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Abstract— Traditional multivser receiver algorithms developed
for multiple-input multiple-output (MIMQ) wireless commurica-
tion systems are based on the assumption that the channel staie
information (CSI} is precisely known at the receiver. However, in
practical situations the exact CSI is never available. In this paper,
we address the problem of robustness of multi-access space-time
block-coded MIMO systems against imperfect CSI. We propose a
new linear receiver which guarantees the robustness against CSI
errors with a certain selected probability. The proposed receiver
has a form of a probability-constrained optimization problem,
which can be simplified to a convex nonlinear programming
{NLP) problem based on the observation that the CSI mismatch
is Gaussian. The later problem can be efficiently solved using
standard optimization methods. Numerical simulations demon-
strate the robustness of the proposed receiver against CSI errors.

I. INTRODUCTION

Tn uplink cellular communications with multiple receiver
antennas at the base station (BS), spatial diversity techniques
can be employed 10 enhance the system capacity. Additionally,
if mobile users also have multiple antennas, space-time block
codes (STBCs) can be used to improve the immunity to
fading [1], [2]. Application of space-time block-coded MIMO
wireless systems in the multi-access scenario gained recently
a significant interest [3], {4].

Both linear and nonlinear receiver algorithms for multi-
access MIMO systems have been recently proposed in the
literature. Although linear techniques such as zero-forcing
(ZF) and minimum mean-square-error (MMSE) receivers are
suboptimal, they recently gained much interest due to their
low computational complexity. Unfortunately, both the ZF
and MMSE receivers require perfect knowledge of the CSIL
However, the exact CSI is never available, because of channel
estimation errors or outdated training. As a consequence, the
performance of the ZF and MMSE receivers may degrade
severely. Therefore, linear receivers robust against imperfect
CSI are of interest. In this paper, we design a linear receiver
for multi-access space-time block-coded MIMO systems that
is robust against CSI errors.

Recently, several works have addressed the problem of ro-
bust linear receiver design. For example, the diagonal loading
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(DL) minimum variance approach is used in [4] to provide
robustness against both the CSI and data covarlance matrix
mismatches. However, the selection of the DL factor in
[4] is ad hoc. Moreover, the performance of such receiver
still significantly depends on how accurate the CSI is. The
latter problem is addressed in [5] by optimizing the worst-
case performance of the receiver. However, this strategy may
be too pessimistic and, therefore, may lead to unnecessary
performance degradation. In this paper, we design a linear
receiver which goarantees the robustness against CSI errors
with a certain selected probability. The mathematical formu-
lation of the receiver design problem is equivalent to the
probability-constrained stochastic optimization problem [6],
[7]. The solution to this problem is obtained by converting it
into the corresponding deterministic nonlinear programming
(NLP) problem [8], which can be efficiently solved using
standard optimization software tools.

II. MULTI-ACCESS MIMO LINEAR RECEIVERS

In this section, we review the models for point-to-point and
multi-access space-time block-coded MIMO wireless systems.
The latter one is used for the problem formulation of multi-
access MIMO linear receiver design.

A. Point-to-Point Space-Time Block-Coded MIMO System

The point-to-point MIMO model can be written as [9]
Y=XH~+N hH

where Y is the T' x M complex matrix of the received data,
X is the 7 x N complex matrix of the transmitted data, H
is the N x A complex matrix of quasi-static Rayleigh flat-
fading channel whose coherence time is assumed to be longer
than T, N is the T x M complex additive white Gaussian
noise (AWGN) at the receiver, N is the number of transmit
antennas, M is the number of receive antennas, and 7T is the
data block length.
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If the user data s;,...,sz are encoded by some STBC,
then the matrix X has the following structure [9], [10]

K
X =Y (CiRe{si} + DiIm{si}) @
k=1
where
Ci =X(er), Dp=ZX(jer)

j = +/—1, and ey is the { x 1 vector having one in the %-th
position and zeros elsewhere. Inserting (2) into (1) yields the
following model [4], {91, [10]

Y=As+N 3)
where

A=[CiH,...,CxH,D,H,..., DxH|

and the “underline” operator is defined as

¥ = | i)

where Y is the 2MT x 1 real vector.

