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Abstract— Targeting at a better design of the analogue net-
work coding (ANC)-assisted two-way amplify-and-forward (AF)
multiple-input multiple-output (MIMO) multi-relay communica-
tion systems, we bring in the nonlinear minimal mean-squared
error (MMSE)-decision feedback equalization (DFE) receiving
technique to jointly optimize the source precoding, relay amplify-
ing, feed-forward and feedback matrices. Under the transmission
power constraints at both source nodes and each relay node,
the two-way sum mean-squared error (MSE) of the signal
waveform estimation of all data streams is minimized. To solve the
complicated nonconvex optimization problem with four groups of
system parameters, this paper develops an iterative block coordi-
nate descent (BCD) algorithm, which converges to at least a Nash
point. On the basis of it, for mitigating the error propagation in
MMSE-DFE receivers, a group of permutation matrix variables,
determining the detection orders of all data streams, are further
introduced in our system optimization. Moreover, in case there
is no sufficiently precise channel state information (CSI), we also
make an extension of the developed algorithms, yielding a robust
design scheme, to handle the channel uncertainties. Numerical
simulation results show that, compared with the existing linear
MMSE receiving-based algorithm, our proposed nonlinear ones
provide improved MSE and bit-error-rate (BER) performance as
well as good robustness against the imperfect CSI, indicating a
promising application prospect of this research.

Index Terms— Two-way, ANC, MIMO relay, AF, multi-relay,
MMSE, DFE, error propagation, imperfect CSI, robust design.

I. INTRODUCTION

OVER the past decade, the multiple-input multiple-output
(MIMO) relay communications have been widely stud-

ied and valued for their advantages of being able to expand
the system coverage, improve the link reliability as well as
reduce the power consumption [1]–[3]. Certainly, they will
have a significant impact on the future 5G wireless networks,
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especially on Internet of Things (IoT) and device-to-device
(D2D) communications [4], [5]. In general, there are three
common relay protocols, including amplify-and-forward (AF),
decode-and-forward (DF) and compress-and-forward (CF) [6],
[7], among which the AF protocol attracts more extensive
attention due to its simplicity and high speed [3].

For a three-terminal MIMO relay system, the upper and
lower bounds on its ergodic capacity over Rayleigh fading
channels were studied in [8]. When half-duplex (HD) strat-
egy was adopted, [9] designed the optimal AF MIMO relay
matrix to maximize the system capacity between source and
destination nodes in the absence of a direct link. Considering
the multi-hop scenarios, [10] established the optimal structures
of source and relay matrices, which jointly diagonalize the
MIMO relay channel into a set of parallel single-input single-
output (SISO) ones, and the generalized results for multicarrier
transmission were given in [11]. With imperfect channel
state information (CSI) taken into account, [12] explored
the robust joint optimization of the linear relay precoder
and destination equalizer in a dual-hop MIMO relay system.
References [13] and [14] investigated the robust trans-
ceiver design for, respectively, interference and multicast-
ing relay communications. Reference [15] proposed robust
algorithms to optimize multiuser relay systems with direct
source-destination links. Also considering direct links in
three-terminal AF MIMO relay systems, [16] developed an
iterative optimization algorithm on the basis of the opti-
mal beamforming structures of source and relay matrices,
[17] derived the optimal source beamformer as a semi-closed
form solution with the known results of the optimal receiver
and relay precoder by using the semidefinite relaxation
approach.

Applying the principle of analogue network coding (ANC),
a two-way HD relay communication system allows two source
nodes to simultaneously exchange information through assis-
tant relay node(s) in just two time slots, which makes a more
efficient use of the limited spectrum [18], [19]. For two-way
systems with a single AF MIMO relay node, [20] investigated
the joint source and relay optimization problem under a unified
framework which contains a broad class of frequently adopted
design criteria. Considering imperfect CSI, [21] developed a
robust system design on the basis of the sum mean-squared
error (MSE) minimization criterion. In regard to multi-relay
scenarios, [7] employed the CF protocol for parallel multiple
relay nodes, aiming to maximize the sum-rate of two-way
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communications. Reference [22] utilized the gradient descent
method to jointly optimize the source and relay matrices, and
the iterative algorithm proposed in [23] further enhanced the
MSE and system bit-error-rate (BER) performance.

For the purpose of improving the quality of signal reception
without incurring a high complexity as the optimal maximum
likelihood (ML) detection, the well-known decision feedback
equalization (DFE) technique [24], also known as the vertical
Bell laboratories layered space-time (BLAST) technique [25],
is introduced in recent one-way AF MIMO relay researches.
Naturally evolving from the traditional linear minimal
mean-squared error (MMSE) receivers, the nonlinear
MMSE-DFE receivers are more generally adopted and perform
better than the zero-forcing (ZF)-DFE receivers [26], [27].
By using the MMSE-DFE technique, [28] explored the
problem of multi-hop relay system optimization with Schur-
convex and Schur-concave composite objective functions.
Reference [29] developed a joint source and relay power
loading algorithm for two-hop systems with multiple relay
nodes. Towards a three-terminal model, [30] proposed two
well-performing closed-form precoding schemes which,
compared to iterative algorithms, had much reduced
complexity. For multiuser multi-hop scenarios, [3] designed
two distributed transceiver optimization algorithms with no
need for centralized processing and better performance than
linear receiving-based algorithms.

Noteworthily, [31] studied the cyclic prefixed single-carrier
(CP-SC) transmission in a two-way AF MIMO single-relay
system using the DFE with noise prediction (DFE-NP)
receivers. Under the assumption that the number of antennas
at the relay node is more than twice that at both source nodes,
[31] proposed an iterative algorithm to jointly optimize the
source and relay matrices. Note that the DFE-NP technique,
or called the frequency domain equalization with time domain
noise prediction (FDE-NP) technique [32], though able to
alleviate the error propagation, has relatively high complexity,
thus is out of our consideration here.

This paper focuses on the design of an ANC-assisted two-
way AF MIMO multi-relay system with MMSE-DFE receivers
under both perfect and imperfect CSI scenarios. As far as we
know, it is the first time to investigate the utilization of the
nonlinear MMSE-DFE receiving technique in ANC-assisted
two-way AF MIMO relay communications. Moreover, we con-
sider a general system with multiple parallel relay nodes. The
algorithms proposed here can also be applied to single-relay,
one-way or linear receiving-based relay systems. Besides, if a
system has multiple user-pairs, they can separately utilize our
algorithms to communicate over orthogonal channels in time
or frequency domain [33]. Specifically, under the transmission
power constraints at both source nodes and each relay node,
we adopt the sum MSE minimization design criterion to jointly
optimize four groups of system parameters, i.e., the precoding
matrices at source nodes, the amplifying matrices at relay
nodes, as well as the feed-forward and the feedback matrices
within the MMSE-DFE receivers. For solving the intractable
nonconvex system optimization problem, the block coordinate
descent (BCD) method [34, Sec. 2.7], [35] is employed to
develop an iterative algorithm which is guaranteed to converge

towards, at least, a Nash point [36]. To further improve the per-
formance via mitigating the error propagation in MMSE-DFE
receivers, we introduce a group of permutation matrix vari-
ables, whose optimization determines the detection orders
of all data streams according to their signal-to-interference-
and-noise ratios (SINRs). Given that a practical system does
not always have sufficiently precise CSI, this paper also
extends the proposed algorithms into a robust design scheme
for tackling the channel uncertainties. By comparison with
the linear receiving-based algorithm developed in [23], our
proposed nonlinear receiving-based ones exhibit their superior
MSE and BER performance and good robustness against the
imperfect CSI in numerical simulations.

The rest of this paper is organized as follows. Section II
describes the system model and formulates a noncon-
vex optimization problem. Section III develops an iterative
BCD algorithm to jointly optimize the system parameters.
Following that, Section IV gives some additional comments.
Section V addresses the issue of optimizing the detection
orders. Section VI conducts a robust system design with
imperfect CSI. The analyses of simulation results are presented
in Section VII. At last, Section VIII draws a conclusion.

