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Abstract—In this paper, we consider multiaccess communica-
tion through multi-hop linear non-regenerative relays, where all
users, all relay nodes, and the destination node may have multiple
antennas. We design the user, relay, and destination matrices that
jointly minimize the mean-squared error (MSE) of the signal
waveform estimation. It is shown that the optimal amplifying
matrix at each relay node can be viewed as a linear minimal MSE
filter concatenated with another linear filter. As a consequence,
the MSE matrix of the signal waveform estimation at the
destination node is decomposed into the sum of the MSE matrices
at all relay nodes. We show that at a high signal-to-noise ratio
(SNR) environment, this MSE matrix decomposition significantly
simplifies the solution to the problem of optimizing the user and
relay matrices. Simulation results show that even at the low to
medium SNR range, the simplified optimization algorithms have
only a marginal performance degradation but a greatly reduced
computational complexity and signalling overhead compared
with the existing optimal iterative algorithm, and thus are of
great interest for practical relay systems.

I. INTRODUCTION

Multiuser multiple-input multiple-output (MIMO) relay

communication systems recently have attracted much research

interest [1]-[4]. The achievable sum rate of a system with

single-antenna users and a multi-antenna relay has been de-

rived in [1]. In [2], the optimal relay amplifying matrix and

user precoding matrices were developed to maximize the sum

source-destination mutual information of a two-hop multiuser

relay system, where the users and the relay node are equipped

with multiple antennas. Recently, a minimal mean-squared

error (MMSE)-based optimal multiuser MIMO relay system

has been proposed [3]. The quality-of-service constraints in

a multi-antenna relay broadcast channel were investigated in

[4].

In this paper, we focus on multiaccess communication

through multi-hop linear non-regenerative relays. In contrast

to [1], we consider a relay system where all users, all relay

nodes, and the destination node may have multiple antennas.

Using a linear MMSE receiver at the destination node, we

show that the optimal amplifying matrix at each relay node

can be viewed as a linear MMSE filter concatenated with

another linear filter. As a consequence, the MSE matrix of

the signal waveform estimation at the destination node can be

decomposed into the sum of the MSE matrices at all relay

nodes. A very useful application of such decomposition is

that it greatly simplifies the user precoding matrices and relay

amplifying matrices optimization problem at a (moderately)

high signal-to-noise ratio (SNR) environment. In particular,

it enables the power allocation optimization to be performed

locally at each relay node, which has a significant reduction in

both the computational complexity and the signalling overhead

compared with the iterative algorithm developed in [3]. Simu-

lation results show that even at the low to medium SNR range,

the simplified optimization algorithms only slightly increase

the MSE of the signal waveform estimation and the system bit-

error-rate (BER), but greatly reduce the computational com-

plexity (less than the complexity of carrying out one iteration

of the algorithm in [3]). Thus, the simplified optimization

algorithms are of great interest for practical relay systems such

as multi-hop wireless backhaul networks [5].

We would like to mention that the decomposition of the

MSE matrix was first discovered in [6] for a single-user two-

hop MIMO relay system. Our paper generalizes [6] from

single-user two-hop MIMO relay system to multiuser multi-

hop MIMO relay systems with any number of hops and

any number of users. Note that due to the introduction of

multiusers and multiple relay nodes, a rigorous proof of

the MSE matrix decomposition for multi-hop MIMO relay

system is much more challenging than that for the two-hop

MIMO channel. The generalization from a single-user two-hop

MIMO system to multiuser multi-hop MIMO relay systems is

significant. Note that although in this paper we focus on uplink

multiaccess systems, the downlink broadcast system can be

designed by exploiting the uplink-downlink duality for multi-

hop linear non-regenerative MIMO relay systems established

in [7]. In this paper, for notational convenience, we consider a

narrow band single-carrier system. However, our results can be

straightforwardly generalized to wide band multi-carrier multi-

hop MIMO relay systems as in the case of two-hop MIMO

relay system shown in [8].

