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Abstract—In this paper, we investigate the challenging problem
of joint source and relay optimization for two-way linear non-re-
generative multiple-input multiple-output (MIMO) relay commu-
nication systems.We derive the optimal structure of the source and
relay precodingmatrices when linearminimalmean-squared error
(MMSE) receivers are used at both destinations in the relay system.
We show that for a broad class of frequently used objective func-
tions for MIMO communications such as the MMSE, the maximal
mutual information (MMI), and the minimax MSE, the optimal
relay and source matrices have a general beamforming structure.
This result includes existing works as special cases. Based on this
optimal structure, a new iterative algorithm is developed to jointly
optimize the relay and source matrices. We also propose a novel
suboptimal relay precoding matrix design which significantly re-
duces the computational complexity of the optimal design with only
a marginal performance degradation. Interestingly, we show that
this suboptimal relay matrix is indeed optimal for some special
cases. The performance of the proposed algorithms are demon-
strated by numerical simulations. It is shown that the novel min-
imax MSE-based two-way relay system has a better bit-error-rate
(BER) performance compared with existing two-way relay systems
using the MMSE and the MMI criteria.

Index Terms—Beamforming, linear non-regenerative relay,
MIMO relay, two-way relay.

I. INTRODUCTION

R ELAY communication is well known for being a cost-
effective approach to improve the energy-efficiency of

wireless communications systems [1]. When nodes in the relay
network are equipped with multiple antennas, we have a mul-
tiple-input multiple-output (MIMO) relay system [2]–[7]. For a
one-way MIMO relay system (i.e., one source node sends in-
formation to one destination node), a unified framework has
been established in [3] to jointly optimize the source and relay
precoding matrices for a broad class of frequently used objec-
tive functions in MIMO communications. In [4], the source and
relay matrices were jointly optimized for a one-way MIMO
relay system where the direct source-destination link is non-
negligible. The optimal power allocation in a multiuser MIMO
relay system has been investigated in [5]. Recently, one-way
and two-way relay systems with multiple parallel MIMO relay
nodes have been investigated in [6].
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In a two-way relay communication system, two source nodes
exchange their information through an assisting relay node. By
resorting to the idea of analog network coding [8], the informa-
tion exchange can be completed in two time slots. In the first
time slot, both source nodes concurrently transmit signals to
the relay node. In the second time slot, the relay node precodes
the received signals and broadcasts the precoded signals to both
source nodes. Since each node knows its own transmitted sig-
nals, the self-interference can be easily cancelled. Then the mes-
sage from the other node can be decoded.
Distributed space-time coding has been designed in [9] for

two-way relay communication with multiple single-antenna
relay nodes. For a two-way (and in general -way) relay
system with a multi-antenna relay node and single-antenna
source nodes, the relay beamforming issue has been investi-
gated in [10] and [11]. Beamforming algorithms have been
developed in [12] and [13] for a two-way relay network with
multiple single-antenna relay nodes. For two-way MIMO relay
systems, the optimal relay and source matrices have been de-
veloped in [14] and [15] to maximize the two-way sum mutual
information (SMI). Minimal mean-squared error (MMSE)
based two-way MIMO relay systems were proposed in [16]
and [17]. An algebraic norm-maximization relaying algorithm
has been developed in [18]. Two-way relay communication in
a multiuser scenario was recently studied in [19] and [20]. An
overview on the topics of two-way MIMO relay communica-
tion can be found in [21].
In this paper, we investigate the joint source and relay pre-

coding matrices optimization for a two-way MIMO relay com-
munication system where both source nodes and the relay node
are equipped with multiple antennas. Compared with existing
works such as [10]–[21], the contributions of this paper can be
summarized as follows. Firstly, we develop a unified frame-
work for optimizing two-way linear non-regenerative MIMO
relay systems. This framework includes a broad class of fre-
quently used Schur-concave and Schur-convex objective func-
tions for MIMO relay system design, while existing works only
focus on one specific criterion. Thus, this paper includes ex-
isting works as special cases. Moreover, for the first time, we de-
velop a two-way MIMO relay system using the criterion which
minimizes the maximum of the MSE (minimax MSE) of signal
waveform estimation among all data streams1.

1To the best of our knowledge, the minimax MSE design criterion has been
considered only for one-way MIMO relay communications. For two-way relay
systems with single-antenna source nodes, the minimax symbol-error rate prin-
ciple has been recently applied for relay selection in [22]. However, minimax
MSE-based two-way MIMO relay system design has not been considered by
existing works.
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Fig. 1. Block diagram of a two-way non-regenerative MIMO relay communi-
cation system.