The following notations and operators are used throughout
this paper: �= stands for the phrase “(is) defined as”; C

n,
Cm×n denote the complex column vector space and matrix
space with their dimensions being n and m×n, respectively;
the reciprocal, complex conjugate, and modulus of scalar x are
expressed as x−1, x∗, and |x|; ‖x‖ denotes the Euclidean norm
of vector x; (·)T , (·)H represent the transpose and Hermitian
transpose of a vector or matrix; the inverse, pseudo-inverse,
rank, trace, and Frobenius norm of matrix X are denoted by
X−1, X†, rank(X), tr(X), and ‖X‖F ; X ⊗ Y represents
the Kronecker product of matrices X and Y ; [X]n, [X]m,m,
and [X ]m,n indicate the nth column vector, the mth diagonal
element, and the element at the mth row and the nth column
of matrix X; [X]1:n, [X]1:m,1:m stand for submatrices of
matrix X , containing its leftmost n columns, and its first
m rows and first m columns, respectively; U [X] denotes a
square matrix whose lower triangular part is filled by zeros and
strictly upper triangular part is the same as that of matrix X;
diag(·), bd(·) represent a diagonal and a block diagonal matrix
respectively, whose diagonal entries are given in parentheses;
vec(X) rearranges all the columns in matrix X , from left to
right, into a single column vector, from top to bottom; for
a Hermitian matrix X ∈ Cn×n, all its eigenvalues are real
and denoted in nonincreasing order by λi(X), i = 1, . . . , n;
In is an nth-order identity matrix and 0m×n stands for an
m×n zero matrix; E[·] denotes the statistical expectation with
respect to signal and noise and EH [·] denotes that with respect
to the channel uncertainties.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In the absence of a direct link due to the propagation path
loss, a two-way HD relay communication system enables a
pair of users to concurrently send information to each other
within only two time slots as shown in Fig. 1, where we
introduce K assistant relay nodes to amplify their received
signals from both source nodes. For the conciseness in
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Fig. 1. System model for two-way AF MIMO multi-relay communications
with MMSE-DFE receivers.

mathematical derivations, both source nodes are set to transmit
Ms independent data streams via M antennas, and each relay
node is equipped with N antennas. The generalization of
derivations to a system with different numbers of antennas
at different nodes is straightforward.

During the first time slot, for i = 1, 2, the ith source
node at first linearly precodes its modulated signal vector
si ∈ CMs with the source precoding matrix Bi ∈ CM×Ms ,
then transmits the precoded signal vector xi = Bisi through
its wireless interface towards every relay node.

For k = 1, . . . , K , the received signal vector at the kth relay
node is given by

yr,k =
2∑

i=1

Hri,kxi + vr,k (1)

where Hri,k ∈ C
N×M is the MIMO channel matrix between

the ith source node and the kth relay node, and vr,k ∈ CN

is the independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN) vector at the kth relay node.

During the second time slot, under the AF protocol, the
kth relay node at first amplifies yr,k in a linear
non-regenerative manner with the relay amplifying matrix
F k ∈ CN×N , then broadcasts the amplified signal vector
xr,k = F kyr,k towards both source nodes.

Thus, the received signal vector at the ith source node is
given by

yi =
K∑

k=1

Hir,kxr,k + vi (2)

where H ir,k ∈ CM×N is the MIMO channel matrix between
the kth relay node and the ith source node, and vi ∈ C

M is
the i.i.d. AWGN vector at the ith source node.

Here, as is commonly done, we assume that the two users
are perfectly symbol-synchronous and all the symbols in si are
independent to each other, having zero means and normalized
variances, i.e., E

[
sis

H
i

]
= IMs , besides, all the noise vectors

have the circular symmetry property [37, Sec. A.1.3] with zero
mean vectors and identity covariance matrices.

Substituting (1) and expressions for xr,k and xi into (2),
we obtain

yi =
K∑

k=1

Hir,kF k

(
Hri,kBisi +Hrī,kB īsī

)
+ ṽi (3)

where ī = 2 for i = 1 and vice versa, ṽi
�=
∑K

k=1

Hir,kF kvr,k + vi is the equivalent additive noise vector
with its covariance matrix given by Ci

�= E
[
ṽiṽ

H
i

]
=∑K

k=1H ir,kF kF
H
k H

H
ir,k + IM .

In this paper, at first, we assume Hri,k and H ir,k are
quasi-static block fading channels and high-precision CSI
can be acquired with negligible mismatch against the reality.
This corresponds to the situation where all nodes in the
system have relatively low mobility or even be static. Here
not only traditional channel estimation means [38] but also
those specific to two-way MIMO relay systems [39], [40] are
available. Then, in Section VI, our research will be extended
to a robust design scheme, which utilizes a common analyt-
ical approach for channel uncertainties as in [12]–[15], [21],
and [41].

To accomplish the self-interference removal operation,
the ith source node for i = 1, 2 needs record in advance
its original modulated signal si as well as the precoding
matrix Bi, and obtain the channel matrices Hri,k and H ir,k

as well as the relay amplifying matrices F k for k = 1, . . . , K .
Then, the self-interference term

∑K
k=1Hir,kF kHri,kBisi

can be removed from the received signal (3), resulting in

ỹi =
K∑

k=1

Hir,kF kHrī,kB īsī + ṽi = H̃isī + ṽi (4)

where H̃ i
�=
∑K

k=1H ir,kF kHrī,kB ī =H irFHrīB ī is the
equivalent MIMO channel matrix with Hrī

�=
[
HT

rī,1, . . . ,

HT
rī,K

]T
, F �= bd(F 1, . . . ,FK) and Hir

�=
[
H ir,1, . . . ,

Hir,K

]
.

Similar to the single-hop MIMO system in [42] as well as
the multi-hop MIMO relay system in [3], for supporting the
transmission of Ms independent data streams from the īth to
the ith source node with acceptable performance, we typically
require Ms � min{rank(Hrī), rank(H ir)}, from which,
as the rank of a matrix is not greater than its dimensions,
we have Ms � min{M, K N}.

To recover the īth user’s information from signal ỹi

obtained at the ith source node, the nonlinear MMSE-DFE
technique is applied to successively detect all symbols in sī

with the Msth symbol detected first and the first symbol
detected last.

Specifically, via the Msth feed-forward vectorwi;Ms ∈ CM ,
the Msth symbol is estimated as ŝī;Ms

= wH
i;Ms

ỹi, then
detected as s̃ī;Ms

. Following that, the mth symbol is estimated
as

ŝī;m = wH
i;mỹi −

Ms∑
l=m+1

di;m,ls̃ī;l, m = 1, . . . , Ms − 1 (5)

where wi;m ∈ CM is the mth feed-forward vector, and di;m,l

for l = m + 1, . . . , Ms is the (m, l)th feedback coefficient
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used to eliminate the inter-symbol interference (ISI) produced
by the lth previously detected symbol s̃ī;l from the detection
process of the mth symbol.

Here, it is a straightforward and usual way to specify that the
mth detected symbol belongs to the mth data stream. However,
their corresponding relationships, i.e., the detection order of all
the Ms data streams, can be altered and optimized, which will
be discussed later in Section V.

Reformulating (5) in matrix form, we have

ŝī = WH
i ỹi −Dis̃ī (6)

where ŝī
�=
[
ŝī;1, . . . , ŝī;Ms

]T
and s̃ī

�=
[
s̃ī;1, . . . , s̃ī;Ms

]T
denote respectively the estimated and the detected signal vec-
tor at the ith source node,W i

�= [wi;1, . . . ,wi;Ms ] ∈ CM×Ms

stands for the feed-forward matrix, and Di ∈ CMs×Ms

represents the decision feedback matrix, which is filled by
elements di;m,l, thus has strictly upper triangular property.

Moreover, for mathematical derivations, it’s a common prac-
tice, as in [3], [24]–[30], to assume that no error propagation
appears in MMSE-DFE receivers, i.e., we have s̃ī = sī, so (6)
becomes

ŝī = WH
i ỹi −Disī =

(
WH

i H̃i −Di

)
sī +WH

i ṽi. (7)

At the ith source node for i = 1, 2, the MSE of the signal
waveform estimation for the mth data stream is given by

Ei;m

�= E
[∣∣ŝī;m − sī;m

∣∣2]
=

m−1∑
l=1

∣∣∣wH
i;m

[
H̃ i

]
l

∣∣∣2 +
∣∣∣wH

i;m

[
H̃i

]
m
− 1
∣∣∣2

+
Ms∑

l=m+1

∣∣∣wH
i;m

[
H̃i

]
l
− di;m,l

∣∣∣2 +wH
i;mCiwi;m,

m = 1, . . . , Ms (8)

where the third term in (8) will vanish when m = Ms.
Accordingly, for all data streams at both source nodes,

the two-way sum MSE of the signal waveform estimation can
be written as

Es
�=

2∑
i=1

Ms∑
m=1

Ei;m =
2∑

i=1

tr
{
E
[
(ŝī − sī) (ŝī − sī)

H
]}

(9)

=
2∑

i=1

tr
[(
WH

i H̃i −U i

)(
WH

i H̃i −U i

)H
+WH

i CiW i

]
(10)

where U i
�= IMs + Di for i = 1, 2, defined to facilitate

analysis, is an upper triangular matrix with all diagonal
elements equal to 1 and is also called the feedback matrix.

Besides, the transmission power consumed at the ith source
node for i = 1, 2 and the kth relay node for k = 1, . . . , K is
respectively given by Qi

�= tr
{
E
[
xix

H
i

]}
= tr
(
BiB

H
i

)
and

Pk
�= tr
{
E
[
xr,kx

H
r,k

]}
= tr
[
F k

(∑2
i=1Hri,kBiB

H
i H

H
ri,k +

IN

)
FH

k

]
.