The rest of this paper is organized as follows. In Section II,

we introduce the model of a multi-hop linear non-regenerative

multiaccess MIMO relay communication system. The pro-

posed source and relay design algorithms are presented in

Section III. In Section IV, we show some numerical examples.

Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a multiaccess (uplink) system where Nu users

simultaneously transmit information to a common destination

node equipped with a linear receiver as shown in Fig. 1. Due

to the long source-destination distance, L − 1 relay nodes

are applied in serial to relay signals from all users to the

destination node, where the lth relay node is equipped with Nl

antennas, l = 1, · · · , L − 1, and the destination node has NL
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antennas. The ith user transmits Mi independent data streams

using Mi antennas, i = 1, · · · , Nu. We denote N0 =
∑Nu

i=1
Mi

as the total number of independent data streams from all users.

For a linear non-regenerative MIMO relay system, there should

be N0 ≤ min(N1, · · · , NL), since otherwise the system can

not support N0 active symbols in each transmission. Such

condition is imposed by the inherent physical property of the

MIMO channel (which is true also for classical single-hop

MIMO communication systems [9]).

Fig. 1. Block diagram of an Nu-user L-hop linear non-regenerative MIMO
relay communication system.

At the ith user, the Mi × 1 modulated signal vector si is

linearly precoded by the Mi ×Mi user precoding matrix Bi,

and the precoded signal vector ui = Bisi is transmitted to the

first relay node. The received signal vector at the first relay

node is given by

y1 =

Nu
∑

i=1

Giui + v1 , H1x1 + v1 (1)

where Gi, i = 1, · · · , Nu, is the N1 × Mi MIMO channel

matrix between the first relay node and the ith user, v1 is the

N1× 1 independent and identically distributed (i.i.d.) additive

white Gaussian noise (AWGN) vector at the first relay node,

x1 = F1s, s ,
[

sT1 , · · · , s
T
Nu

]T
, and

H1 , [G1, · · · ,GNu
], F1 , bd(B1, · · · ,BNu

). (2)

Here H1 is the equivalent N1 ×N0 first-hop MIMO channel,

F1 is the equivalent N0×N0 block diagonal source precoding

matrix, s is an N0 × 1 vector containing source symbols

from all users, bd(·) stands for a block diagonal matrix,

and (·)T denotes matrix (vector) transpose. We assume that

E[ssH ] = IN0
, where E[·] stands for the statistical expectation,

(·)H denotes the Hermitian transpose, and In is an n × n
identity matrix.

Due to its simplicity, a linear nonregenerative relay matrix is

used at each relay as in [1]-[4]. The input-output relationship

at the lth relay nodes is

xl+1 = Fl+1yl, l = 1, · · · , L− 1 (3)

where Fl+1, l = 1, · · · , L − 1, is the Nl × Nl amplifying

matrix at the lth relay node, and yl, l = 1, · · · , L− 1, is the

Nl × 1 signal vector received at the lth relay node written as

yl = Hlxl + vl, l = 1, · · · , L− 1 (4)

where Hl, l = 1, · · · , L− 1, is the Nl×Nl−1 MIMO channel

matrix of the lth hop, and vl is the i.i.d. AWGN vector at

the lth relay node. Finally, at the last hop, the signal vector

received at the destination node is given by (4) with l = L.

We assume that all noises are complex circularly symmetric

with zero mean and unit variance. From (1)-(4), we have

yl = Als+ v̄l, l = 1, · · · , L

where Al is the equivalent MIMO channel matrix from the

source to the lth hop, and v̄l is the equivalent noise vector

given by

Al =

1
⊗

i=l

(HiFi), l = 1, · · · , L (5)

v̄1 = v1 (6)

v̄l =

l
∑

j=2

(

j
⊗

i=l

(HiFi)vj−1

)

+ vl, l = 2, · · · , L. (7)

Here for matrices Xi,
⊗k

i=l(Xi) , Xl · · ·Xk.