Secondly, for a broad class of frequently used Schur-concave
and Schur-convex objective functions, we show that the optimal
relay and sourcematrices have a general beamforming structure.
This interesting outcome includes the results in existing works
such as [10] and [14] as special cases. Based on this optimal
structure, an iterative algorithm is developed to jointly optimize
the relay and source matrices. Note that a rank-constrained op-
timization problem with a Schur-convex/Schur-concave objec-
tive function and multiple trace/logdeterminant constraints is
addressed in [23]. However, the joint source, relay, and receiver
matrices optimization problem in this paper is more challenging
than the problem in [23], since the former problem involves
multiple matrix variables, while the latter one only deals with
a single matrix variable.
Thirdly, we propose a new suboptimal relay precoding ma-

trix design which significantly reduces the computational com-
plexity of the optimal design with only a marginal performance
degradation. Interestingly, we show that this suboptimal relay
matrix is indeed optimal for some special cases.
To study the performance of the joint source and relay ma-

trices design algorithms, numerical simulations are carried out
using the following three objective functions: (1) The minimal
sum MSE (MSMSE) of the signal waveform estimation; (2)
The maximal two-way SMI (MSMI); (3) The minimax MSE
of the signal waveform estimation. It is shown that the pro-
posed iterative algorithm converges in only a few iterations,
which is important for practical two-way relay systems. We also
show that the minimax MSE-based relay algorithm has a better
bit-error-rate (BER) performance compared with the commonly
used MSMSE and MSMI criteria. In this paper, for notational
convenience, we consider a narrow band single-carrier system.
However, our results can be straightforwardly generalized to
each subcarrier of a broadband multi-carrier two-way MIMO
relay systems. For multi-carrier two-way relay systems with
single antenna nodes, the optimal spectrum sharing and power
allocation issue has been studied in [24].
The rest of this paper is organized as follows. In Section II,

we introduce the model of a two-way linear non-regenerative
MIMO relay communication system. In Section III, we show
that the optimal linear receivers are the MMSE receivers. The
joint source and relay matrices design algorithms are developed
in Section IV. In Section V, we show some numerical examples.
Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a three-node MIMO communication system
where nodes 1 and 2 exchange information with the aid of one
relay node as shown in Fig. 1. We assume that both nodes 1
and 2 are equipped with antennas, the relay node has
antennas2. The information exchange between nodes 1 and 2 is
completed in two time slots. In the first time slot, nodes 1 and

2We assume that . The case of has been addressed in [10].

2 concurrently transmit, and the signal vector from node is
, where is the source signal vector,

and is the source precoding matrix at node . Here
is the number of information-carrying symbols. Note that

when , we have a beamforming vector at node . The
signal vector received at the relay node can be written as

(1)

where , is the channel matrix between the
relay node and node , and is the noise vector at the
relay node.
In the second time slot, the relay node linearly precodes

with an matrix and broadcasts the precoded signal
vector to nodes 1 and 2. Using (1), the received signal
vector at node can be written as

(2)

where , is the channel matrix between
node and the relay node, and , is the noise
vector at node . Here for , and for .
We assume that the source signal vectors satisfy

, and all noises are independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN) with
zero mean and unit variance. Here stands for the statistical
expectation, is an identity matrix, and denotes
matrix (vector) Hermitian transpose. In this paper, we assume
that all MIMO channels are quasi-static, that is, they remain
constant (deterministic) over one time frame, but can change to
another value in the next time frame. Such quasi-static channel
model has been widely used in one-way and two-way MIMO
relay communications [3]–[7], [10]–[14]. We also assume that
all three nodes know the channel state information (CSI) of
and , for example, through channel training and
estimation [25]. The relay node performs the optimization of

, and then transmits them to nodes 1 and 2. Together with
the knowledge of and , node can then com-
pute equivalent channel matrices such as which
are necessary for signal reception and self-interference cancel-
lation.
Since node knows its own transmitted signal vector and

, the self-interference component in (2) can be
easily cancelled. The effective received signal vectors are given
by

(3)

where , is the equivalent MIMO
channel seen at node , and is the equivalent
noise vector at node .
Due to their lower computational complexity, linear receivers

are used at nodes 1 and 2 to retrieve the transmitted signals
sent from the other node, and we have . The
estimated signal waveform vector is given by
and , where and are weight
matrices. Note that a linear receiver is suboptimal when .
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However, it reduces the complexity drastically compared with
a joint ML detection.

III. OPTIMAL LINEAR RECEIVER MATRICES

From (3), the MSE matrices of the signal waveform estima-
tion , is a
function of , and , and can be written as

(4)

where , is
the equivalent noise covariance matrix at node . Using (4), the
MSE of the signal waveform estimation of the th data stream
at node is given by the -th element of as

(5)

In this paper, we aim at minimizing

(6)

where contains the MSEs
of all data streams at node denotes matrix (vector)
transpose, and the multivariate function is increasing in
each one of its arguments while having the rest fixed. Using (5),
the objective function (6) can be equivalently rewritten as

(7)

where for a matrix is a column vector containing all
main diagonal elements of .
We consider the following transmission power constraint at

the relay node

(8)

where denotes matrix trace, and is the power avail-
able at the relay node. The transmission power constraint at two
source nodes can be written as

