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Abstract—Comparing with the terrestrial wireless channel,
underwater acoustic (UA) channel is severely affected by
strong impulsive noise, time variation and frequency variation.
Except for channel estimation and channel equalization, symbol
detection (SD) is also a significant part in the procedure
of signal processing. In this paper, we propose a multilayer
perceptron (MLP) neural network-based algorithm to manage
the symbol detection task in UA communication. The neural
network can learn more characters of UA channel and perform
the task of signal processing effectively. From the view of MLP,
the problem of constellation demodulation can be considered
as an estimation of output symbols’ probability. The cross
entropy and recitified linear unit (ReLU) are used as loss
function and activation function respectively. The traditional
least-squares (LS) estimation and blanking combined with
MLP-based symbol detection can have better performance
on symbol-error-rate (SER). The proposed model is evaluated
through numerical simulations with different parameters and
real data collected during a UA communication experiment
in December 2015 in the estuary of the Swan River, Western
Australia. The results show that the proposed algorithm has a
better performance than the existing method.

Index Terms—OFDM, neural network, symbol detection,
underwater acoustic communication

I. INTRODUCTION

It is well known that underwater acoustic (UA) channel

is one of the most challenging channels compared with

terrestrial wireless communication channels. Due to the

characteristics of the acoustic signal and severe underwater

environment, the UA channel has large delay, significant

Doppler shift, strong multi-path fading, and limited band-

width [1],[2]. The UA channel has the character of dispersion

in frequency and time domains. The relative movement of

transmitter and receiver, as well as the motion of water, lead

to frequency-domain dispersion. The time-domain dispersion

due to delay spread results in severe inter-symbol interfer-

ence. Therefore, an efficient channel estimation is important

for high-speed UA communication system [4].

UA communication has made great advances in past

decades [5],[6]. Orthogonal frequency-division multiplexing

(OFDM) technique has attracted much research attention and

been extensively applied in UA communication systems [7].

OFDM can eliminate the inter-symbol interference which

is caused by multipath propagation by adding cyclic prefix

and transferring the serial data stream to the parallel one

to expand symbol period [3]. In addition, OFDM permits

subcarrier overlapping on frequency spectrum to increase the

spectral efficiency. Therefore, the application of OFDM in

UA communication enables an improved spectral efficiency.

In recent years, machine learning (ML) and deep learning

(DL) have been successfully applied in various fields such as

computer version (CV), natural language processing (NLP),

speech recognition and so on. In some detection tasks, it

has been demonstrated that the DL algorithms complete

task beyond human’s level of accuracy [8],[9]. Form a DL

point of view, a communications system can be seen as a

particular type of autoencoder [10]. The application of DL

in the physical layer of traditional communication has been

discussed in [11],[12]. Among them, channel estimation and

channel equalization are two main research directions. From

the DL view, the procedure of passing channel can be regard-

ed as conditional probability and the symbol decision at the

terminal can be transferred to the problem of classification.

In some specific scenes, the DL algorithms have better

performance than traditional ones such as least-squares (LS)

and least mean squares (LMS) algorithms [13].

It is known to all that channel estimation and equalization

are important parts of receiver signal processing. Moreover,

the symbol detection (SD) is also an important part of

channel compensation.

In this paper, we propose a new algorithm which combines

channel estimation with MLP-based SD. The MLP neural

network has eaiser structure than convolutional neural net-

work (CNN) and recurrent neural network (RNN). Since the

MLP is fit for data with identical distribution, we first adopt

least-square (LS) or orthogonal matching pursuit (OMP) to

perform channel estimation. Then we use MLP as the SD

module. The combination of traditional method with DL can

achieve a better performance on SER.

The effect of the proposed algorithm is proved by nu-

merical simulations and real data collected during a UA

communication experiment conducted in December 2015 in
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the estuary of the Swan River, Western Australia. The results

show that compared with existing methods, the proposed al-

gorithm has performance improvement in terms of bit-error-

rate (BER), frame-error-rate (FER) and spectrum efficiency.

This paper is organized as follows: In Section II, the

OFDM system model and the structure of the frame are

presented briefly. In Section III, the structure of MLP and

its methods of training are introduced in detail. In Section IV,

the simulation and underwater experiment results are shown

and discussed. Section V concludes the whole paper.