From (6) and (7), the covariance matrix of v̄l, Cl =
E[v̄lv̄

H
l ], l = 1, · · · , L, is given by

C1=IN1

Cl=
l
∑

j=2

(

j
⊗

i=l

(HiFi)
l
⊗

i=j

(FH
i HH

i )
)

+ INl
, l = 2, · · · , L.

III. PROPOSED SOURCE AND RELAY DESIGN

ALGORITHMS

With a linear receiver at the destination node, the estimated

signal vector is given by ŝ = WH
L yL, where WL is the NL×

N0 weight matrix. The weight matrix of the linear MMSE

receiver is WL = (ALA
H
L +CL)

−1AL, where (·)−1 stands

for the matrix inversion. Using this MMSE receiver, the MSE

matrix EL at the destination node is given by

EL =
(

IN0
+AH

LC−1

L AL

)−1

=

[

IN0
+

L
⊗

i=1

(FH
i HH

i )

(

L
∑

l=2

(

l
⊗

i=L

(HiFi)

L
⊗

i=l

(FH
i HH

i )
)

+ INL

)−1
1
⊗

i=L

(HiFi)





−1

. (8)

Let us introduce matrices

Dl , AlA
H
l +Cl =

l
∑

j=1

(

j
⊗

i=l

(HiFi)

l
⊗

i=j

(FH
i HH

i )
)

+ INl

l = 1, · · · , L− 1. (9)

It can be shown from (3) that the transmission power con-

sumed by the lth relay node is

tr
(

E
[

xl+1x
H
l+1

])

= tr
(

Fl+1DlF
H
l+1

)

, l = 1, · · · , L− 1
(10)

where tr(·) denotes matrix trace.



Using (8) and (10), the problem of minimizing the MSE of

the signal waveform estimation at the destination node can be

written as

min
{Fl},{Bi}

tr
(

(

IN0
+AH

LC−1

L AL

)−1
)

(11)

s.t. tr
(

FlDl−1F
H
l

)

≤ pl, l = 2, · · · , L (12)

tr(BiB
H
i ) ≤ qi, i = 1, · · · , Nu (13)

where (12) and (13) are the transmission power constraint at

each relay node and each user, respectively, pl and qi are

the corresponding power budget, {Fl} , [F2, · · · ,FL], and

{Bi} , [B1, · · · ,BNu
]. The problem (11)-(13) is non-convex

with matrix variables, and a globally optimal solution is very

difficult to obtain with a reasonable computational complexity

(non-exhaustive searching). In [3], an iterative procedure was

developed to obtain (at least) a locally optimal solution of

the problem (11)-(13), where in each iteration, the relay

amplifying matrices are optimized with fixed user precoding

matrices using the results in [10], and then the user precoding

matrices are updated with the given relay amplifying matrices

through solving an semi-definite programming (SDP) problem.

However, the computational complexity and the signalling

overhead of the iterative algorithm is quite high for practical

relay systems. In the following, we propose simplified algo-

rithms to solve an approximation of the problem (11)-(13).

The proposed algorithms have much smaller computational

complexity and signalling overhead than the iterative algorithm

in [3] as analyzed and shown later.

A. Optimal Structure of Relay Amplifying Matrices

By introducing Nl−1 × N0 matrices Tl, l = 2, · · · , L, the

following theorem establishes the structure of the optimal relay

amplifying matrices, and demonstrates that the MSE matrix at

the destination node can be decomposed into the sum of the

MSE matrices at all relay nodes.

THEOREM 1: The optimal relay amplifying matrices have

the following structure

Fl = TlA
H
l−1D

−1

l−1
, l = 2, · · · , L. (14)

Using (14), the MSE matrix at the destination node can be

equivalently decomposed to

EL =
(

IN0
+FH

1 HH
1 H1F1

)−1
+

L
∑

l=2

(

R−1

l +TH
l HH

l HlTl

)−1

(15)

where

Rl , AH
l−1D

−1

l−1
Al−1, l = 2, · · · , L. (16)