So the problem of the joint optimization of the source pre-
coding, relay amplifying, feed-forward and feedback matrices
to minimize Es under transmission power constraints can be
written as

min
{Bi},{F k},{W i},{Ui}

2∑
i=1

tr
[(
WH

i H̃ i −U i

)
×
(
WH

i H̃i −U i

)H
+WH

i CiW i

]
(11)

s.t. Qi = tr
(
BiB

H
i

)
� qi, i = 1, 2, (12)

Pk = tr

[
F k

(
2∑

i=1

Hri,kBiB
H
i H

H
ri,k + IN

)
FH

k

]
� pk, k = 1, . . . , K, (13)

[U i]m,n =

{
0, m > n,

1, m = n,
i = 1, 2. (14)

where variable sets
{
Bi

} �=
{
B1,B2

}
,
{
F k

} �={
F 1, . . . ,FK

}
,
{
W i

} �=
{
W 1,W 2

}
,
{
U i

} �=
{
U1,U2

}
involve four groups of system parameters remaining to be
optimized, and constants qi and pk are the power budgets at
the ith source node and the kth relay node, respectively.

It can be seen that the problem (11)–(14) is an intractable
nonconvex optimization problem, whose globally optimal
solution is almost impossible to be found out unless we
resort to the exhaustive searching, which is currently not
realistic to be accomplished. So we take a step back and
try to look for its suboptimal solutions. Here, via utilizing
the BCD method, we shall develop an iterative algorithm
with guaranteed convergence in Section III, where all the
optimization variables are divided into 2 + K separate blocks
to take turns being updated with other blocks fixed.

Note that the objective function (11) and constraints
(12)–(14) bear a certain resemblance to the expressions (18)
and (28)–(30) in [3], but nevertheless there are significant
differences between them. What [3] optimized is a one-way
multi-hop system with multiple cascading relay nodes, thus
AL in (18) of [3], which represents the equivalent MIMO
channel matrix between the source modulated signals and the
destination node, has a multiplicative form. Only under the
assumption of (moderately) high signal-to-noise ratio (SNR)
environment, the equivalent target problem (35)–(38) in [3],
with a cascading construction, is able to be decomposed,
leading to its distributed parameter optimization. Unlike [3],
the two-way dual-hop system in this paper allows multiple
parallel relay nodes, thus H̃i in (11) has an additive form.

To the best of our knowledge, it is the first work to
optimize an MMSE-DFE receiving-based two-way AF MIMO
multi-relay system. Compared with the problems solved in
previous works as listed in Table I, which optimized linear
receiving-based two-way AF MIMO (multi-)relay systems,
the problem (11)–(14) is more complicated due to the intro-
duction of not only the nonlinear receiving structure made
up of decision feed-forward and feedback matrices but also
multiple relay amplifying matrices. Besides, optimizing the
detection orders within MMSE-DFE receivers in Section V

Authorized licensed use limited to: CURTIN UNIVERSITY. Downloaded on January 14,2021 at 01:56:03 UTC from IEEE Xplore.  Restrictions apply. 



LV et al.: TWO-WAY AF MIMO MULTI-RELAY SYSTEM DESIGN USING MMSE-DFE TECHNIQUES 393

TABLE I

PREVIOUS WORKS AND THEIR CONTRIBUTIONS

and extending the developed algorithms to their robust design
counterparts with imperfect CSI in Section VI, where we
consider both the first-order and second-order terms of the
variances of channel estimation errors in mathematical deriva-
tions, further enhance the contributions of this paper.

III. ALGORITHM DESIGN

The proposed iterative BCD algorithm has three major steps
in each iteration, corresponding to the optimization of {Bi},
{F k}, as well as {W i} and {U i}, respectively.

To start with, we initialize {Bi} and {F k} as some feasible
values satisfying constraints (12) and (13), e.g.,

Bi =
[√

qi/MsIMs ,0
T
(M−Ms)×Ms

]T
, i = 1, 2 (15)

and

F k =
√

pk/N

(
2∑

i=1

Hri,kBiB
H
i H

H
ri,k + IN

)−1/2

,

k = 1, . . . , K (16)

which make full use of the power budgets qi and pk. Note that
the definition of the squareroot A1/2 for a Hermitian positive
semidefinite (PSD) matrix A is a natural generalization of that
for a symmetric PSD matrix in [47, Sec. A.5.2], which enables
A1/2A1/2 = A with A1/2 being the unique eligible Hermitian
PSD matrix as proved in [48, Theorem 7.2.6]. Theoretically,

a nonconvex problem like (11)–(14) can have multiple sub-
optimal solutions. When its variables are iteratively optimized
via, e.g., the BCD method, different initialization operations
may lead to different optimization results. The reason of
choosing (15) and (16) as initial point, rather than random
initialization, is that they provide a stable performance.

A. Joint Feed-Forward and Feedback Matrices Optimization

Now, for the first step, based on fixed {Bi} and {F k},
the optimal {W i} and {U i} can be derived as below.

Let’s bring in the following QR factorization [49, Sec. II.7]:[
C

−1/2
i H̃ i

IMs

]
= QiRi =

[
Q̄i

Q̈i

]
Ri, i = 1, 2 (17)

where Qi ∈ C(M+Ms)×Ms is a semi-unitary matrix satisfying

QH
i Qi = Q̄

H
i Q̄i + Q̈

H

i Q̈i = IMs , (18)

Q̄i ∈ C
M×Ms and Q̈i ∈ C

Ms×Ms are made up of the first
M and the last Ms rows of Qi, respectively, and Ri ∈
CMs×Ms is a nonsingular upper triangular matrix with all its
diagonal elements being nonzero, or even being positive if
the Gram-Schmidt algorithm [49, Sec. II.8] is applied. Then,
according to (17), we have

C
−1/2
i H̃i = Q̄iRi, Q̈i = R−1

i . (19)
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By utilizing (17)–(19), the theorem below gives the optimal
{W i} and {U i}.

Theorem 1: With the QR factorization (17)–(19), the opti-
mal feed-forward and feedback matrices are respectively given
by

W i = C
−1/2
i Q̄iD

−H
Ri

, U i = D−1
Ri
Ri, i = 1, 2 (20)

where DRi

�= diag
(
[Ri]1,1 , . . . , [Ri]Ms,Ms

)
∈ C

Ms×Ms

denotes a diagonal matrix composed of all diagonal elements
in Ri.

Proof: See Appendix A. �
The derivation of Theorem 1 is inspired by Theorem 2 in [3]

and Theorem 1 in [28] which optimized the MMSE-DFE
receivers in respectively a multiuser single-hop MIMO system
and a single-user multi-hop MIMO relay system, while in
this paper, Theorem 1 targets at a two-way dual-hop MIMO
multi-relay system instead.

B. Source Precoding Matrices Optimization

Next, for the second step, with given {F k}, {W i} and
{U i}, this subsection aims to optimize {Bi} via solving the
problem as below.

min
{Bi}

2∑
i=1

tr
[(
W̃ iB ī −U i

)(
W̃ iB ī −U i

)H]
(21)

s.t. tr
(
BiB

H
i

)
� qi, i = 1, 2, (22)

2∑
i=1

tr
(
F kHri,kBiB

H
i H

H
ri,kF

H
k

)
� p̃k,

k = 1, . . . , K (23)

where W̃ i
�= WH

i

∑K
k=1Hir,kF kHrī,k for i = 1, 2 and

p̃k
�= pk − tr

(
F kF

H
k

)
for k = 1, . . . , K .

Here we present the following theorem at first.
Theorem 2: The function f(X) = tr

(
AXBXH

)
with

matrix variable X ∈ Cm×n as well as arbitrary Hermitian
PSD matrix constants A ∈ Cm×m and B ∈ Cn×n is convex.

Proof: See Appendix B. �
Based on Theorem 2, the quadratically constrained quadratic

programming (QCQP) problem (21)–(23) can be readily veri-
fied as a convex optimization problem, whose unique optimal
solution can be efficiently obtained through the well-known
interior-point method [47, Ch. 11] or some other approaches.
Note that there are several powerful convex optimization tools,
e.g., CVX [50], available to solve the problem (21)–(23).

C. Relay Amplifying Matrices Optimization

Finally, for the third step, with given {F j |j > k} obtained
in the last iteration as well as fixed {W i}, {U i}, {Bi} and
{F j |j < k} just updated in the current iteration, we shall get
the optimal F k for k = 1, . . . , K , one after another, by solving
the following problem.

min
F k

fk(F k) =
2∑

i=1

tr
[(
Hi,kF kGī,k −Ai,k

)
× (Hi,kF kGī,k −Ai,k

)H +Hi,kF kF
H
k H

H
i,k

]
(24)

s.t.gk(F k)=tr

[
F k

(
2∑

i=1

Gi,kG
H
i,k+IN

)
FH

k

]
−pk� 0

(25)

where for i = 1, 2, H i,k
�= WH

i H ir,k, Gi,k
�= Hri,kBi and

Ai,k
�= U i −WH

i

∑K
j=1,j �=kHir,jF jHrī,jB ī.