(9)

where is the available power at the th source node. It can be
seen that and are not in constraints (8) and (9).
The joint optimization over , and , in (7)

subjecting to (8) and (9) can be performed over two stages. It
is well-known in optimization theory ([32], Sec. 4.1.3) that for
any function (not necessarily convex),

. In other words, we can always minimize

a function by first minimizing over some of the variables, and
then minimizing over the remaining ones. Based on this fact, we
have

(10)

Interestingly, for two unconstrained inner minimization prob-
lems in (10), the optimal does not depend on the specific
form of . The reason is twofold. First, for fixed and ,
the minimization of with respect to (the th column
of ) does not incur any penalty on the other substreams.
Second, is increasing in each one of its arguments. There-
fore, we can simultaneously minimize all MSEs. For any fixed

, and , two inner minimization problems in (10) are
convex quadratic problems and the optimal is the Wiener
filter [26] given by

(11)

where stands for matrix inversion. In fact, (5) can
also be written as

The vector minimizing above is given by
. Since and

, we have . Here
is the th column of . By putting ,

together into one matrix whose th column is , we obtain
in (11). This proves that (11) indeed simultaneously

minimizes all diagonal elements of .
After the optimal is obtained, the outer minimization

problem in (10) can be written as

(12)

(13)

(14)

where , is the MSE
matrix using . By substituting (11) back into (4), we have

(15)
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where the second equation is obtained by applying the matrix
inversion lemma

. After the optimal , and are obtained
from solving the problem (12)–(14), we get the optimal receiver
matrices and from (11).
The two-stage optimization approach has the following ad-

vantages. Firstly, the receiver matrices in (11) are always op-
timal for any fixed , and . Secondly, using the optimal
receiver matrices (11) reduces the dimension of variables in the
problem of (7)–(9). As a result, the outer minimization problem
(12)–(14) needs only to focus on the optimization of ,
and . This enables us to identify the optimal structure of
and as shown later.
It has been shown in [3] that a broad class of frequently

used MIMO relay system design objectives can be written as
a function of the main diagonal elements of the MSE matrix

in (15). To illustrate this interesting link, let us look
at the following three examples. First, the sum of the MSE of
all data streams can be written as

(16)

Here is the th main diagonal element of
, and is in fact the MSE of the signal waveform

estimation of the th data stream given by

where is the interference-plus-
noise covariance matrix for the th data stream. Here the matrix
inversion lemma is used to obtain the third equation.
Second, the negative MI (NMI) between source and destina-

tion is

(17)

where denotes matrix determinant. Since (17) is invariant
to any unitary rotation of , we can choose such that

is diagonal. Thus we have

(18)

Finally, the maximum of the MSE (MaxMSE) of the signal
waveform estimation among all data streams can be written as

(19)

From (16), (18), and (19) we see that all three functions are
strongly linked to the main diagonal elements of .
Moreover, it has been shown in [3] that (16) and (18) are Schur-

concave functions [28] with respect to , and (19)
is a Schur-convex function [28] with respect to .
In this paper, we consider which includes commonly used
Schur-concave and Schur-convex objective functions. As exam-
ples, we have

when (16), (18), and (19) are chosen as the objective functions,
respectively. Due to the limit of space, we only listed three ob-
jective functions as examples. Please refer to [29] for a list of
commonly used Schur-concave/Schur-convex objective func-
tions inMIMO systems. For an objective function which has not
been studied in existing works for two-wayMIMO relay system,
the optimal source and relay precoding matrices can be obtained
by using the unified framework developed in the next section, as
long as the objective function is Schur-concave/Schur-convex.
The Schur-convexity/Schur-concavity of will be exploited
in Section IV-B for a simplified relay matrix design. It will also
be used in Section IV-C to obtain the optimal source precoding
matrices.

IV. JOINT SOURCE AND RELAY OPTIMIZATION

In this section, we develop algorithms to solve the joint
source and relay optimization problem (12)–(14) where
is Schur-concave/Schur-convex. Since the problem (12)–(14)
is nonconvex, a globally optimal solution of is
difficult to obtain with a reasonable computational complexity
(non-exhaustive searching). We develop an iterative algorithm
to optimize (12). First we show the optimal structure of .

A. Optimal Structure of Relay Precoding Matrix

For any feasible and satisfying (14), the relay pre-
coding matrix optimization problem is given by

(20)

(21)

First we consider the scenario where . The case of
will be discussed later. Let us introduce the

following singular value decompositions (SVDs)

(22)

(23)

where the dimensions of are
, respectively, and the dimensions of are

, respectively. Note that is in
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fact the equivalent first-hop multiaccess MIMO channel from
both source nodes to the relay node, while is actually the
equivalent second-hop broadcast MIMO channel from the relay
node to both nodes 1 and 2. The following theorem establishes
the optimal structure of when .
Theorem 1: Using the SVDs (22) and (23) and a

matrix , the optimal as the solution to the problem (20)–(21)
is given by

(24)