PROOF: See the journal version of this paper [11]. �

Interestingly, it can be seen from (14) that the optimal relay

amplifying matrices Fl, l = 2, · · · , L, can be decomposed into

Fl = TlW
H
l , where Wl = (Al−1A

H
l−1

+Cl−1)
−1Al−1, l =

2, · · · , L, is the weight matrix of the linear MMSE filter for

the received signal vector at the (l−1)-th relay node given by

yl−1 = Al−1s+v̄l−1, and the linear filter Tl will be designed

later. The term
(

R−1

l + TH
l HH

l HlTl

)−1
, l = 2, · · · , L, in

(15) is the increment of the MSE matrix introduced by the

(l− 1)-th relay node. It is worth noting that Rl is in fact the

covariance matrix of WH
l yl−1 as Rl = WH

l E[yl−1y
H
l−1

]Wl.

By exploiting (14), the transmission power consumed by

each relay node can be written as

tr
(

FlDl−1F
H
l

)

= tr
(

TlA
H
l−1D

−1

l−1
Dl−1D

−1

l−1
Al−1T

H
l

)

= tr
(

TlRlT
H
l

)

, l = 2, · · · , L. (17)

From (2) we have

tr
(

(

IN0
+ FH

1 HH
1 H1F1

)−1
)

= tr





(

IN1
+

Nu
∑

i=1

GiQiG
H
i

)−1


+N0 −N1 (18)

where Qi , E[uiu
H
i ] = BiB

H
i , i = 1, · · · , Nu, is the co-

variance matrix of the signal transmitted by the ith user. Now

by using (15)-(18), the problem (11)-(13) can be equivalently

rewritten as

min
{Qi},{Tl}

tr





(

IN1
+

Nu
∑

i=1

GiQiG
H
i

)−1




+

L
∑

l=2

tr
(

(

R−1

l +TH
l HH

l HlTl

)−1
)

(19)

s.t. tr
(

TlRlT
H
l

)

≤ pl, l = 2, · · · , L (20)

tr(Qi) ≤ qi, Qi � 0, i = 1, · · · , Nu (21)

where {Tl} , [T2, · · · ,TL], {Qi} , [Q1, · · · ,QNu
], and �

stands for the matrix positive semi-definiteness.

B. Proposed Algorithm 1

Using the matrix inversion lemma, it can be seen from (16)

that for l = 2, · · · , L

Rl = AH
l−1C

−1

l−1
Al−1

(

AH
l−1C

−1

l−1
Al−1 + IN0

)−1
.

In the case of high SNR where AH
l−1

C−1

l−1
Al−1 ≫ IN0

,

we can approximate Rl as IN0
, l = 2, · · · , L. In other

words, in such case, the value of Qi, i = 1, · · · , Nu, does

not affect Rl, l = 2, · · · , L, and Tl does not affect Rj ,

j = l+1, · · · , L. This fact implies that the objective function

(19) and the constraints in (20) are decoupled with respect to

the variables {Qi} and {Tl}. Therefore, the problem (19)-(21)

can be approximated and decomposed into the following relay

amplifying matrix optimization problem for each l = 2, · · · , L

min
Tl

tr
(

(

R−1

l +TH
l HH

l HlTl

)−1
)

(22)

s.t. tr
(

TlRlT
H
l

)

≤ pl (23)

and the user covariance matrices optimization problem

min
{Qi}

tr





(

IN1
+

Nu
∑

i=1

GiQiG
H
i

)−1


 (24)

s.t. tr(Qi) ≤ qi, Qi � 0, i = 1, · · · , Nu.(25)



In the following, we show that the problem (22)-(23) has a

water-filling solution. Let us introduce the eigenvalue decom-

position (EVD) of HH
l Hl = VlΛlV

H
l and Rl = UlΣlU

H
l ,

l = 2, · · · , L, where the dimensions of Vl and Λl are

Nl−1×Nl−1, the dimensions of Ul and Σl are N0×N0, and

the diagonal elements in Λl and Σl are sorted in increasing

orders. By introducing T̃l , TlR
1

2 , the problem (22)-(23)

can be rewritten as

min
T̃l

tr
(

R
1

2

l

(

IN0
+ T̃H

l HH
l HlT̃l

)−1
R

1

2

l

)