B. Multi-Access Space-Time Block-Coded MIMO System

In the uplink multi-access case, the model (3) can be
extended as [4]

)

F
X: ZAfS_j+E (5)
=1

where
Af = [afll,...,afigx], afp = Fka
F. — Cy k=1,...,K
= Dk k=K+1,...,2K

and Hy is the channel matrix between f-th user and the BS.
Here, I is the number of users.

C. Mulri-Access MIMO Linear Receivers

Without loss of generality, we can assume that the first user
is the desired one. The data vector 8§, decoded by a linear
receiver has the following form [4]

51 =W'Y (6)

where W = [wy,...,Wax] is the 2MT x 2K real matrix
of weight coefficients. Consequently, the &-th symbol of the
desired user is estimated as

Bl = Re{[8c]s} + jIm{[8:]x}
= [81]x + jlE1)rsx
= WiXY+jwi Y.

N

The problem now is to find such matrix W which separates
the signals from different users. The well-known solution for
this problem is given by the ZF receiver [11], provided that
exact CS] is available at BS. The receiver coefficient vector
can be then written as

WZF = pmt 8)
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where the 2M7T x 2K F real matrix M = [A,,...,Ar] and
()T denotes pseudo-inverse. Unfortunately, the ZF receiver is
quite sensitive to CSI errors.

Another popular linear receiver is the MMSE receiver. Its
coefficient vector is given by [11]

w%ILISE — R_IE{X . @k} (9)

where E{-} is the statistical expectation, E{Y - [si]s} is
the cross-correlation vector between the information-bearing
symbol [s1] and the received vector XY, and

R=E{YY"}

is the covariance matrix of received real (vectorized) data.

Although the MMSE receiver (9) does not use any CSI
knowledge in an explicit form, it requires the knowledge of
second-order statistics (SOSs) of signals, which may not be
available at the BS and, therefore, must be estimated using
sample data. As a result, the performance of the MMSE
receiver highly depends on the accuracy of the estimates of R
and E{Y - [s1]x}. In order to obtain accurate estimates of the
required SOSs, a large number of samples has to be available.
Therefore, the performance of the MMSE receiver using
the sample data may degrade substantially due to inaccurate
estimates of SOSs.

More accurate estimates of the required SOSs can be ob-
tained if the knowledge of approximate CSI, transmit powers
of all users, and noise power is available at the BS. Then the
estimates are given by

F

R= Z U?Aff&}: + 021
F=1

E{Y - [sils} = &1

where Af and &; ; denote the estimated values of Ay and
a g, respectively, and ¢ and o are the signal power of the
fth user and the noise power, respectively. Note that o7 and
o2 are assumed to be known. As the ZF receiver, the MMSE
receiver is quite sensitive to CSI errors,

(10

(in

111, DESIGN OF ROBUST LINEAR RECEIVER VIA
STOCHASTIC PROGRAMMING

A. Problem Formulation

Let us consider the error matrix E; = H; — H; between
the true channel matrix H; of the fth user and its estimated
value H +. Consequently, using the notations of model (5) we
can write that

efg=afq —Afq=FHs— Fqﬂf =FEf (12)

where e, is the random mismatch vector between the true
as, and its estimate ay, . Note, that the last equality in (12)
follows from the linearity of underline operator (4).