II. SYSTEM MODEL

The OFDM system we used contains Nc subcarriers of

which Nd subcarriers are arranged for data information,

Np subcarriers are uniformly distributed to conduct channel

estimation, Nnull null subcarriers are used for avoiding the

interference from out-of-band signals, Ncfo subcarriers are

used for the estimation of frequency offset.

Each transmitted data frame consists of Ls OFDM sym-

bols and 1 synchronization sequences (represented as train-

ing in Fig. 1 for the purpose of detecting the head of each

data frame. The m sequence is considered as the synchro-

nization sequence on account of its excellent character of

autocorrelation. The structure of the frame is shown in Fig. 1.

Training Data

A Frame
Fig. 1. The structure of a frame

The diagram of the UA OFDM system is shown in Fig. 2,

the information bits b(t) are mapped into symbols by Turbo

coding and modulation constellation. The insertion of the

pilot is used for synchronization and channel estimation. The

IFFT operation transforms the signal from the frequency

domain to the time domain. The function of cyclic prefix

(CP) it to eliminate Inter-symbol Interference (ISI) caused

by multipath fading. The effect of synchronization sequence

(abbreviated as syn sequence in the diagram) is to find out

the starting positing of a frame. Upsampling means we can

get more data from one data point to improve the resolution

so that we can accurately estimate the character of UA

channel. The baseband signal can be expressed as

x = FHd (1)
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Fig. 2. Block diagram of OFDM UMA system

where F is an Nc×Nc matrix for discrete Fourier transform

(DTF), (·)H stands for Hermitian transpose, The d denotes

the data vector.

The procedure of the receiver is reverse to that of the

transmitter. Frame synchronization gets the initial position

of each frame. It needs to be emphasized that the most

important part of the OFDM is channel compensation, which

is surrounded by the red broken line in Fig. 2. “channel com-

pensation” contains channel estimation, channel equalization

and SD. We use LS algorithm and zero force (ZF) algorithm

to carry out the channel estimation and equalization. Then,

the MLP-based model is used for SD. The neural network

based algorithm is presented in detail in the next section.

In the transmitter, the passband signals are directly gener-

ated for each OFDM block. The bandwidth B = fscNc and

the duration of the OFDM symbols is denoted as T = 1/fsc.

The frequency of the k-th subcarrier can be represented as

fk = fc + kfsc, k = −Nc

2
+ 1, ...,

Nc

2
(2)

where fc means the center carrier frequency. The time of

duration of OFDM block can be represented as Ttotal =
T+Tcp. Tcp denotes the duration of CP. The baseband signal

can be expressed as

m(t) =
1√
Nc

Nc
2∑

k=−Nc
2 +1

�

d[k]ej2πkfsct (3)

Adopting the complex envelope function, we have

x̃(t) =

{
2Re{m(t)ej2πfct}, 0 ≤ t ≤ T

x̃(t+ T ), −Tcp ≤ t < 0
(4)

where Re{·} denotes the real part of a complex number.

According to [14], we assume that the path gains, Doppler

scaling factors and multipath delay remain constant in an

OFDM block. In addition, different paths have the same

Doppler scaling factor a. Therefore, the UA channel which

has L paths can be expressed as

h(t) =

L−1∑
l=0

Alδ(t+ at− τl) (5)

where Al and τl denote amplitude and delay of the the lth

path respectively. Without considering the frequency offset,

the received signal can be expressed as

rf = Δhf + vf + nf (6)

where Δ means the diagonal matrix whose elements on

diagonal are signal components. v and n denote impulsive

noise and environment respectively and

hf = Fht,vf = Fvt,nf = Fnt (7)

III. THE PROPOSED ALGORITHM

In this section, we propose an MLP-based algorithm to

perform the procedure of symbol detection. As shown in

Fig. 2, “channel compensation” is an important process

in the whole OFDM procedure.In Fig. 3, we describe the



content of “channel compensation” in detail. In general,

it includes three submodules: channel estimation, channel

equalization and symbol detection (SD).