(26)

s.t. tr
(

T̃lT̃
H
l

)

≤ pl. (27)

The solution to the problem (26)-(27) in terms of the sin-

gular value decomposition (SVD) of T̃l is given by T̃l =
Vl,1ΩlU

H
l , where Vl,1 contains the rightmost N0 columns

of Vl. Thus the structure of the optimal linear filter Tl is

given by

Tl = Vl,1∆lU
H
l , ∆l = ΩlΣ

− 1

2

l , l = 2, · · · , L (28)

where ∆l is an N0 × N0 diagonal matrix that remains to be

optimized.

Interestingly, it can be seen from (28) that at the (l − 1)-
th relay node, the linear filter Tl first performs beamforming

to the direction of the eigenvectors of Rl, then it allocates

power to N0 streams through ∆l, and finally beamforms to the

direction of the eigenvectors of HH
l Hl. Substituting (28) back

into (22)-(23), we find that the matrix-variable optimization

problem (22)-(23) is converted to the following optimal power

loading problem with scalar variables

min
δl,1,··· ,δl,N0

N0
∑

i=1

1

σ−1

l,i + δ2l,iλl,i

(29)

s.t.

N0
∑

i=1

δ2l,iσl,i ≤ pl (30)

where δl,i, σl,i, λl,i, i = 1, · · · , N0, denote the ith diagonal

element of ∆l, Σl, Λl, respectively. Using the Lagrange

multiplier method [12], it can be shown that the problem (29)-

(30) has a water-filling solution given by

δ2l,i =
1

λl,i

(√

λl,i

µl σl,i

−
1

σl,i

)+

, i = 1, · · · , N0

where (x)+ , max(x, 0), and µl > 0 is the Lagrangian

multiplier and the solution to the nonlinear equation of
∑N0

i=1

σl,i

λl,i

(√

λl,i

µl σl,i
− 1

σl,i

)+

= pl.

Substituting (28) back into (14), the structure of the optimal

relay amplifying matrices is given by

Fl = Vl,1∆lU
H
l AH

l−1D
−1

l−1
, l = 2, · · · , L. (31)

Interestingly, although (31) is derived under a high SNR

assumption, this structure is in fact optimal for the whole SNR

region as stated by the following theorem.

THEOREM 2: The structure of the relay amplifying ma-

trix given in (31) can be equivalently written as Fl =

Vl,1ΥlU
H
Hl−1,1

, l = 2, · · · , L, which is optimal for multi-

hop MIMO relay systems as proved in [10]. Here Υl,

l = 2, · · · , L, are N0 × N0 diagonal matrices, H1F1 =
UH1

Γ1V
H
1 , Hl = UHl

ΓlV
H
l , l = 2, · · · , L, are SVDs

of H1F1 and Hl with the diagonal elements of Γl sorted

in increasing orders, and UHl,1 contains the rightmost N0

columns of UHl
.

PROOF: See the journal version of this paper [11]. �

Finally, the user covariance matrices optimization prob-

lem (24)-(25) can be solved as follows. By introducing a

positive semi-definite (PSD) matrix X with X �
(

IN1
+

∑Nu

i=1
GiQiG

H
i

)−1
and using the Schur complement [12],

the problem (24)-(25) can be converted to the problem of

min
{Qi},X

tr(X) (32)

s.t.

(

X IN1

IN1
IN1

+
∑Nu

i=1
GiQiG

H
i

)

� 0 (33)

tr(Qi) ≤ qi, Qi � 0, i = 1, · · · , Nu.(34)

The problem (32)-(34) is a convex SDP problem which can

be efficiently solved by the interior-point method [12].

TABLE I
PROCEDURE OF OPTIMIZING THE SOURCE AND RELAY MATRICES.