Proof: See Appendix A.
Theorem 1 shows that the optimal relay precoding matrix can

be viewed as a general form of beamforming. The relay first
performs receive beamforming using the Hermitian transpose of
the left singular matrix of the effective source-relay channel
(22). Then the relay conducts a linear precoding operation using
. Finally, a transmit beamforming is performed by the relay

using the right singular matrix of the relay-destination channel
(23).
In the case of (or ) and the MSMI objective,

a similar result has been presented in [10], where is a 2 2
matrix. Interestingly, (24) extends the result in [10] from the
case of single antenna to the scenario of multiple antennas at
both source nodes. Moreover, (24) generalizes the results in [10]
and [14] from the MSMI objective to a broad class of frequently
used objective functions for MIMO relay systems. Note that
there are two differences between Theorem 1 and the result in
[3]. First, using the notation in this paper, is a diagonal matrix
in [3]. While in Theorem 1, is not necessarily diagonal. In
fact, is a non-square matrix if . Second, in [3]
depends only on the channel matrix. While in Theorem 1, is
a function of both source precoding matrices and . These
differences make optimizing the source and relay matrices in a
two-way MIMO relay channel much more challenging than for
a one-way MIMO relay system.
By substituting (24) back into (20)–(21) and introducing

, the optimization
problem (20)–(21) becomes

(25)

(26)

where the dimensions of and are , and the di-
mension of and are . For systems with
, since the dimension of is smaller than , solving the

problem (25)–(26) has a smaller computational complexity than
solving the problem (20)–(21). For relay systems with

, we directly solve the problem (20)–(21) using the
projected gradient algorithm similar to that listed in Table I
shown later on to obtain (at least) a locally optimal solution of .
In general, the problem (25)–(26) is nonconvex and a globally

optimal solution is difficult to obtain with a reasonable compu-
tational complexity (non-exhaustive searching). We can resort
to numerical methods, such as the projected gradient algorithm

TABLE I
PROCEDURE OF APPLYING THE PROJECTED GRADIENT ALGORITHM TO SOLVE

THE PROBLEM (25)–(26)

[30] to find (at least) a locally optimal solution of (25)–(26).
The advantage of the projected gradient algorithm is that it only
requires information on the first-order derivative (gradient) of
the objective function. While other approaches for nonlinear
programming, such as the sequential quadratic programming
(SQP) and the Newton method, require also the knowledge on
the second-order derivative. Since the problem (25)–(26) has
matrix variable, the complexity of computing the second-order
derivative of (25) with respect to is much higher than that of
the first-order derivative.
In the projected gradient algorithm, we need to compute

the gradient of the objective function (25). As an example, if
is chosen as the objective

function, then its gradient with respect to can be
calculated by using results on derivatives of matrices in [31] as

where . Then
we obtain by moving one step towards
the negative gradient direction of , where is the
step size. Since might not satisfy the constraint (22), we need
to project it onto the set given by (26). The projected matrix
is obtained by minimizing the Frobenius norm of

(according to [30]) subjecting to (26), which can be formulated
as the following optimization problem

(27)

Obviously, if , then . Other-
wise, the solution to the problem (27) can be obtained by using
the Lagrange multiplier method and given by

where is the solution to the nonlinear equation of

(28)

Since (28) is a monotonically decreasing function of , the
unique solution of (28) can be efficiently obtained by the
bisection method [30].
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The procedure of the projected gradient algorithm is listed in
Table I, where and are the step size parameters at the th
iteration, denotes the maximum among the abso-
lute value of all elements in a matrix, and is a positive con-
stant close to 0. The step size parameters and are chosen
by the Armijo rule [30], i.e., is a constant through all it-
erations, while at the th iteration, is set to be . Here
is the minimal nonnegative integer that satisfies the inequality
of

and are constants. According to [30], usually is
chosen close to 0, for example , and a proper
choice of is normally from 0.1 to 0.5.

B. Simplified Relay Matrix Design

In this subsection, we focus on relay systems with
and develop a relay precoding matrix design algorithm which
is suboptimal for general cases, but has a much lower computa-
tional complexity than directly solving the problem (25)–(26).
We will show that this suboptimal relay matrix is indeed optimal
for some special cases. Let us introduce

(29)

where and are matrices. Since
is a unitary matrix, for any , we have
. Thus, instead of optimizing , one

can equivalently optimize and . Substituting (29) back
into (25), we obtain that , and thus

(30)

Interestingly, it can be seen from (30) that is only a function
of . In other words, the optimization variables are
decoupled for and .
Let us introduce the SVDs of

(31)

where , are diagonal matrices, ,
are unitary matrices, and , are
semi-unitary matrices with . Substituting (31)

back into (30), we have

(32)

Let us introduce the SVD of as

(33)

where is an diagonal singularvalue matrix. It can be
easily seen that is irrelevant to (32) and can be any
semi-unitary matrix . However, affects

the power constraint (26) as explained later. Now we show that
the optimal for the objective function (25) is given by