According to Theorem 2, the problem (24)–(25) is a
convex QCQP problem with a tractable quadratic structure.
Thus, the unique optimal F k can be analytically obtained
from the necessary and sufficient Karush-Kuhn-Tucker (KKT)
optimality conditions [47, Sec. 5.5.3] written here as

gk(F k) � 0, μk gk(F k) = 0,

μk � 0, ∇F k
Lk(F k, μk) = 0N×N (26)

where μk is the Lagrange multiplier and Lk(F k,
μk) �= fk(F k) + μk gk(F k) is the Lagrangian.

The gradient of Lk(F k, μk) with respect to F k is given by

∇F k
Lk(F k, μk)

= 2
2∑

i=1

[
HH

i,k

(
Hi,kF kGī,k −Ai,k

)
GH

ī,k +HH
i,kH i,kF k

]
+ 2μkF k

(
2∑

i=1

Gi,kG
H
i,k + IN

)
(27)

which should be equal to zero, resulting in

2∑
i=1

HH
i,kHi,kF k

(
Gī,kG

H
ī,k + IN

)
+μkF k

(
2∑

i=1

Gi,kG
H
i,k + IN

)

=
2∑

i=1

HH
i,kAi,kG

H
ī,k. (28)

Through vectorizing both sides of (28), we have

vec(F k) =

⎡⎣ 2∑
i=1

(
Gī,kG

H
ī,k + IN

)T
⊗
(
HH

i,kH i,k

)

+ μk

(
2∑

i=1

Gi,kG
H
i,k + IN

)T

⊗ IN

⎤⎦†

vec

(
2∑

i=1

HH
i,kAi,kG

H
ī,k

)
. (29)

For solving the problem (24)–(25), it can be observed from
the KKT conditions (26) that there exist two possibilities:

1) One is for μk = 0, in which case the second term of
the operand of the pseudo-inverse operator in (29) vanishes.
Then, if the F k in (29) indeed satisfies gk(F k) � 0, it is the
optimal solution. Otherwise, we resort to possibility 2).

2) The other is for μk > 0, in which case the pseudo-inverse
operator in (29) becomes the inverse one as its operand
matrix becomes a Hermitian positive definite (PD) matrix
according to [51, Corollary 4.2.13], and gk(F k) should be
equal to zero. Consequently, the optimal F k can be obtained
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by substituting (29) back into gk(F k) = 0 and seeking the
eligible μk. To this end, we first derive the following theorem.

Theorem 3: For the optimal F k satisfying gk(F k) = 0,
there exists an upper bound of its corresponding μk in (29),
i.e.,

μk � Bupper
�=

√
λ1(Gk)

pk

‖Ak‖F

λN (Gk)
(30)

where Gk
�=
∑2

i=1Gi,kG
H
i,k + IN and Ak

�=
∑2

i=1H
H
i,k

Ai,kG
H
ī,k.

Proof: See Appendix C. �
At this point, since gk is a monotonically decreasing function
with respect to the positive variable μk, which is also bounded
above by Bupper as demonstrated in Theorem 3, we can readily
apply the bisection method [52] to find the unique μk which
satisfies gk(F k) = 0, thereby getting the optimal F k in (29).

D. Convergence, Complexity and Summary

So far we have accomplished one iteration of the proposed
iterative BCD algorithm, which is scheduled to be repeated
for several times until the algorithm converges. Note that,
during the above iterative process, each conditional update,
with other variable blocks fixed, of respective {Bi}, F k for
k = 1, . . . , K as well as {W i} and {U i} will monotonically
decrease the value of the objective function (11), which is
also bounded below by at least zero. Therefore, according
to [34, Proposition A.3], the algorithm indeed converges.
Moreover, since in each update, the optimal solution of the
corresponding degenerate optimization problem is uniquely
obtained, every limit point achieved by this iterative BCD
algorithm will satisfy the Nash equilibrium, i.e., there will be
no further improvement of the two-way sum MSE Es if we
individually change any of the 2+K variable blocks. This type
of point is called a “Nash point” in [36], which, in general,
is not necessarily a stationary point. Although here we cannot
make a further judgement on whether this Nash point is a
stationary (or even optimal) point, the subsequent simulation
results in Section VII will exhibit an outstanding MSE and
BER performance of our algorithm, which, for convenience,
is hereafter called “the MMSE-DFE algorithm”.

Now we will analyze the computational complex-
ity for one iteration of the algorithm described within
Subsections III-A–III-C. Firstly, optimizing {W i} and {U i}
mainly involves the calculations of H̃i and C

−1/2
i for

i = 1, 2, the QR factorization (17) as well as several matrix
multiplications, whose computational overheads add up to
O(K (M3 + M2 N + MN2

))
, where Ms � M is taken into

consideration. Secondly, optimizing {Bi} mainly involves the
calculations of W̃ i for i = 1, 2 and p̃k for k = 1, . . . , K ,
which cost O(M3 + K

(
M2 N + MN2 + N3

))
, as well

as solving the convex QCQP problem (21)–(23) via, e.g.,
the barrier-generated path-following (BGPF) interior-point
method [53, Sec. 3.2]. Specifically, by utilizing the for-
mulae tr

(
XXH

)
= vec(X)Hvec(X) and vec(XY ) =

(In ⊗X) vec(Y ) for X ∈ Cm×l, Y ∈ Cl×n, which can
be derived from Theorem 1.2.22(i)–(ii) in [54], we are able to

convert the problem (21)–(23) into the form similar to that of
the problem (34)–(36) in [13] as follows:

min
b
bHΨ0 b− bHψ −ψHb

s.t. bH Ĩi b � qi, i = 1, 2,

bHΨk b � p̃k, k = 1, . . . , K (31)

where we have the vector variable b �=
[
vec
(
B1

)T
,

vec
(
B2

)T ]T
and the constants Ψ0

�= bd
(
IMs ⊗(

W̃
H

2 W̃ 2

)
, IMs ⊗ (W̃H

1 W̃ 1

))
, ψ �=

[
vec
(
U2

)H(
IMs⊗ W̃ 2

)
, vec
(
U1

)H(
IMs⊗ W̃ 1

)]H
, and Ĩi

�= bd
(
Ĩi,1,

Ĩi,2

)
with Ĩi,i

�= IMsM and Ĩi,̄i
�= 0(

MsM
)
×
(
MsM
)

for i = 1, 2 as well as Ψk
�= bd

(
IMs ⊗(

HH
r1,kF

H
k F kHr1,k

)
, IMs ⊗ (HH

r2,kF
H
k F kHr2,k

))
for

k = 1, . . . , K . Note that here calculating Ψ0, ψ and all
Ψk costs O(K(M4 + M2 N + MN2

))
. Then according

to the analysis of solving convex QCQP problems by the
BGPF interior-point method in [53, Sec. 6.2.1], the target
problem (31), with the number of scalar variables being
a �= 2 MsM , can be solved through O(√K + 2 ln

[
c
(
K+2
)])

iterative steps, where c is a constant greater than 2, and in
each step, it costs O(Ka2 + a3

)
to form and solve a Newton

system. Hence the overheads for optimizing
{
Bi

}
add up

to O(√K + 2
(
KM4 + M6

)
ln
[
c
(
K + 2

)]
+ K
(
M2 N +

MN2 + N3
))

. Thirdly, within the optimization of F k

for k = 1, . . . , K , computing, mainly, Hi,k, Gi,k and
Ai,k for i = 1, 2 as well as Gk, Ak and Bupper costs
O(K(M3 + M2 N + MN2

)
+ N3
)
. In addition, for the

bisection searching of μk, the number of its iterative steps is a
constant which depends on Bupper and the required precision,
and in each step, the matrix (pseudo-)inverse in (29) costs
the most with complexity O(N6

)
. So the total overheads for

optimizing
{
F k

}
are O(K2

(
M3 +M2 N +MN2

)
+KN6

)
.

All in all, the computational complexity for one iteration of
the proposed algorithm is O(√K + 2

(
KM4+M6

)
ln
[
c
(
K+

2
)]

+ K2
(
M3 + M2 N + MN2

)
+ KN6

)
.

The complete procedures of the MMSE-DFE algorithm
are summarized in Table II, where the variables with super-
script (n) are the output of the nth iteration. Note that the
termination condition adopted at Step 5) is n � 10, meaning
that the iteration from Step 2) to Step 4) of Table II is going to
be executed for just ten times, which are already enough since
we have found in numerical simulations that the performance
gain is always nearly negligible after the 10th iteration. This
also indicates that our algorithm has a fast convergence rate.