The linear receiver design probiem is 1o estimate each entry
of 5; by minimizing the noise and sotal interference power
while keeping the distortionless response for this entry of s;.
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The total interference power consists of the power from muelti-
access interference, which is caused by other users, and self-
interference, which is caused by other entries of s;. In order
to provide the robusmess of the linear receiver against CSI
mismatches, it is necessary to take into account the mismatch
vector ey 4 (12), i.e. 10 consider &¢, + ey, instead of &y .
However, the suppression of the total interference power and
keeping distortionless response for kth entry of s; will be
performed with a certain probability. This is different from
the worst-case based robust design [5], where the performance
is optimized for the worst-case mismatch and the norm of
the mismatch is bounded by some known constant. Our new
problem formulation for robust linear receiver design suggests
to find the receiver coefficient vector wy, for the kth entry of
1 as the solution to the following optimization problem

531{13, lIdl (13)
st.  Plwl(aux+er)21)2p (14)
P{lwi(ay;+e1 ) <di;} 2 p (15)
Pllwi(arq+ergll Sdrol2p  (16)

j:1>"')21‘,’ ]#ks
f=27"'1F» g=1,--- 321{

where d = {d) 3, -+ ,dp2k]7 is the (2FK — 1) % 1 vector
whose values limit the contribution of multi-access interfer-
ence and self-interference, p is a certain probability value
which is selected according to the quality of service (QoS)
requirements, || - || denotes for Frobenius (Euclidian) norm
of a matrix (vector), and P{-} stands for the the probability
operator whose form is assumed to be known.

The probability bound p can be selected from the interval
[0,1] and it determines an amount of mismatch that is allowed
at the receiver. If p = 1 then the receiver does not assume any
channel errors (this corresponds to the non-robust design case).

In the formulation (13)-(16), we minimize the total inter-
ference power with a certain probability while keeping the
probability of the distortionless response to the desired entry
of 5, larger than p (see the constraint (14)). The constraints
{15) and (16) are formulated for self-interference and multi-
access interference suppression, correspondingly. In (13)-(16),
we do not consider explicitly the noise component due to
the following reasons. First, for multi-access scenarios the
interference suppression is more important than the noise
suppression. Second, the effect of noise is implicitly taken
into account by introducing CSI mismatch. We also stress
that the problem (13)-(16) belongs to the class of stochastic
programming problems [6], [7].

B. Convexity of the Problem (13)-(16)

We assume that the channel mismatch E; is Gaussian.
The justification of this assumption is that in MIMQ wireless
communication systems, if nothing is known a priori about
the channel, the optimal training sequences are orthogonal. It
can be proven that for orthogonal training sequences the CSI
errors are Gaussian [12].
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THEOREM 1: Let vectors vi,...,v, have a joint real
Gaussian distribution with a covariance matrix B, so that

E{(vi - E{vi})(v; —E{v;})T} = r,B
Vi, 7,

a7
hi=1,...,n
where 7;; are some constants. Then the set

Kp) = {x|P{v{x>d, A A vixzd,)} > p}

(18)
is convex for p > 0.5. Here, A denotes the set intersection
operation, 0 < p < 1, and d; are some constants.

PROOF: See [7, p. 312]. ]

THEOREM 2: If [Ef|nm ~ CA(0,0%) and p € (0.5,1),
then the optimization problem (13)-(16) is convex.

PROOF: First of all, the objective function (13) is a simple
vector norm that is obviously convex.

Next, we show that the constraint (14) is also convex.
Applying the underline operator (4) to (12) and using well-
known properties of the Krenecker product (denoted hereafter
as ®) and vec(-) operation [13], we can rewrite the mismatch
vector ey as

or — [ vec(Re{F,Es}) J

S vec{Im{F,E;})
_ [ Re{l;; ®F,} —Im{I;; @ F,} ] [ vec(Re{E}) }
T Im{Iy ®F,} Re{lyy&F,} vec(Im{Es}} |~

It follows from (19) that ef, is a lincar combination of
the real and imaginary parts of the elements of the channel
mismatch matrix E¢. Thus, ef ; has multivariate real Gaussian
distribution

(19)

2
a
efq~ N(Ozurr, ?’L(IQM ® G,G])) (20)
where
B c, q=1,.. K
G, = { Im{D,_x} q=K+1,... 2K 2D

Since the only random variable in (14) is €3k, and both
wy and a; j are deterministic variables, the random variable
wl' (&« + e ;) has also Gaussian distribution