(34)

In fact, for any and in (22), one can always have
and such that the objective function (25)

with and (i.e., becomes
) is equal to , where

(35)

For the objective function , which is Schur-concave with
respect to such as (16) and (18), it can be shown sim-
ilar to [3] that the optimal for (35) are given by (34). In this
case, and in (35) are diagonalized by and
respectively as

, and the objective function (25) can be written as

(36)

For a Schur-convex such as (19), it can also be
shown from [3] that the optimal are given by (34).
In this case, for any and in (22), the final source
precoding matrices are taken as and

, where is an unitary matrix
making
have identical diagonal entries [3]. Consequently, for all
Schur-convex , we only need to minimize

. In other words, in
(36) is taken as the summation over all its variables for all
Schur-convex .
Now we consider the power constraint (26). From (29), is

given by

(37)

Substituting (33) and (34) into (37), which is then substituted
back into (26), the transmission power consumed by the relay
node can be written as

(38)

where stands for a block diagonal matrix, and
. From (36) and (38), the
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relay precoding matrix optimization problem (25)–(26) is con-
verted to the following problem

(39)

(40)

(41)

(42)

where , denotes the th main diagonal ele-
ment of .
Note that although in (34) is optimal for the objective

function (25), we can not prove the optimality of (34) for
the constraint function (26). This is the reason that this relay
precoding matrix design is suboptimal for general cases. How-
ever, compared with the problem (25)–(26), the dimension of
optimization variables in the problem (39)–(42) has reduced
from real numbers to real numbers, which
is significant especially when is large. It will be shown in
Section V that the suboptimal design by solving (39)–(42)
has only a marginal increase of MSE compared with solving
(25)–(26) directly using the projected gradient algorithm. Such
performance-complexity tradeoff is very important for practical
two-way MIMO relay systems.
The problem (39)–(42) is nonconvex due to the unitarymatrix

constraints in (41). Before we develop a numerical method to
solve this problem, let us have some insights into the structure
of this suboptimal relay precoding matrix. Interestingly, we will
show that for two special cases, the suboptimal relay matrix is
indeed optimal. By substituting (33) and (34) into (37), which
is then substituted back into (24), we obtain

(43)

We can also show from (31) that

(44)

Finally, by substituting (44) back into (43), we can equivalently
rewrite the relay precoding matrix as

(45)

where

(46)

Interestingly, it can be seen from (45) and (46) that the relay
precoding matrix is composed of three linear filters. First, we
know from (22) that , and hence is a matched-filter
(MF) for the equivalent first-hop multiaccess MIMO channel
. Then the signals are linearly filtered by . Finally, we can

see from (23) that , where denotes matrix pseudo
inverse. Thus, performs zero-forcing (ZF) of the equivalent
second-hop broadcast MIMO channel .
Theorem 2: The structure of given by (45) is optimal for

the two cases of

where stands for the range of a matrix.
Proof: See Appendix B.

It has been shown in [10] that for two-way relay systems with
(i.e., both source nodes have only one antenna) and re-

ciprocal first and second hop channels3 (i.e.,

), both and

are optimal when , and

the latter is also optimal when . Here
are scalars that remain to be optimized based on the par-

ticular objective function. Interestingly, Theorem 2 extends the
result in [10] to two-way relay systems with and without
any channel reciprocity, and shows that (45) is optimal for the
two special cases given above. We would like to mention that
although the two cases listed in Theorem 2 seldom appear in
practical systems, they provide important theoretical results.
Now we show how to solve the problem (39)–(42) numer-

ically using the projected gradient algorithm. Since and
only appear in the constraint functions, we can optimize
and in an alternating fashion. In each iteration, we first

optimize and by solving a problem consisting of (39),
(40), (42) with fixed and . This problem can be equiv-
alently rewritten as

(47)

(48)

(49)

where denotes
Khatri-Rao product, , is the th main diag-
onal element of

, and for a scalar
. The subproblem (47)–(49) can be

solved by the projected gradient algorithm. The gradient of (47)
with respect to scalars is easy to obtain. The projection
onto the feasible set specified by the quadratic constraint (48)
can be performed in a way similar to (27).

3For the consistency of notations, here we use vector notations for channels
due to .
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TABLE II
PROCEDURE OF APPLYING THE ALTERNATING PROJECTED GRADIENT

ALGORITHM TO SOLVE THE PROBLEM (39)–(42)

With fixed and , we update and by solving
the following problem

(50)

(51)

where , and
the objective function (50) is obtained by rewriting the left-hand
side of (40). The subproblem (50)–(51) can also be solved by the
projected gradient algorithm. The gradient of (50) with respect
to , denoted as , can be calculated
using the results on derivatives of matrices in [31]. The projec-
tion of an matrix onto
the feasible set of given by (51) is performed by solving the
following problem for

(52)

Let be the SVD of . It can be easily shown
using the Lagrange multiplier method that the solution to the
problem (52) is given by . We would like to
mention that in contrast to (26), the feasible set specified by (51)
is nonconvex. Using as
in the third line of step 2) in Table I may lead to an infeasible

. Thus, at the th iteration, is directly updated
as the projection of , where the step
size parameter is taken from the Armijo rule. The procedure
of solving the problem (39)–(42) using the alternating projected
gradient algorithm is summarized in Table II.