IV. ADDITIONAL COMMENTS

In this paper, we compare the MMSE-DFE algorithm with
the one proposed in [23], which utilized the linear MMSE
receivers and, thus, is hereafter called “the LMMSE algo-
rithm”. Note that the author in [23] chose 10 as a suitable
amount of iterations, which is also followed by us here.
Therefore, the comparisons between the MMSE-DFE algo-
rithm and the LMMSE algorithm are fair and reasonable.
Besides, both of the two algorithms need to be implemented in
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TABLE II

PROCEDURES OF THE MMSE-DFE ALGORITHM

a centralized manner. To achieve this, optional schemes may
include: one relay node performs the algorithms and delivers
the optimized system parameters to the source and other
relay nodes, or both source nodes simultaneously perform the
algorithms and one source node is responsible for delivering
the optimized amplifying matrices to the corresponding relay
nodes along with its own transmitted information data.

The newly developed MMSE-DFE algorithm has extensive
applicability. Despite targeting at a two-way multi-relay sys-
tem, the algorithm can also be directly employed in one-way
dual-hop relay and two-way single-relay systems. Although,
for the sake of notational convenience, this paper focuses on
single-carrier transmission, the generalized results concerning
multicarrier can be derived without much difficulty, following
either subcarrier-independent or subcarrier-cooperative mode
as elaborated in [11]. Besides, orthogonal channels in time
or frequency domain can be allocated to different user-pairs
for supporting their respective communications by using the
proposed algorithm. Moreover, the theorem below demon-
strates that our algorithm is compatible with those linear
receiving-based systems as well.

Theorem 4: When a linear receiver is adopted at both
source nodes, i.e., we have U i = IMs for i = 1, 2, the optimal
feed-forward matrix W i, given in (20), becomes

W̄ i = C
−1/2
i Q̄iR

−H
i (32)

=
(
H̃iH̃

H

i +Ci

)−1

H̃i, i = 1, 2. (33)

Proof: See Appendix D. �
Note that (33) is exactly the optimal linear MMSE receiving
matrix which has already been derived in [23]. That is to say,
in theory, those two-way relay systems with linear receivers
can also utilize our proposed algorithm by simply optimizing
their linear receiving matrices as (32), though, conventionally,
(33) is preferred in practice. It is also worth mentioning that,
despite having no calculations of matrix squareroot and QR
factorization, which are required by the nonlinear receivers
in (20), the linear receivers in (33) still need to compute
H̃i, Ci as well as matrix inverses and multiplications. So
the computational complexity of (33) does not decrease by
comparison with that of (20). Besides, within the optimization
of {Bi}, {F k} in the LMMSE algorithm, the degeneration
from U i in (20) to IMs for i = 1, 2 has no influence on the

overall computational complexity as well. Thus, our newly
developed MMSE-DFE algorithm just has the same order of
computational complexity as the LMMSE algorithm. All in
all, we believe that the MMSE-DFE algorithm is capable of
contributing to the development of 5G wireless networks.

V. OPTIMIZING THE DETECTION ORDERS

As pointed out in [24], the phenomenon of error propagation
in MMSE-DFE receivers can lead to non-negligible perfor-
mance degradation of our proposed algorithm in practice.
With respect to the issue of mitigating the error propaga-
tion, [24] recommended the automatic repeat request (ARQ)
approach for SISO systems. However, if it is adopted in MIMO
relay systems, there will be excessive signalling overheads.
Reference [3] implemented an unequal error protection (UEP)
scheme, which, despite being conceptually simple, needs the
assistance of channel coding. Reference [25] verified the effec-
tiveness of several algorithms used to optimize the detection
orders in ZF/MMSE-DFE receivers for single-hop MIMO
systems, which inspires our following research in this section.
It is also worth mentioning that, for the vertical BLAST
receiver of a single-hop two-input multiple-output system,
[55] optimized its detection order according to the energy
of received symbols and analysed its symbol error probabili-
ties (SEPs) for both of the two input data streams. Note that
when there are an arbitrary number of input data streams, such
analyses of SEPs will become intractable. Hence, for MIMO
relay systems, the statistical modeling of error propagation,
which requires the information of SEPs, is quite difficult
and there are no previous relevant studies as far as we
know.

In this paper, for the BCD-based joint parameter optimiza-
tion of a two-way dual-hop multi-relay system, we introduce
a new group of variables, the permutation matrices {P i} �=
{P 1,P 2}, to optimize the detection orders of all data streams.

Specifically, at the ith source node for i = 1, 2, P ī ∈
C

Ms×Ms is used to change the detection order of the target
signal vector sī sent by the the īth source node, resulting in

s′̄i
�= P īsī = P ī

[
sī;1, . . . , sī;Ms

]T =
[
sī;ξī;1

, . . . , sī;ξī;Ms

]T
(34)

where
{
ξī;1, . . . , ξ̄i;Ms

}
is a reordering of {1, . . . , Ms}, denot-

ing that for m = 1, . . . , Ms, the mth symbol in s′̄
i

is just the
ξī;mth symbol in sī, i.e., belonging to the ξī;mth data stream.

Here the optimization of {P i} is carried out before that
of {W i}, {U i} in Step 2) of Table II. Since (4) can be

reformulated to be ỹi =
∑Ms

m=1

[
H̃i

]
m

sī;m + ṽi, based on

fixed {Bi}, {F k}, the SINR for sī;m, i.e., for the mth data
stream, before the feed-forward filtering can be derived as

SINRī;m

�= E
[∥∥∥[H̃ i

]
m

sī;m

∥∥∥2]/E
[∥∥ρī;m + ṽi

∥∥2]
=
∥∥∥[H̃ i

]
m

∥∥∥2/[ Ms∑
j=1,j �=m

∥∥∥∥[H̃i

]
j

∥∥∥∥2 + tr(Ci)

]
(35)
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where ρī;m
�=
∑Ms

j=1,j �=m

[
H̃i

]
j
sī;j denotes the interference

from other data streams. In order to mitigate the error prop-
agation from earlier detected data streams to later detected
ones in the MMSE-DFE receiver at the ith source node,
we optimize its detection order under the principle of prefer-
entially detecting those data streams with higher SINRs. Thus,{
ξī;1, . . . , ξ̄i;Ms

}
satisfies

SINRī;ξī;1
� . . . � SINRī;ξī;Ms

(36)

from which, the permutation matrix P ī in (34) is determined.
Now, with the optimized detection orders (i.e., the optimized

{P i}), (7) turns into ŝ′̄i =WH
i ỹi −Dis

′̄
i

for i = 1, 2, where
ŝ′̄i

�= P īŝī and ỹi, given by (4), can be rewritten as

ỹi = H̃ iP
T
ī s

′̄
i + ṽi =H irFHrīB

′̄
is

′̄
i + ṽi (37)

with B ′̄
i

�= B īP
T
ī , called the permuted source precoding

matrix. Since we have E
[
s′̄

i
s′̄

i
H] = P īP

T
ī = IMs =

E
[
sīs

H
ī

]
, as long as B ī is substituted by B ′̄

i for i = 1, 2,
those derivations within Subsections III-A–III-C remain unaf-
fected, so can Steps 2)–4) in Table II, and we are able
to recover B ī just by B ī =B ′̄

i P ī. Therefore, an extended
version of the MMSE-DFE algorithm, involving the optimiza-
tion of detection orders, is proposed and we name it “the
MMSE-DFE-O algorithm”.

Note that it only costs O(M3
)

to compute and sort
SINRī;m, determine P ī as well as convert between B ī and
B ′̄

i for i = 1, 2 and m = 1, . . . , Ms, hence the evolution from
the MMSE-DFE algorithm to the MMSE-DFE-O algorithm
does not change the order of computational complexity. Here
the optimization of detection orders not only can mitigate the
error propagation, as the earlier detected data streams have
higher SINRs and thus produce less detection errors, but also
enables those data streams with lower SINRs to be detected
last and gain more feedbacks, thus achieves a better use of
the nonlinear receiving structure. However, under poor com-
munication conditions, these feedbacks may have the opposite
effect due to the severe error propagation. Besides, the MMSE-
DFE-O algorithm has more variables to be optimized, which
may decrease its convergence rate. Nevertheless, numerical
simulations in Section VII will show that, after 10 iterations,
compared with the MMSE-DFE algorithm, the MMSE-DFE-O
algorithm can always perform better under (moderately) good
communication conditions, and even in the worst cases, its
performance degradation is negligible, which confirms that the
MMSE-DFE-O algorithm has a fast convergence rate. It should
be pointed out that, since Es is derived under the assumption
of no error propagation, the improvement of MSE performance
obtained by optimizing the detection orders is not as obvious
as that of practical BER performance, as will be illustrated
later in Section VII.