2
Wi (@1 xteLk) ~ N(wlas, 22T @ GDwil). 22)

Using the standard error function for the Gaussian distribution

2 T o_pe
erf(z) = —f e~ dt (23)
V7 Jo
the left hand side of (14) can be written as
11 1—wia
P{wl(a; n+e >1 =———erf( k= .
{ k( 1,k l,k) } 2 92 a'hll(I?M’ @ Gg)wk(g‘l)

Substituting (24) into (14}, after some straightforward manip-
ulations, we obtain the following constraint

( WkTé.l k= 1

erf —
onll(Xanr @ GE)wy|
that is convex if p € (0.5,1).

) =2p-1 (25)
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The constraints (15) and (16) share the same structure.
Thus, it is enough to show that the constraints (15) are
convex with respect to the unknown variables w; and d ;,
i =1,...,2K, j# Lk

Let us rewrite the constraints (15) in the equivalent form

P{ a]_ g +e1 g wk d]: (—é’{:j - e{j)wkz —dl}j} Zp
ji=1,- -,2]&, iFk. (26)

These constraints are called joint chance constraints in
stochastic programming literature [6], [7]. Now it is sufficient
to prove the convexity of only one constraint from 2K — 1
such constraints. To be consistent with the notations used in
Theorem 1, let us denote

v = é-l,j +e1,j
X = Wi
d = —d]_gj .

Then, the jth constraint can be equivalently written as

P{vTx>d A —vix2>d}>p. 27

As the vectors v and —v have joint Gaussian distribution with
the common covariance matrix

2
B = E{e; jel;} = %(12M ® G;GT) 28)

we can see that Theorem 1 can be applied. Thus, the convexity
of the constraints (15) and (16) is also proven if p € (0.5,1).

Summarizing, the objective function of the problem (13)-
(16) is convex, and the constraints are convex if [Ef]y, s ~
CN(0,01) and p € (0.5,1). This completes the proof. O

For simplicity, Theorem 2 has been proven for the case of
i.i.d. zero-mean channel mismatch. However, it is straightfor-
ward to generalize it to the case of correlated non-zero mean
channel mismatch because the expression (19) remains valid
insuchacaseand ey, f=1,...,F, ¢=1,...,2K still
have Gaussian distribution.

C. Nonlinear Programming Approach
Similarly to the constraint {14), the stochastic constraints
(15) and (16) can be converted into their deterministic equiva-
lents. Using (22), (23) and (26), the left hand side of (15) can
be written as
P{lwi(as; +e1,)| < dij}
=P{wy (8, +ey;) < diy}
—'P{Wf(é]’j -+ el,j) < _dl,j}
= 1erf dij — Wiay
27\ onli(Tear @ GT)wi]
—lerf —duj — WkTél’j
27 \onl(laar ® G )wie|
j=1,-,2K, j#k.

29

Combining (13), (25) and (29) together, and converting the
constraints (16) into their deterministic equivalents, we can
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rewrite the stochastic programming problem (13)-(16) as the
following deterministic NLP problem

min  |d| (30)
W,
WTﬁl F 1
s.t. erf kT ) >2—1 (3D
(a'hH(IZM ® G )will
dlj —w{&l‘j
erf :
(Uhll(le ® G Jwi |
—dl_j - Wg‘él i
— erf : . >2 (32)
(ohuum eGTwil ) =7
erf ( dfq— W:kréf»q )
onl|(Tznr @ GT)well
—dpg— Wiag )
— erf A ki > 2 33
° (ahuam 6w )2 ¥ P
J=1 2K, j#k
F=2, F, qg=1,--- 2K.