Channel 
Compensation

Channel
Compensation

Channel
estimation

Channel
equalization

Symbol
detection
Symbol

detection

Fig. 3. The detail of channel compensation

Channel estimation and equalization can adopt the clas-

sical LS algorithm and ZF algorithm for simplicity. Com-

pressed Sensing (CS), Orthogonal Matching Pursuit (OMP)

and minimum mean-quare error (MMSE) can also be adopt-

ed for better performance. We will show that the proposed

DL based SD algorithm can improve the system performance

for UA OFDM with both classical and advanced channel

estimation and equalization algorithms. Channel estimation

makes use of pilot carrier and interpolation to obtain channel

impulse response in other position. Channel equalization

eliminates the time selective fading and frequency selective

fading. We don’t discuss the detail of channel estimation and

equalization algorithm due to limited space.
We use the MLP neural network to perform the part of

symbol detection, which is labeled in Fig. 3 by the red

solid color rectangular box. The structure of the neural

network is illustrated in Fig. 4. Data after estimation and

equalization is sent to the MLP neural network, which is

trained by either simulated data or data collected from real

UA communication experiments.
In our specific scene, MLP is trained to solve a 4-class

decision problem because we chose a QPSK modulation

constellation and the 4 outputs correspond to 4 kinds of

symbols. We train the model on Tensorflow and Keras, which

can greatly simplify the procedure of training and adjusting

parameters. The input data includes real part and imaginary

part and they are reshaped into a vector whose dimension is

relevant to the number of nodes in the input layer.
The training steps are illustrated as:

1) Set the initial value of weight by randomization and

set the value of hyper-parameters.

2) Choose the activation function

3) Set the shape of the loss function

4) Accomplish the construction of MLP network and

launch the training

The input data include real part and imaginary part, which

are reshaped and concatenated into a vector as input data.

The elements on hidden layer 1 can be computed as

nj =

N∑
i=0

Uiwij , ∀i ∈ 1, 2, ..., N (8)

Real x

Imag x Reshape

Input
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Hidden
Layer

Output
Layer
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Fig. 4. The structure of MLP neural network

Oj = ϕ(nj) (9)

where wij is the weight between the ith input node and the

jth hidden node. Ui denotes the input information on the ith

input neuron. ϕ(·)represents the ReLU activation function.

N is the number of ineurons in the input layer. We choose

the ReLu as the activation function rather Sigmoid because

the latter has the slower rate of convergence and are prone

to causing the problem of “gradient vanishing”.
We adopt the ReLU as activation function and its expres-

sion is:

ϕ(x) =

{
0 , x ≤ 0
x , x > 0

(10)

The data on the second hidden layer can be expressed as:

nk =

L1∑
j=0

Ojwjk, ∀j ∈ 1, 2, ..., L1 (11)

Ok = ϕ(nk) (12)

In our scene, the problem is defined as a K-class decision

problem and K = 4. Therefore we adopt SoftMax activation

function to acquire the outputs for the output layer. L1 means

the number of neurons in the first hidden layer. The output

results are computed as:

Ol = f(nl) = f(

L2∑
k=0

Okwkl), ∀k ∈ 1, 2, ..., L2 (13)

L2 means the number of neurons in the second hidden layer.

f(·) denotes SoftMax activation function, whose expression

can be expressed as:

f(nl) =
enl

K∑
m=1

enm

, ∀l ∈ 1, 2, ...,K (14)

As for the loss function, we use the cross-entropy function,

which is a classical loss function and combined with Soft-

Max function. Its expression is:

loss = − 1

m

⎡
⎣ m∑

i=1

K∑
j=1

I(x(i) = j) log f(nj)

⎤
⎦ (15)



where m is the total number of training examples and I(·)
means Indicator function, which signifies I(A = B) return

1 if and only if A is equal to B.

According to equations (7)-(11), we can receive the MLP

output is:

Ol = f(nl) = f(

L2∑
k=0

wklϕ(

L1∑
j=0

wjkϕ(
N∑
i=0

wijUi))) (16)

The output data is sent to the demodulation module and

the following steps will be conducted. We debug parameters

of MLP by setting fixed step length and carry out grid

research. Then, we choose a group of parameters which

make the sysytems have best performance. Key parameters

are shown in Table I.