VI. ROBUST SYSTEM DESIGN WITH IMPERFECT CSI

Here we shall extend the previously developed
algorithms to conduct a robust system design with
imperfect CSI. As in [12]–[15], [21], and [41], the well-
known Gaussian-Kronecker channel model is adopted, i.e., for
i = 1, 2 and k = 1, . . . , K , Hri,k, H ir,k have the matrix

variate complex Gaussian distributions [12], [54, Ch. 2] as
follows:

Hri,k ∼ CNN,M

(
Ĥri,k, σ2

e; ri,kΘri,k ⊗ΦT
ri,k

)
,

Hir,k ∼ CNM,N

(
Ĥ ir,k, σ2

e; ir,kΘir,k ⊗ΦT
ir,k

)
(38)

where Ĥri,k ∈ C
N×M , Ĥ ir,k ∈ C

M×N are the estimated
CSI; σ2

e; ri,k, σ2
e; ir,k denote the channel estimation error vari-

ances; Φri,k ∈ CM×M , Φir,k ∈ CN×N stand for the column
correlation matrices of channel estimation error, correspond-
ing to the side of transmitting antennas; Θri,k ∈ CN×N ,
Θir,k ∈ C

M×M stand for the row correlation matrices of
channel estimation error, corresponding to the side of receiving
antennas. Here, Φri,k, Φir,k, Θri,k, Θir,k are all Hermitian
PD matrices.

In the following, we give a robust design extension of the
MMSE-DFE algorithm to make it capable of handling the
channel uncertainties (38).

First of all, it is realized that with imperfect CSI,
the receiver at the ith source node for i = 1, 2 suffers
from residual self-interference (RSI), therefore ỹi in (4)
becomes

ŷi = H̃ isī + ṽi + ti (39)

where ti �=
∑K

k=1

(
H ir,kF kHri,k − Ĥir,kF kĤri,k

)
Bisi

denotes the RSI vector with its covariance matrix being
T i

�= E
[
tit

H
i

]
. Consequently, Es in (10) changes to

Ês =
2∑

i=1

tr
[(
WH

i H̃ i −U i

)
×
(
WH

i H̃i −U i

)H
+WH

i (Ci + T i)W i

]
. (40)

Since Hri,k, H ir,k in (40) are not perfectly known, we shall

derive EH

[
Ês

]
via using the theorem below with Θ̂ri,k

�=

σ2
e; ri,kΘri,k and Θ̂ir,k

�= σ2
e; ir,kΘir,k.

Theorem 5: For η = ri, ir and any complex square matrix
constant X with matched dimensions,

EH

[
Hη,kXH

H
η,k

]
= Ĥη,kXĤ

H

η,k + tr(XΦη,k)Θ̂η,k,

(41)

EH

[
HH

η,kXHη,k

]
= Ĥ

H

η,kXĤη,k + tr
(
XΘ̂

H

η,k

)
ΦH

η,k.

(42)

Proof: This theorem generalizes Theorem 2.3.5(i)–(ii)
in [54] from the real matrix space to the complex one, so their
proofs are similar and not covered again here. �
On the basis of Theorem 5, EH

[
H̃ iH̃

H

i

]
and EH [Ci + T i]

for i = 1, 2 are respectively given by

EH

[
H̃iH̃

H

i

]
= ĤiĤ

H

i +
K∑

k=1

{
Ĥir,kF kΘ̂ī,kF

H
k Ĥ

H

ir,k

+ tr
[
F k

(
Ĥrī,kBīB

H
ī Ĥ

H

rī,k + Θ̂ī,k

)
FH

k Φir,k

]
Θ̂ir,k

}
,
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where Ĥi
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i Ĥi −U i

)H
+WH

i

×
{

K∑
k=1

[
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where Θ̂k
�=
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for k = 1, . . . , K . Thus, evolving

from the original problem (11)–(14), the problem of robust
system design is written as
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[
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s.t. (12), (14) and EH [Pk]

� pk for k = 1, . . . , K. (45)

In a similar way as summarized in Table II, via using
the BCD method, the matrix variables of the above
problem can be iteratively optimized. To start with,
we initialize

{
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}
as (15) and F k =

√
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k = 1, . . . , K . Then, based on fixed
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, so

long as we substitute Ĥi for H̃ i and V i for Ci, the
optimization results of
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in Subsection III-A
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for i = 1, 2, l = 1, 2 and k = 1, . . . , K , the

optimization problem with respect to
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is written as
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. This problem, like the one in (21)–(23),

is a convex QCQP problem, thus can also be solved by
the interior-point method. Finally, with other variables fixed,
the optimization problem of F k for k = 1, . . . , K is given by
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s.t. ĝk(F k) = tr

(
F kSkF

H
k

)
− pk � 0 (47)

where for i = 1, 2, Ĥ i,k
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�= Ĥri,kBi and
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Subsection III-C, the KKT conditions can be utilized
to solve this problem. Here, the solution becomes
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Note that the LMMSE algorithm proposed in [23] can
also be extended to achieve the robust design of a lin-
ear receiving-based two-way relay system. To be specific,
we optimize its linear receivers as those in Theorem 4 with
Ĥi and V i substituted for H̃i and Ci, respectively, and
the optimization of {Bi}, {F k} can follow the same pro-
cedures as described above for the MMSE-DFE algorithm.
Regarding the robust design extension of the MMSE-DFE-
O algorithm, as pointed out in Section V, after {P i} is
determined, we can obtain the permuted source precoding
matrices, with which the optimization procedures of the
MMSE-DFE algorithm can be directly adopted. Now, for
optimizing {P i}, we change SINRī;m in (35) into SÎNRī;m
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Ĥ

H
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along with the mutual independence of ρī;m, ṽi and ti,
SÎNRī;m is derived as

SÎNRī;m

=

[
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[
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i H̃i

]]
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.

(49)

So far we have completed all the robust design exten-
sions of the LMMSE, MMSE-DFE and MMSE-DFE-O algo-
rithms with the order of computational complexity remaining
unchanged, since the increased calculations are mainly matrix
multiplications. Hereafter, for the sake of brevity, the original
three algorithms as described in Sections III–V, which use the
perfect CSI, are denoted together by “the (L)MMSE(-DFE)
(-O) algorithms”. Their robust design extensions as described
in this section, using the imperfect CSI, i.e., the channel
matrices with distributions (38), are called “the R-(L)MMSE
(-DFE)(-O) algorithms”. Besides, for comparison purposes,
the algorithms in Sections III–V can also be executed with
only the estimated CSI, which provide a non-robust system
design under channel uncertainties, thus called “the NR-
(L)MMSE(-DFE)(-O) algorithms”.

VII. NUMERICAL SIMULATIONS

This section presents the MSE and BER performance of
all the proposed algorithms through numerical simulations.
Here, MATLAB R2019b running in 64-bit Windows Server
2019 operating system is adopted as the simulation platform,
whose hardware is constructed via Baidu Cloud Compute, and
we utilize the MATLAB-based software tool CVX to solve
those convex QCQP problems with respect to {Bi}. Besides,
all the following Monte Carlo simulation results are obtained
from the average of 1500 independent channel realizations.

Here the performance validations and comparisons are made
under two scenarios: one is for the systems with perfect CSI
and the other is for those with imperfect CSI. In the perfect
CSI scenario, we assume an i.i.d. Rayleigh fading channel
model, where all the entries in every channel matrix are
i.i.d. circularly symmetric complex Gaussian (CSCG) random
variables with zero means and variances being 1/M for Hri,k

or 1/N for H ir,k, i = 1, 2, k = 1, . . . , K . Note that the
intention of setting the variances like these is to normalize
the influence of the numbers of transmitting antennas. In the
imperfect CSI scenario, for the Gaussian-Kronecker channel
model (38), we employ the exponential model [12]–[15], [21]
to represent the spatial correlation, i.e., for 1 � l, j � M

and 1 � s, t � N , [Φri,k]l,j = φ
|l−j|
ri,k , [Θri,k]s,t = θ

|s−t|
ri,k ,

[Φir,k]s,t = φ
|s−t|
ir,k , [Θir,k]l,j = θ

|l−j|
ir,k , where φri,k, θri,k,

φir,k , θir,k are the correlation coefficients and we set them
as τ . Besides, we also set σ2

e; ri,k = σ2
e /M , σ2

e; ir,k = σ2
e /N ,

and as in [12], [14], the estimated CSI is generated by

Ĥri,k ∼ CNN,M

(
0N×M , σ̂2

ri,kΘri,k ⊗ΦT
ri,k

)
,

Ĥir,k ∼ CNM,N

(
0M×N , σ̂2

ir,kΘir,k ⊗ΦT
ir,k

)
(50)

TABLE III

EXAMPLES OF SYSTEM SETTINGS

with σ̂2
ri,k =

(
1 − σ2

e

)
/M , σ̂2

ir,k =
(
1 − σ2

e

)
/N , where σ2

e ,
given for the sake of simplicity, denotes the variance of all
channel estimation errors. Here, from (38) and (50),
we can obtain Hri,k ∼ CNN,M

(
0N×M ,

(
1/M
)
Θri,k ⊗

ΦT
ri,k

)
, Hir,k∼ CNM,N

(
0M×N ,

(
1/N
)
Θir,k⊗ΦT

ir,k

)
. Note

that once τ = 0, Hri,k, Hir,k become the i.i.d. Rayleigh
fading channel matrices as used in the perfect CSI scenario.