Note that although the problems {13)-(16) and (30}-(33)
are mathematically equivalent when the channel mismatch
is Gaussian, the original stochastic programming problem is
computaticnally intractable, whereas the NLP problem (30)-
(33) can be efficiently solved using sequential quadratic pro-
gramming (SQP) technique. SQP is an iterative technique in
which each search direction is the solution of a quadratic
programming (QP) subproblem [8). The computational com-
plexity of solving QP subproblem using, for example, the
primal-dual potential reduction method is O(A4-3T4-5) [15].
Overall complexity of the SQP algorithm depends on the
number of iterations, which varies depending on problem-
specific parameters and the given batch of data. The SQP
algorithm has been implemented, for example, in TOMLAB
software package [14], which can be applied to solve the
problem (30)-(33).

IV. SIMULATIONS

In our simulations, we assume an uplink cellular commu-
nication scenario with multiple users and N = 2 antennas
per user. The Alamouti code [1] is employed and the QPSK
modulation scheme is used. The MIMO channel, between the
fth user and BS is assumed to be quasi-static Rayleigh flat
fading with [H¢],, » ~ CN(0,1). The channel mismatch E¢
is assumed to be independent of H; with the distribution
[Eflam ~ CN(0,02). Then the CSI mismatch level for
channel Hy is characterized by the parameter o4. Throughout
the simulations, we assume that g, = 1/3. The interference-
to-noise-ratio (INR) is set to be equal to 5 dB.

Five methods are compared in terms of the symbol error
rate (SER): the proposed method (30)-(33), the ZF receiver
(8), the exact MMSE receiver (9)-(11), the sample MMSE
receiver, and the diagonally loaded sample MMSE receiver.
Note that the exact MMSE receiver has the perfect knowledge
of the user and noise powers and is based on (10) and (11),
whereas the sample MMSE receiver estimates the matrix R
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SER

..a- MMSE-sample |-
- MMSE—d|v=1007 |
-0~ MMSE—gt v=500 |
-4 MMSE-exact

—&— proposed :
10‘3 -~ — i— - L .
0 2.5 5 7.5 10 125 15 17.5
SNR(DE)
Fig. 1. SER versus SNR, 2 users, M = 2.

as
2
R=-> YY"
=1
where Y, is the lth received data block and L is the number of
available data blocks. The diagonally loaded sample MMSE
receiver additionally uses diagonal loading of the sample
covariance matrix in the form

Ra = R+ vIyr

where v is the DL factor. Two values of » = 1002 and v =
5002 have been used for the DL sample MMSE receiver, The
probability p in the proposed robust methods is set to be equal
to 0.95 and 300 Monte Carlo runs are used to obtain each
simulated point.

In our first example, we simulate the scenario with F =
2 users and M = 2 receive antennas at the BS. Figure 1
compares the SERs of the five receivers tested versus the SNR.

In our second example, the scenario with F' = 4 users and
M = 4 receive antennas at the BS is considered. Figure 2
displays the SERs of the five receivers tested versus the SNR.

Cur simulation figures clearly demonstrate that in both
examples, the proposed robust receiver consistently enjoys
the best performance among all the methods tested. The
performance improvement is especially pronounced at high
SNRs.

el

V. CONCLUSIONS

A robust lincar receiver for multi-access space-time block-
coded MIMO wireless systems has been proposed. Our re-
ceiver provides the robustness against CSI errors with a certain
selected probability, which can be determined according to a
given QoS. The design of the robust receiver boils down to
solving the stochastic optimization problem with probability
constraints, The implementation of the receiver is based on
converting the original stochastic programming problem into
the mathematically equivalent deterministic NLP problem if

(-7803-8255-2/04/$20.00 ©2004 IEEE.

SER

_:_ MMSE-sample
o[l - MMSE-dlv=106"
10 1 o+ MMSE—dl v=500
—¢ MMSE-8xact

—¢— proposed : 7
17 H H ; i i
0 25 5 7.5 10 128 15 175 20
SNR(DB)
Fig. 2. SER versus SNR, 4 users, M = 4.

the CS1 errors are Gaussian distributed. Numerical simulation
results illustrate greatly improved performance of the proposed
robust receiver as compared to the traditional ZF and MMSE
receivers in the case of imperfectly known (mismatched) CSI.
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