C. Optimal Structure of Source Precoding Matrices

In this subsection, we develop optimal source precoding ma-
trices and . It can be seen from (15) that is irrelevant
to . Thus, for fixed and , the problem of optimizing
is given by

(53)

(54)

(55)

where and
. When

, the problem (53)–(55) has been solved in [5]. For the
case of , the problem (53)–(55) is solved in
[4]. Using the Lagrange multiplier method, both [4] and [5] re-
veal that the optimal has the structure of ,
where is an
diagonal matrix,

(56)

is the eigenvalue decomposition (EVD) of , and
contains columns of associated with the largest

eigenvalues. Here are the Lagrange multipliers,
is an eigenvector matrix, and is an

diagonal eigenvalue matrix.
In fact, if satisfies (54) and (55), it must also satisfy the

constraint of . Introducing
, a relaxed problem of the original problem

(53)–(55) is given by

(57)

(58)

It has been shown in [33] that for any Schur-concave objective
function , the solution to the problem (57)–(58) is given
by . While for any Schur-convex [28], the
optimal is , where is an uni-
tary matrix such that has iden-
tical main diagonal elements [33]. Therefore, for Schur-concave

, the optimal can be written as

(59)

While for Schur-convex , we obtain the optimal as

(60)

It can be seen from (59) that if (17) is taken as the objective
function, the optimal diagonalizes .
In other words, the optimal diagonalizes in
(17). We would like to mention that since (58) is a neces-
sary constraint that should be satisfied by all feasible and
, (59) or (60) provides a necessary structure of the op-

timal source precoding matrices. Interestingly, both negative
MI and MSE are Schur-concave functions [33]. Thus, the prob-
lems discussed in [4] and [5] are special cases of the problem
(53)–(55), and the results obtained in [4] and [5] are special
instances of (59).
It can be seen from (59) and (60) that has a beamforming

structure, where the directions of beams are determined by
and represents the power allocation at each

beam. The value of , and depends on the specific
expression of the objective function and can be obtained
via solving the dual optimization problem associated with the
original problem (53)–(55) as proposed in [4] and [5]. For fixed
and , the optimal structure of can be derived similar

to (53)–(60).
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Interestingly, for the case of ,
and , we can also update and in parallel. The
problem of updating and in this case can be written as

(61)

(62)

(63)

where . Let us introduce
, and positive semi-definite (PSD) matrices with

, where means
that is a PSD matrix. By using the Schur complement
[32], the problem (61)–(63) can be equivalently converted to the
following problem

(64)

(65)

(66)

(67)

The problem (64)–(67) is a convex semi-definite program-
ming (SDP) problem which can be efficiently solved by the
interior-point method [32]. Let us introduce the EVD of

. Then from , we

have .
Now we present the method to find in (60) for

Schur-convex . According to [3], for all Schur-convex
objective functions, since the MSE matrix has identical
diagonal entries, we only need to minimize , despite
the specific form of the objective function . Therefore, for
Schur-convex such as the MaxMSE in (19), the optimal

and can be obtained in two steps. Let us take
as an example. First, we solve the problem (53)–(55) using

to obtain (59). In the second step, we
rotate by a unitary matrix such that have identical
diagonal elements. Using (56), the rotated can be written as

(68)

where is an diagonal matrix containing the largest
eigenvalues of in (56). To make have

identical diagonal elements, can be any unitary ro-
tation matrix that satisfies . When
is appropriate such as a power of two, the discrete Fourier

transform matrix can be chosen for . While for general case,
can be computed using the method developed in [34].

TABLE III
PROCEDURE OF SOLVING THE PROBLEM (12)–(14)

D. Joint Source and Relay Precoding Matrices Optimization

Now the original joint source and relay optimization problem
(12)–(14) can be solved by an iterative algorithm. This algo-
rithm is first initialized at random feasible and satisfying
(14). At each iteration, we first update with fixed and ,
and then update and with fixed .
When , we can update by exploiting its optimal

structure in (24), where is obtained by solving the problem
(25)–(26) using the procedure in Table I. Alternatively, we can
also update based on the simplified relay matrix design (45),
where are obtained by solving the problem
(39)–(42) following the steps in Table II. When

is updated by solving the problem (20)–(21) using the
projected gradient algorithm similar to that listed in Table I.
The source precoding matrices are updated as follows. With

fixed and , we update as (59) or (60) depending on
the Schur-convexity of the objective function . Next, is
updated similar to (59) or (60) with fixed and . In the case
that and SMSE is adopted as the objective function, we
can also update and in parallel by solving the problem
(64)–(67).
Note that the conditional updates of each matrix may either

decrease or maintain but cannot increase the objective function
(12). Monotonic convergence of , and towards (at
least) a locally optimal solution follows directly from this ob-
servation. Finally, for Schur-convex , we rotate by
as in (68). The procedure of this iterative algorithm is summa-
rized in Table III.

V. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed al-
gorithms for two-way MIMO relay systems. All channel ma-
trices have complex Gaussian entries with zero-mean and vari-
ances of for and , respectively4,
and all simulation results are averaged over 1000 independent
channel realizations. In the simulations, we set

dB above the noise level and vary the value of . The
proposed joint source and relay optimization algorithms are ap-
plicable for a broad class of frequently used objective functions,
and in the simulations, we consider the following three functions
as examples: (1) The SMSE of the signal waveform estimation
written as ; (2) The nega-
tive two-way SMI given by

4The variances are set to normalize the effect of number of transmit antennas
to the receive signal-to-noise ratio.
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, which is also adopted in [10] and [14]; (3) The max-
imum of the MSE of the signal waveform estimation among
all data streams as

. We refer to them as the MSMSE objective, the
MSMI objective, and the minimaxMSE objective, respectively.
Note that the first two functions are Schur-concave function,
while the last function is Schur-convex. The normalized SMSE
and the SMI shown in the simulation results are calculated as

and , respectively.
In the first example, we check the performance of the pro-

posed relay precoding matrix (45) and the algorithm in Table II
by testing it for the case of and . It is proven in
Theorem 2 that (45), or equivalently

(69)

is optimal for this case, and we only need to find the optimal
and in (69). By substituting (69) back into (20)–(21) and

taking , we have the following problem to
solve

(70)

(71)

where and . Here
denotes the vector Euclidean norm. The problem (70)–(71) has
a water-filling solution given by

(72)

where , and is the solution

to the nonlinear equation of

, which can be efficiently solved
by the bisection method [30].
When is chosen as the objective func-

tion, we need to solve the optimization problem of

(73)

(74)

The solution to the problem (73)–(74) is given by

(75)

(76)

Fig. 2. Example 1: Normalized SMSE versus . .

Fig. 3. Example 1: SMI versus . .

where is the solution to the nonlinear equation of

(77)

which can be solved by the bisection method.
Fig. 2 shows the normalized SMSE produced by the relay

precoding matrix designed by the alternating projected gradient
(PG) algorithm in Table II, and that of the optimal solution given
by (69) and (72). The objective is used for both
approaches. It can be seen that for both and ,
two algorithms have identical SMSE performance. This demon-
strates that the algorithm in Table II achieves the global op-
timum for , and verifies the effectiveness of the pro-
jected gradient algorithm. We also observe from Fig. 2 that as
expected, the SMSE decreases with increasing .
Fig. 3 demonstrates the SMI of the system using the relay ma-

trix from the PG algorithm in Table II and that of [10] (which
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TABLE IV
NORMALIZED SMSE OF JOINT SOURCE AND RELAY OPTIMIZATION ALGORITHM (TABLE III) AT DIFFERENT ITERATIONS

Fig. 4. Example 2: Normalized SMSE versus . .

is essentially the solution given by (69), (75), (76)). Both al-
gorithms use as the objective function. It
is obvious that for both and , two algorithms
have identical SMI performance, indicating that the algorithm
in Table II achieves the global optimum in this case.
In the second example, we simulate a two-way MIMO relay

system with and using
as the objective function. We compare the normalized SMSE of
the optimal relay matrix in (24) using the steps in Table I and
the suboptimal relay design in (45) from the procedure listed in
Table II. In order to study the “pure” effect of relay matrix de-
sign, we set for both algorithms. It can
be seen from Fig. 4 that the suboptimal relay precoding matrix
yields only a slightly higher MSE than the optimal relay matrix.
Since the suboptimal relay matrix design has a substantially re-
duced computational complexity (20 real-valued optimization
variables) than the optimal design (32 real-valued optimization
variables), it is very useful in practical relay systems. In the rest
of the simulation examples, for the sake of smaller computa-
tional complexity, we adopt the suboptimal relay design in (45)
based on Table II.
In our third example, we investigate the performance of the

joint source and relay optimization algorithm in Table III at
different iterations. We set , and the

objective is adopted. In particular, the source
precoding matrices are updated by solving the subproblem
(64)–(67). We observed in simulations that for most channel
realizations, the algorithm converges within 10 iterations. The
normalized SMSE of this algorithm after the first, second, and
fifth iteration versus is listed in Table IV. It can be seen
that the difference between iterations is very small. Thus, in
practice, only a small number of iterations are required to
achieve a good performance.

Fig. 5. Example 4: SMI versus . .

Fig. 6. Example 4: BER versus . .