Meanwhile, the distributions of vr,k for k = 1, . . . , K and
vi for i = 1, 2 are subject to CN (0 , IN ) and CN (0 , IM ),
respectively. That is, we set all these noise vectors to be zero
mean CSCG random vectors with identity covariance matrices.
Furthermore, without loss of generality, a unified transmission
power budget is assumed for both source nodes as well as for
all relay nodes, i.e., qi = Q for i = 1, 2 and pk = P for
k = 1, . . . , K . Noteworthily, the signal propagation path loss
is implicitly considered within Q and P , and so are the noise
powers as we normalize them to be unity. All the simulations
below are carried out with P varying from 0 dB to 40 dB
under six different examples of system settings regarding Ms,
M , Q, N and K as listed in Table III, where “Ex” is the
abbreviation of “Example”.

A. Performance Comparisons With Perfect CSI

1) MSE Performance: Figs. 2–3 illustrate the superiority of
the MMSE-DFE(-O) algorithms over the LMMSE algorithm
in term of the MSE performance with perfect CSI. Here
what we exhibit is the arithmetic average of the MSEs for
all data streams, i.e., Es/ (2 Ms). In order to clearly present
the iterative process of the MMSE-DFE algorithm, we also
show its MSE simulation results after the 2nd and the 5th
iteration (shortened to “itr. 2” and “itr. 5”). It can be observed
that, for Exs. 1–4, the MMSE-DFE(-O) algorithms always
outperform the LMMSE algorithm after they go through 10
iterations. In particular, as regards Exs. 2–3, even 2 iterations
are sufficient for the MMSE-DFE algorithm to obtain a much
better MSE performance than the LMMSE algorithm with
10 iterations. Besides, since Es is derived with no error
propagation, the MSE performance of the MMSE-DFE-O
algorithm is just a little better than that of the MMSE-DFE
algorithm, and the improvement is even invisible for Ex. 4.
However, as shown later, the practical BER performance of
these two algorithms is much more distinguishable.

Compared with Ex. 2, Ex. 1 has a better MSE performance
due to the reduced number of concurrently transmitted data
streams, from which the spatial diversity order is increased.
Ex. 3 cuts down the power budget at both source nodes,
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Fig. 2. MSE versus P comparisons for Exs. 1–2 with perfect CSI.

Fig. 3. MSE versus P comparisons for Exs. 3–4 with perfect CSI.

so its MSE curves always lie above the corresponding ones
of Ex. 2. By introducing more parallel relay nodes, Ex. 4 has
more power available in the system, hence outperforms Ex. 3.
Besides, arising from the invariance of Q, which hinders the
performance from being further improved when P becomes
large enough, the saturation effect is obvious in Ex. 4 after
P exceeds 30 dB.

2) BER Performance: Figs. 4–6 indicate the better BER
performance of the MMSE-DFE(-O) algorithms by compari-
son with the LMMSE algorithm. To obtain these simulation
results, for each channel realization, we transmit half a million
information bits per data stream at both source nodes to pass
through the two-way relay system with the QPSK modulation
mode. Here, for the MMSE-DFE algorithm, we show not only
its practical BER performance curves but also the ideal ones

Fig. 4. BER versus P comparisons for Exs. 1–2 with perfect CSI.

Fig. 5. BER versus P comparisons for Exs. 3, 5 with perfect CSI.

as performance benchmarks. The formers are obtained in the
presence of the error propagation within receivers where the
symbols fed back are regenerated from previously detected
information bits, while the latters follow the assumption of no
error propagation within receivers where the symbols fed back
are entirely correct. It can be seen that the relationships among
Exs. 1–4 in terms of BER performance are generally similar
to those regarding MSE performance, which further verifies
the effectiveness of the MSE minimization design criterion.

For all examples, under ideal circumstances, the
MMSE-DFE algorithm always outperforms the LMMSE
algorithm. Meanwhile, the practical BER performance of
the MMSE-DFE algorithm is still excellent on the whole.
Specifically, within the low range of P , i.e., for about
P < 15 dB, the practical performance curves of the
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Fig. 6. BER versus P comparisons for Exs. 4, 6 with perfect CSI.

Fig. 7. MSE versus P comparisons for Ex. 2 with τ = 0.25 and σ2
e = 0.003.

MMSE-DFE algorithm are slightly inferior to the curves
of the LMMSE algorithm. This is because the worse the
communication conditions, the more possible the occurrence
of detection errors and error propagation in MMSE-DFE
receivers. Nevertheless, once P exceeds 15 dB, the practical
performance of the MMSE-DFE algorithm gradually becomes
better than that of the LMMSE algorithm. The outstanding
practical BER performance of the MMSE-DFE algorithm is
especially evident as P > 25dB, e.g., there is nearly three
orders of magnitude improvement in Ex. 5 at P = 40dB.

Here, we can also observe that the practical BER perfor-
mance of the MMSE-DFE-O algorithm is superior to that
of the MMSE-DFE algorithm. Although they are almost
the same within the low range of P , there is a distinct
improvement when P is (moderately) high. Besides, as shown

Fig. 8. BER versus P comparisons for Ex. 2 with τ = 0.25 and σ2
e = 0.003.

Fig. 9. BER versus P comparisons for Exs. 2, 6 with τ = 0.25 and
σ2
e = 0.01.

in the close-up view of Fig. 6, for Ex. 6, when P >
30 dB, the practical BER performance of the MMSE-DFE-
O algorithm is even better than the ideal BER performance
of the MMSE-DFE algorithm. This is because under good
communication conditions, there is nearly no error propagation
in MMSE-DFE receivers, and the optimization of detection
orders can let those data streams with lower SINRs obtain
more beneficial feedbacks, making better use of the nonlinear
receiving structure.

B. Performance Comparisons With Imperfect CSI

In the following simulations, the imperfect CSI is taken
into account with τ set as 0.25. For Ex. 2 and σ2

e = 0.003,
Fig. 7 and Fig. 8 respectively show the MSE and BER
performance of the NR-(L)MMSE(-DFE)(-O), R-(L)MMSE(-
DFE)(-O) and (L)MMSE(-DFE)(-O) algorithms, where the
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algorithms based on perfect CSI show the performance limits
and the BER performance of the nonlinear receiving-based
algorithms is the practical one involving the error propagation.
It can be seen that, since only the estimated CSI is utilized,
the non-robust design algorithms perform much worse than
the algorithms with perfect CSI, and as P becomes higher,
due to the increasingly severe impact of channel estimation
errors and RSI, the non-robust design performance curves even
gradually go upward. This undesired situation is effectively
relieved by the robust design algorithms, which confirms
their validity and practicability. Besides, for Exs. 2, 6 and
σ2
e = 0.01, Fig. 9 shows the BER performance of the

non-robust design and the robust design algorithms. Here we
can observe that, for Ex. 2, due to the increase of σ2

e from
0.003 to 0.01, there is a significant performance degradation,
while the robust design algorithms still provide a considerable
performance improvement by comparison with the non-robust
design algorithms. For Ex. 6, such improvement is more
evident, e.g., the performance is improved by more than an
order of magnitude at P = 40dB.

VIII. CONCLUSION

For a two-way AF MIMO multi-relay system with
MMSE-DFE receivers, this paper designs an iterative
BCD algorithm to solve the joint precoding, amplifying,
feed-forward and feedback matrices optimization problem. To
mitigate the error propagation within receivers, we further
bring in the optimization of the detection orders of data
streams. Moreover, a robust design extension is conducted to
deal with the imperfect CSI. Through Monte Carlo simula-
tions, the proposed algorithms are shown to not only have
better MSE and BER performance than the existing linear
receiving-based algorithm, but also provide good robustness
against the channel uncertainties.

APPENDIX A
PROOF OF THEOREM 1

Here we begin by minimizing Ei;m, i.e., the MSE of the
signal waveform estimation for a single data stream. Obvi-
ously, the optimal feedback coefficients di;m,l for (8) ought to

satisfy wH
i;m

[
H̃ i

]
l
− di;m,l = 0 with l = m + 1, . . . , Ms and

m = 1, . . . , Ms − 1, or expressed in matrix form,

Di = U
[
WH

i H̃i

]
, i = 1, 2. (51)

Thus, via substituting such di;m,l back into (8), we obtain
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whose gradient with respect to wi;m [56], [57] is given by

∇wi;mEi;m =2
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]
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[
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]H
l

+Ci

)
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[
H̃ i

]
m

.