TABLE I
PART OF PARAMETERS OF MLP NETWORK

Input size 24
Output size 4

Number of hidden layers 2
Number of neuron in hidden layer 1 10
Number of neuron in hidden layer 2 10

Batch size 1024
Dropout 0.25

IV. EXPERIMENT RESULTS

In this section, the performance of the proposed model is

evaluated through numerical simulations and data collected

from the underwater environment. Part of the simulation

parameters are shown in Table II. According to Table II,

TABLE II
PARAMETERS SETTING IN SIMULATION

Total number of subcarriers 512
Number of Data subcarriers 325
Number of Pilot subcarriers 128
Number of Null subcarriers 59

Channel coding Turbo
Code rate 1/3

Constellations modulation QPSK
Number of bits in one frame(considering code puncturing) 1088

Number of multipath 15
Delay between two adjacent path 1ms

the number of bits in one frame is Lb = 1088. Therefore,

the data rate of the system can be expressed as

Rb =
Lb

(T + Tcp)(Nb + 1)
= 1.19kb/s (17)

Considering the under practical environment, we adopt the

Gaussian mixture model in [14]. The underwater noise

concludes background noise and impulsive noise. Therefore,

the probability density function(pdf) can be written as:

pN(0, σ2
1) + qN(0, σ2

2) (18)

where N(0, σ2) denotes a complex Gaussian probability

function whose average is 0 and variance is σ2. σ2
1 is the

variance of background noise and σ2
2 is the variance of the

impulsive noise. The parameter of p and q are weights of two

kinds of noise. As a result, the signal-to-noise ratio (SNR)

can be expressed as:

SNR =
Ps

pσ2
1 + qσ2

2

(19)

where Ps is the average power of the transmitted signal. In

our simulation, we set p = 0.98, q = 0.02, the power ratio

of two kinds of noise is σ2
2/σ

2
1 , Ps is equal to 1 because of

the normalization of the modulation symbol’s power.

SNR(dB)
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Fig. 5. The locations of transmitter and receiver

The joint channel and impulsive noise estimation (JCINE)

algorithm has been introduced in [15]. It uses OMP perform-

ing Channel estimation and makes fully use of sparsity of

channel impulse response. The SER performance of various

algorithms versus the SNR is shown in Fig. 5. It can be

seen that proposed models have better performance than

existing ones because of lower SER. However, it can be seen

that proposed algorithm has worse performance on some

points. The variation of the channel is the main reason of

the phenomenon.

The proposed model is applied to deal with underwater

data, which is collected in the UA communication exper-

iment conducted in December 2015 in the estuary of the

Swan River, Western Australia. The distance between the

transmitter and receiver are 936 meters and their location is

marked in Fig. 6 In addition, the transmitter transducer and

the receiver hydrophone are mounted above the river bed on

steel frames, which are cabled to shore to avoid the effect

of Doppler shift in the experiment. The background noise

principally includes an impulsive component from snapping

shrimp and waves against the shore. The key parameters

are summarized in Table III. Each transmission includes

500 data frames, of which 250 data frames conveyed 1088

information bits(1/3 rate code) and 250 data frame contained

1632 information bits(1/2 code rate). The data between the

transmitter and receiver is recorded and named as T83. The

performance of the proposed model and comparison are

shown in the Table IV

• LS channel estimation without blanking

• LS channel estimation with blanking



Fig. 6. The locations of transmitter and receiver

TABLE III
PART OF PARAMETERS OF THE EXPERIMENTAL SYSTEM

bandwidth B 4kHz
Carrier frequency fc 12kHz

Sampling rate fs 96kHz
Subcarrier spacing fsc 7.8Hz

Length of OFDM symbol T 128ms
Length of CP Tcp 25ms

Number of blocks in one frame Nb 5

• LS channel estimation with blanking and SD

• JCINE algorithm with LS based INC [15]

• JCINE algorithm with LS based INC and SD

TABLE IV
PERFORMANCE COMPARISON OF VARIOUS ALGORITHMS FOR THE T83

FILE(QPSK MODULATION)

Method SER RAW BER Coded BER FER
LS w/o blanking 11.27% 6.2% 0.16% 0.4%
LS + blanking 9.68% 5.2% 0 0

LS + blanking +SD 6.55% - - -
JCINE + LS INC 6.61% 3.5% 0 0

JCINE + LS INC +SD 4.1% - - -

It can be seen from the results that the model we pro-

posed can obtain lower SER when it combines with other

algorithms. It introduces 3% decrease in SER after blanking

and 2.5% decrease in SER after JCINE. “-” means no results

available. We can conclude that the proposed model has a

better performance than existing models.

V. CONCLUSION

In this paper, we propose an MLP-based algorithm to

perform symbol detection. The symbol detector locates in the

position after channel estimation and channel equalization

but before modulation constellation. The MLP can adequate-

ly extract the feature of the underwater channel and improve

performance on SER and BER. Our results are compared to

traditional methods without symbol detection and have better

performance on simulation as well as underwater experiment

data.
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