1) Solve the SDP problem (32)-(34) to obtain {Qi}.
2) For l = 2 : L

Compute Rl; Solve the problem (22)-(23) to have Tl; Obtain
Fl as in (14).
End.

The procedure of optimizing all user precoding matrices

and relay amplifying matrices is described in Table I. We

would like to mention that in each iteration of the algorithm

in [3], the complexity of updating the user precoding matrices

is similar to that of solving the problem (32)-(34). While at

each iteration of [3], an alternating power loading algorithm

is applied to update the relay amplifying matrices, which has

a higher computational complexity than that of solving the

problem (22)-(23). Therefore, the computational complexity

of carrying out the procedure in Table I is less than that of

each iteration in [3]. Interestingly, the procedure in Table I

can be carried out in a distributed manner where each relay

node performs the necessary optimization procedure locally.

In particular, the first relay node optimizes all user precoding

matrices and sends back Qi to user i. The first relay node

also computes the optimal F2. Then at the lth relay node,

l = 2, · · · , L − 1, the optimal Fl+1 is computed based on

Hl+1, Cl, and Al. The CSI of Hl+1 can be first estimated at

the (l + 1)-th relay node through channel training [13], and

then fed back to the lth relay node. The knowledge of Cl and

Al is forwarded from the (l− 1)-th relay node. Note that due

to its iterative nature, the algorithm in [3] requires centralized

processing. Obviously, compared with the centralized method,

the distributed approach developed here requires much less

information exchange and signalling overhead among different

nodes, and thus, is preferred in practical relay systems.



C. Proposed Algorithm 2

In this algorithm, the user precoding matrices are opti-

mized by solving the problem (32)-(34). However, since Rl

approaches IN0
as SNR increases, at a high SNR environment,

the relay amplifying matrices optimization can be further

simplified by substituting Rl in (22) and (23) with IN0
.

Then we have the following optimization problem for each

l = 2, · · · , L

min
Tl

tr
(

(

IN0
+TH

l HH
l HlTl

)−1
)

(35)

s.t. tr
(

TlT
H
l

)

≤ pl. (36)

Interestingly, (35) is in fact an upper-bound of (22). The

solution to the problem (35)-(36) is given by

Tl = Vl,1ΘlΠ, l = 2, · · · , L (37)

where Π can be any N0 × N0 unitary matrix, and Θl is an

N0 × N0 diagonal matrix. Substituting (37) back into (35)-

(36), we find that the ith diagonal element of Θl is given by

θl,i =
[

1

λl,i

(
√

λl,i

νl
−1
)+] 1

2

, i = 1, · · · , N0. Here νl > 0 is the

solution to the nonlinear equation of
∑N0

i=1

1

λl,i

(
√

λl,i

νl
−1
)+

=
pl.

Compared with the problem (22)-(23), the relay amplifying

matrices designed by the problem (35)-(36) has a smaller

computational complexity, since the latter algorithm does not

need to compute Rl and its SVD. Comparing (37) with (28),

we can choose Π = UH
l = VH

1 which provides an optimal

structure of Fl. l = 2, · · · , L, as in Theorem 2. However, in

this case, all relay nodes need to know V1, which increases the

signalling overhead. For the reason of simplicity, we choose

Π = IN0
. Through numerical simulations in Section IV, we

will see that there is only a negligible increase in MSE and

BER by using Π = IN0
instead of Π = VH

1 .

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

multiuser multi-hop MIMO relay design algorithms through

numerical simulations. We simulate a flat Rayleigh fading

environment where all channel matrices have entries with zero

mean. In particular, the variance of entries in Gi is 1/Mi,

i = 1, · · · , Nu, and the variance of entries in Hl is 1/Nl−1,

l = 2, · · · , L. All noises are complex circularly symmetric

with zero mean and unit variance. We also assume that pl = P ,

l = 2, · · · , L, qi = Q, i = 1, · · · , Nu.