(53)

According to the second-order convexity condition
[47, Sec. 3.1.4], (52) can be confirmed as a convex
function due to the positive definiteness of its Hessian matrix,

i.e., ∇2
wi;m

Ei;m = 2
(∑m

l=1

[
H̃i

]
l

[
H̃i

]H
l

+Ci

)
. Then,

from the optimality condition (4.22) in [47], minimizing (52)
is equivalent to making (53) equal to zero, hence we
have
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=
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for m = 1, . . . , Ms. By using the matrix inversion lemma [58]:

(A+BCD)−1 =A−1−A−1B
(
C−1+DA−1B

)−1
DA−1

(55)

with nonsingular matrices A and C, (54) can be rewritten
as
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=
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At this point, via the QR factorization (17)–(19), we have
C

−1/2
i

[
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]
1:m

=
[
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]
1:m
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be decomposed as
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H
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Hence, substituting them back into (56) further makes for
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Accordingly, via rewriting (58) in matrix form, the opti-
mal {W i} is given by W i = C

−1/2
i Q̄iD

−H
Ri

, i = 1, 2.
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On the basis of it, utilizing (19) and (18) in turn,
we have

WH
i H̃ i

= D−1
Ri
Q̄

H
i C

−1/2
i H̃i = D−1

Ri
Q̄

H
i Q̄iRi

= D−1
Ri

(
IMs − Q̈

H

i Q̈i

)
Ri = D−1

Ri
Ri −D−1

Ri
R−H

i . (59)

Then, with (59) substituted back into (51), the optimal Di for
i = 1, 2 is given by Di = D−1

Ri
Ri−IMs , from which, we can

obtain the optimal {U i} as U i = D−1
Ri
Ri, i = 1, 2.

APPENDIX B
PROOF OF THEOREM 2

To proof Theorem 2, the definition of convex functions in
[47, Sec. 3.1.1] can be utilized.

Specifically, for all X1,X2 ∈ Cm×n and any real constant
θ with 0 � θ � 1, we have

θf(X1) + (1 − θ)f(X2)−f [θX1 + (1 − θ)X2]

= θ tr
(
AX1BX

H
1

)
+ (1 − θ) tr

(
AX2BX

H
2

)
− tr
{
A [θX1 + (1 − θ)X2]B [θX1 + (1 − θ)X2]

H
}

= θ (1 − θ) tr
[
A (X1 −X2)B (X1 −X2)

H
]
. (60)

Here let us introduce the eigenvalue decompositions (EVDs)
of A and B as A = V aΛaV

H
a , B = V bΛbV

H
b where V a ∈

Cm×m, V b ∈ Cn×n are unitary matrices and Λa ∈ Cm×m,
Λb ∈ C

n×n are diagonal matrices with all their diagonal
elements being nonnegative. Then, substituting them back into
(60) results in

θ (1 − θ) tr
{
Λa

[
V H

a (X1 −X2)V b

]
Λb

[
V H

a (X1 −X2)V b

]H}
= θ (1 − θ) tr

{[
Λ1/2

a V H
a (X1 −X2)V bΛ

1/2
b

]
×
[
Λ1/2

a V H
a (X1 −X2)V bΛ

1/2
b

]H}
. (61)

Clearly, there appears a Hermitian PSD matrix within the
braces of the trace operator in (61), which, together with
θ (1 − θ) � 0, makes (61) not less than zero, leading to

f [θX1 + (1 − θ)X2] � θf(X1) + (1 − θ)f(X2). (62)

So we can confirm that f(X) is a convex function.

APPENDIX C
PROOF OF THEOREM 3

To proof Theorem 3, we need the following two lemmas.
Lemma 1: For Hermitian matrices X ,Y ∈ Cn×n,

tr(XY ) �
∑n

i=1 λi(X)λi(Y ) � λ1(X) tr(Y ).
Proof: This lemma can be deduced directly from

Theorem 4.3.53 in [48]. �
Here, to prepare for Lemma 2, we bring in Defini-

tion 7.7.1 in [48]: for X,Y ∈ Cn×n, we write X � Y
(X 	 Y ) if X,Y are Hermitian matrices and X − Y is a

PSD (PD) matrix; further, we write X � 0 (X 	 0 ) if X is
a Hermitian PSD (PD) matrix.

Lemma 2: If matrices A,B ∈ C
n×n satisfy A � B

(A 	 B), then λi(A) � λi(B) (λi(A) > λi(B)) for i =
1, . . . , n.

Proof: This lemma just restates Corollary 4.3.12 in [48].
�

Now, from gk(F k) = 0 and Lemma 1, we can derive

pk = tr
(
F kGkF

H
k

)
= tr
(
GkF

H
k F k

)
� λ1(Gk) tr

(
FH

k F k

)
(63)

where Gk is essentially the covariance matrix of yr,k, namely,
Gk = E

[
yr,ky

H
r,k

]
.

Then substituting (29) back into tr
(
FH

k F k

)
leads to

tr
(
FH

k F k

)
= vec(F k)Hvec(F k)

= vec(Ak)HZ−H
k Z−1

k vec(Ak) (64)

where Zk
�=
∑2

i=1

(
Gī,kG

H
ī,k + IN

)T
⊗
(
HH

i,kH i,k

)
+

μkG
T
k ⊗ IN is a Hermitian PD matrix as mentioned before.

Via utilizing Lemma 1 again, we obtain

tr
(
FH

k F k

)
= tr
[
vec(Ak) vec(Ak)HZ−H

k Z−1
k

]
�

N2∑
i=1

λi

[
vec(Ak) vec(Ak)H

]
λi

(
Z−1

k Z−1
k

)
.

(65)

For matrix vec(Ak) vec(Ak)H , since its rank equals 1, all but
one of its eigenvalues are zeros, i.e.,

λ1

[
vec(Ak) vec(Ak)H

]
= tr
[
vec(Ak) vec(Ak)H

]
= ‖Ak‖2

F , (66)

and λi

[
vec(Ak) vec(Ak)H

]
= 0 for i = 2, . . . , N2. So we

have

tr
(
FH

k F k

)
� λ1

[
vec(Ak) vec(Ak)H

]
λ1

(
Z−1

k

)2
= ‖Ak‖2

F λN2(Zk)−2
. (67)

On the basis of Corollary 4.2.13 in [51], it is not hard to
get Zk � μkG

T
k ⊗ IN 	 0 , which, due to Lemma 2 as well

as [51, Theorem 4.2.12], results in

λN2(Zk) � λN2

(
μkG

T
k ⊗ IN

)
= μkλN

(
GT

k

)
λN (IN ) = μkλN (Gk). (68)

Combining (63), (67) and (68), we finally obtain

pk � λ1(Gk) ‖Ak‖2
F μ−2

k λN (Gk)−2 (69)

which leads to (30).
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APPENDIX D
PROOF OF THEOREM 4

For nonlinear MMSE-DFE receivers, based on Theorem 1,
the optimal feedback matrix U i satisfies D−1

Ri
= U iR

−1
i for

i = 1, 2, from which, the optimal feed-forward matrix W i

can be rewritten as

W i = C
−1/2
i Q̄iR

−H
i UH

i , i = 1, 2. (70)

When we switch to linear receivers with U i = IMs , (70)
becomes (32). Since we have Q̄i = C

−1/2
i H̃iR

−1
i from (19),

(32) is equivalent to

W̄ i = C−1
i H̃iR

−1
i R−H

i = C−1
i H̃i

(
RH

i Ri

)−1

. (71)

Here, by exploiting (17)–(18), we can obtain

RH
i Ri

= (QiRi)
H (QiRi) =

[
C

−1/2
i H̃ i

IMs

]H [
C

−1/2
i H̃i

IMs

]
=
(
C

−1/2
i H̃i

)H (
C

−1/2
i H̃ i

)
+IMs = H̃

H

i C
−1
i H̃i+IMs .

(72)

Then, substituting (72) back into (71) results in

W̄ i

= C−1
i H̃i

(
H̃

H

i C
−1
i H̃i + IMs

)−1

= C−1
i H̃i

[
IMs − H̃

H

i

(
Ci + H̃iH̃

H

i

)−1

H̃i

]
(73)

=
[
C−1

i −C−1
i H̃iH̃

H

i

(
IM +C−1

i H̃iH̃
H

i

)−1

C−1
i

]
H̃ i

=
(
H̃iH̃

H

i +Ci

)−1

H̃i, i = 1, 2 (74)

where we obtain (73) and (74) via making use of the matrix
inversion lemma (55).
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