
lutional layer consists of 8 parallel finite impulse response
(FIR) filters of length 5, where each filter is followed by
a rectified linear unit (ReLU) and a max-pooling of 2. The
second convolutional layer has 4 parallel FIR filters with
length 5, each followed by a ReLU and a max-pooling of
2. The output of the five CNNs is concatenated and fed into
a multi-layer perceptron (MLP) network, which has an input
layer, a hidden layer with 20 neurons, and an output layer.
Softmax is adopted as the activation function at the output
layer.

The whole neural network has 249922 learnable parameters.
These parameters are trained by the data set A in the public
database created for the 2016 PhysioNet/CIC challenge [4].
Data set A contains 409 PCG recordings made at nine dif-
ferent recording positions and orientations from 121 patients.
The PCG recordings were labeled through echocardiographic
examination of patients at the Massachusetts General Hospital,
Boston, MA, USA. As these recordings were performed either
in an uncontrolled environment at the hospital or during in-
home visits, they were corrupted by various sources of noise
such as talking, dogs barking, and children playing.

All but except 4 PCGs were recorded simultaneously with
ECG signals. We observed through visual inspection that some
of the ECG recordings are of low quality due to unknown
reasons. Among the 405 recordings with both PCG and ECG,
324 randomly chosen recordings (80%) are used to train the
proposed neural network, and the remaining 81 recordings
(20%) are reserved for verification. To avoid over-fitting of the
neural network to long recordings, maximal of 10 heart cycles
from each recording are adopted for training. For verification,
the classification results on each heart cycle are averaged to
obtain a score s ∈ (0, 1), which is compared with a threshold
parameter p to obtain the final decision of each patient (s ≥ p
leads to a positive diagnosis).

The adaptive moment estimation (ADAM) algorithm is used
for stochastic optimization in training the neural network with
the following configurations: number of epochs is 400; batch
size is 1024; learning rate is 7 × 10−4; the training data is
shuffled before every training epoch.

TABLE I
CVD CLASSIFICATION ACCURACY OBTAINED FROM TWO DIFFERENT

NEURAL NETWORKS

Method Sensitivity Specificity Accuracy
ECG and PCG (p = 0.4) 94.92% 45.45% 81.48%

PCG only (p = 0.4) 94.92% 43.48% 80.49%
ECG and PCG (p = 0.5) 91.53% 54.55% 81.48%

PCG only (p = 0.5) 91.53% 43.48% 78.05%
ECG and PCG (p = 0.6) 84.75% 63.64% 79.01%

PCG only (p = 0.6) 86.44% 56.52% 78.05%

Table I shows the performance comparison between the
proposed classification algorithm which uses both the ECG
and PCG signals and the classifier only using the PCG
signal [3]. The proposed neural network achieves a similar
sensitivity compared with the PCG only classifier, but a
higher classification specificity and accuracy. In particular,
there is a remarkable improvement of specificity for all the
three p values tested, indicating the benefit of incorporating
the ECG signals, even though some of them are of low
quality. We expect that with higher quality ECG recording,
the classification results will improve. The confusion charts
of the two methods at p = 0.5 are shown in Fig. 7, where ‘1’
and ‘-1’ stand for CVD and non-CVD, respectively.
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Fig. 7. Confusion charts: ECG and PCG (left); PCG only (right).

The proposed neural network in Fig. 6 can be expanded to
take input signals from multiple stethoscopes. Note that with
the expansion of network, a larger number of labeled ECG
and PCG recordings are required to train a larger number of
learnable parameters. We are in the process of data collection
using Ticking Heart’s wearable vest in Fig. 1. It is expected
that with multichannel PCG and ECG signals of high integrity,
the diagnosis accuracy can be further increased.

V. CONCLUSIONS

In this paper, we have presented a multi-channel PCG
and ECG device for CVD pre-screening and monitoring. An
iterative Wiener filter based noise cancelation algorithm has
been proposed to suppress the PCG background noise. We
have developed a CNN based classifier for CVD detection
using both the ECG and PCG signals, which shows higher
classification accuracy compared with using only the PCG
signal.
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