All simulation results are averaged over 5000 independent

channel realizations. The CVX convex optimization software

package [14] is applied to solve the SDP problem (32)-

(34). For all examples, we set Q = 20dB and compare the

performance of the algorithm described in Table I (denoted

as Proposed Algorithm 1), the algorithm where the relay

amplifying matrices are designed by solving the problem (35)-

(36) using Π = VH
1 (denoted as Proposed Algorithm 2), the

algorithm of solving the problem (35)-(36) with Π = IN0

(denoted as Proposed Algorithm 3), and the optimal iterative

algorithm developed in [3] (denoted as Iterative Algorithm).
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Example 1

Fig. 2. MSE versus P . Example 1: L = 2, Nu = 2, M1 = 3, M2 = 2,
N1 = 8, and N2 = 7; Example 2: L = 3, Nu = 3, M = 2, and N = 8.

In our first example, we simulate a two-hop relay system

with Nu = 2, M1 = 3, M2 = 2, N1 = 8, and N2 = 7.

Fig. 2 shows the MSE performance of all algorithms versus

P , and the system BER yielded by all algorithms with

QPSK constellations are illustrated in Fig. 3 versus P . Our

results clearly demonstrate that the Proposed Algorithms 1-

3 only have slightly higher MSE and BER than the Iterative

Algorithm. Note that three proposed algorithms have a much

smaller computational complexity and signalling overhead

than the Iterative Algorithm as analyzed in Subsection III-B.

We simulate multi-hop (L ≥ 3) multiuser relay systems in

the following two examples. Since there are many parameters

on the system setup for multi-hop relays, for simplicity, we

consider relay systems where all users have the same number

of antennas (i.e., Mi = M , i = 1, · · · , Nu) and all relay nodes

and the destination node have the same number of antennas

(i.e., Nl = N , l = 1, · · · , NL). The extension to systems

where different nodes have different number of antennas is

straight-forward. A three-hop (L = 3) MIMO relay system

is simulated in the second example with Nu = 3, M = 2,

and N = 8. Fig. 2 and Fig. 3 show the MSE and BER

comparisons among four algorithms, respectively. It can be

seen that due to the approximation from the problem (22)-(23)

to the problem (35)-(36), the MSE and BER gaps between

the Proposed Algorithm 2, the Proposed Algorithm 3, and

the other two algorithm increase at low to medium P . But

the performance of the Proposed Algorithm 1 is very close

to that of the Iterative Algorithm. It can also be observed

from Figs. 2 and 3 that both the MSE and BER values of

Example 1 are lower that those of Example 2, indicating that

the algorithm yielding a lower MSE indeed guarantees a better

BER performance.

In the third example, a five-hop (L = 5) relay system

is simulated with Nu = 3, M = 2, and N = 9. The

MSE and BER comparisons of four algorithms are shown

in Fig. 4 and Fig. 5, respectively. It can be clearly seen
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Fig. 3. BER versus P . Example 1: L = 2, Nu = 2, M1 = 3, M2 = 2,
N1 = 8, and N2 = 7; Example 2: L = 3, Nu = 3, M = 2, and N = 8.
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Fig. 4. MSE versus P . Example 3: L = 5, Nu = 3, M = 2, N = 9.

that the Proposed Algorithm 1 yields almost the same BER

as the Iterative Algorithm. It can also be observed from

Figs. 2-5 that there is only a small gap in both the MSE and

BER performance between the Proposed Algorithm 2 and the

Proposed Algorithm 3. Based on the simulation results and

taking into account the complexity-performance tradeoff, the

Proposed Algorithm 1 is most suitable for practical multiuser

multi-hop MIMO relay systems.

V. CONCLUSIONS

We addressed the issue of multiaccess communication

through multi-hop non-regenerative MIMO relays. It has been

shown that the MSE matrix of the signal waveform estimation

at the destination node can be decomposed into the sum of the

MSE matrices at all relay nodes. Simplified source and relay

optimization algorithms have been proposed which greatly

reduce the computational complexity and signalling overhead

with only a negligible MSE and BER degradation.
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Fig. 5. BER versus P . Example 3: L = 5, Nu = 3, M = 2, N = 9.
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