In our fourth example, we study the performance of two-way
MIMO relay systems based on the MSMI objective, the
MSMSE objective, and the minimax MSE objective, respec-
tively. We chose , and for all objectives,
we use the procedure listed in Table III. Fig. 5 shows the SMI
of all three systems versus . It can be seen from Fig. 5 that
as expected, the MSMI-based relay design leads to a larger
MI than the relay design using the MSMSE and minimax
MSE criteria. The latter two systems have the same MI, since
the unitary rotation matrices and do not change the
system MI.
The uncoded BER of all three systems versus is demon-

strated in Fig. 6, where the QPSK constellations are used. The
BER performance of the joint source and relay design algo-
rithm in [6] based on the MSMSE criterion using the gradient
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Fig. 7. Example 5: BER versus with different . .

searching approach is also shown in Fig. 6. It can be seen from
Fig. 6 that when the MSMSE objective is used, the proposed al-
gorithm in Table III performs better than that in [6]. The reason
is that the proposed algorithm exploits the optimal structure of
the relay precoding matrix, while [6] does not. We also ob-
serve from Fig. 6 that the relay system designed under the min-
imaxMSE criterion has the lowest BER, while theMSMI-based
system has the highest BER. This is becauseMSMI is a good cri-
terion only for coded systems in which the number of symbols
for each coding block is very large. However, in the numerical
comparison, we consider uncoded systems with a small number
of symbols (QPSK, ) for each block and compare the
different schemes in term of raw BER. It is not surprising that
the MSMI-based algorithm does not yield a better performance
than algorithms based on theMSE in this setting. MinimaxMSE
is a better criterion for practical two-way MIMO relay systems
with limited block length, as it yields a lower BER than other
algorithms as shown in Fig. 6. This is due to the fact that BER is
normally caused by the data stream having the highest MSE. In
the minimax MSE-based system, all data streams have identical
MSE, and thus, the system BER is reduced.
In the last example, we set , and com-

pare the BER performance of two-way MIMO relay systems
with and , respectively. The MSMSE objec-
tive is adopted. It can be seen from Fig. 7 that as expected, the
system with achieves a lower BER than the system with

. However, we would like to mention that the system
with has twice data rate than the system with .
This reflects the typical multiplexing-diversity tradeoff that ex-
ists in all MIMO communication systems. The proposed joint
source and relay optimization algorithm is flexible in achieving
such tradeoff since it works for any .

VI. CONCLUSION

We have derived the optimal structure of the source and
relay precoding matrices for a two-way linear non-regenerative
MIMO relay system with a broad class of frequently used
objective functions. An iterative algorithm is developed to

optimize the relay and source matrices. We have proposed a
new suboptimal relay precoding matrix design which signif-
icantly reduces the computational complexity of the optimal
design with only a marginal performance degradation. A novel
minimax MSE-based relay system has been developed which
has an improved BER performance compared with existing
systems.

APPENDIX A
PROOF OF THEOREM 1

Based on (22) and (23) we have

(78)

where , the dimen-
sions of and are , and the dimensions of

and are . Without loss of generality, can
be written as

(79)

where and
such that and are uni-

tary matrices. The dimensions of and are
, and ,

respectively. Since and are
unitary matrices, for any , we have

Thus, using (79) to represent does not lose any generality.
Substituting (78) and (79) back into (15), we obtain that

and
. Thus, can be written as

(80)

Similarly, by substituting (78) and (79) back into (15) we obtain

(81)

Substituting (78) back into the left-hand-side of the transmission
power constraint (21), we have

(82)
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It can be clearly seen from (80) and (81) that and are
irrelevant to and . Since is increasing in each
one of the elements of and are min-
imized if . Moreover, from (82) we find that

, and minimize the transmit power consumption
at the relay node. Thus, we have .

APPENDIX B
PROOF OF THEOREM 2

For the convenience of proof, we reproduce the equations for
the objective function and the transmission power consumed by
the relay node below

(83)

(84)

(85)

Let us introduce the following SVDs

(86)

(87)

where the dimensions of , are
, respectively, and the dimensions of
, are , respectively.

Case (a): Based on and
, we know from (86), (87) that

and . Thus, we have from (22), (23)
that

(88)

(89)

(90)

Now we can write in (24) as

(91)

where the dimension of is . Substituting
(91) back into (83)–(85), we obtain that

(92)

(93)

(94)

(95)

(96)

It can be seen from (92)–(96) that (83)–(85) are minimized by
. Thus, from (91) the optimal is

.

On the other hand, using (88)–(90), the relay precoding ma-
trix in (45) can be rewritten as (97) shown at the bottom of the
page. Obviously, (97) is optimal based on the analysis above.
Case (b): When

, we have in (86). It can be shown that
in this case we have

(98)

(99)

(100)

where . Now we can write terms in
(83)–(85) as

(101)

(102)

(103)

(104)

(105)

(97)
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It can be seen from (101)–(105) that (83)–(85) are minimized
by . Thus, from (91) the optimal is

. On the other hand, in this case, using

(98)–(100) the relay precoding matrix in (45) can be rewritten
as

which is obviously optimal.
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