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Abstract— Wireless powered communication (WPC) has been
considered as one of the key technologies in the Internet of
Things (IoT) applications. In this paper, we study a wireless
powered time-division duplex (TDD) multiuser multiple-input
multiple-output (MU-MIMO) system, where the base station (BS)
has its own power supply and all users can harvest radio
frequency (RF) energy from the BS. We aim to maximize the
users’ information rates by jointly optimizing the duration of
users’ time slots and the signal covariance matrices of the BS
and users. Different to the commonly used sum rate and max-
min rate criteria, the proportional fairness of users’ rates is
considered in the objective function. We first study the ideal
case with the perfect channel state information (CSI), and show
that the non-convex proportionally fair rate optimization problem
can be transformed into an equivalent convex optimization
problem. Then we consider practical systems with imperfect
CSI, where the CSI mismatch follows a Gaussian distribution.
A chance-constrained robust system design is proposed for this
scenario, where the Bernstein inequality is applied to convert
the chance constraints into the convex constraints. Finally,
we consider a more general case where only partial knowledge
of the CSI mismatch is available. In this case, the conditional
value-at-risk (CVaR) method is applied to solve the distribu-
tionally robust system rate optimization problem. Simulation
results are presented to show the effectiveness of the proposed
algorithms.

Index Terms— Chance constraints, distributionally robust
optimization, energy harvesting, MIMO, wireless powered com-
munications (WPC).
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I. INTRODUCTION

W IRELESS powered communication (WPC) has been
intensively discussed in the application of wireless

sensor networks (WSNs) [1]–[5]. This is because WSNs are
energy-constrained networks, and the traditional solution –
replacing batteries – is usually associated with a high cost,
which hinders its applications in the age of Internet-of-Things
(IoT). In addition, natural resources (e.g. solar and wind)
are difficult to control, and hence they are difficult to be
implemented in real world applications [1]. In contrast, WPC
and its counterpart – simultaneous wireless information and
energy transfer (SWIET) has been shown to be a promis-
ing and reliable alternative due to its flexibility in power
transfer.

A. Literature Review

The idea of SWIET or WPC was first introduced in [3]
and it has attracted more attention by further considering the
practical structure of the receivers [4], [5]. WPC has been
integrated with many other technologies, for example, the
multiple-input multiple-output (MIMO) technology [5], [6],
the relay communications technology [1], [2], [7], [8], the
non-orthogonal multiple access (NOMA) technology [9], [10],
the massive MIMO technology [11], [12], and wireless
networks [13], [14]. Considering the nonlinearity of the
power harvesting circuits, recent research has been shifted
to the WPC technology with a nonlinear energy harvesting
model [15]–[20].

The channel state information (CSI) is important for the
application of the WPC technology, since it is required for
both the energy and information transmission. However, the
exact CSI is usually unavailable, and hence robust design for
WPC systems has been intensively studied. In the literature,
the existing works in this area can be mainly classified into
two categories in terms of the modeling of the CSI mismatch:
the worst-case robust design [21]–[26] and the Gaussian robust
design [27]–[31].

The worst-case robust design is based on the robust opti-
mization theory, where the CSI mismatch is norm-bounded,
and the robust optimization is adopted to optimize the worst-
case scenario within the norm-bounded region. The semi-
definite relaxation (SDR) technique is usually utilized to
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obtain a rank-one relaxed solution and in some occasions
the relaxed solution can be verified as rank-one optimal.
For example, in [21], a joint time allocation and power
control scheme was proposed for multi-user MIMO systems.
Two convex optimization problems were formulated by con-
sidering different performance measures, which were achieved
by using one-dimensional search together with the SDR
technique. In [22], the robust design for a backscatter relay
communication system was considered, and the SDR tech-
nique was applied with the alternating optimization scheme to
handle the non-convexity. Secure communication of a wire-
less powered amplify-and-forward (AF) relay network was
investigated in [23], and a two-level optimization approach
that involves a one-dimensional search and the SDR tech-
nique was proposed. The robust beamforming of a multi-
user MIMO system was studied in [24], where the SDR
technique was used and the relaxation was proven to be
tight. In [25], the secure communication of a wireless pow-
ered multi-user multiple-input single-output (MISO) down-
link system was considered, where the SDR technique and
the S-procedure were applied to convert the max-min con-
straints, caused by the norm-bounded CSI mismatch, into
tractable alternatives. The robust transmission for a secure
jamming-aided wireless powered MISO system was investi-
gated in [26]. By using alternating optimization together with
the SDR technique and the S-procedure, a locally solution was
obtained.

With the Gaussian robust design, the CSI mismatch is
assumed to be subject to the Gaussian distribution. The
performance requirements are usually formulated as quality-
of-service (QoS) probability constraints, which are converted
into deterministic constraints, for example, by using the
Bernstein inequality method. In [27], secure communication
for a wireless powered cognitive MISO system was studied,
and the CSI mismatch followed a probabilistic error model.
A suboptimal beamforming solution was obtained by applying
the Bernstein inequality. A robust cooperative NOMA scheme
was proposed in [28] for a WPC system. The formulated
probability constrained optimization problem was solved by
using the Bernstein inequality method and a 2-D exhaustive
search, and a lower complexity algorithm was also developed
with the aid of successive convex approximation (SCA). For
solving a distributed coordinated beamforming of an arti-
ficial noise aided secure WPC system in [29], a solution
scheme was proposed by using the alternating direction mul-
tiplier method (ADMM) and the Bernstein inequality method.
In [30], a robust secure beamforming design for a wireless
powered MISO broadcast system was proposed. The prob-
ability constraints were transformed into deterministic ones
by applying the Bernstein inequality, and a tractable second-
order cone programming (SOCP) was then obtained based on
the SCA method. A robust cooperative NOMA transmission
scheme was developed for a wireless powered decode-and-
forward (DF) relay communications system in [31]. The prob-
ability constraints were tackled by the Bernstein inequality,
and then the golden section search was implemented for
handling the nonlinearity introduced by the power splitting
factor.

B. Contributions

In this paper, the transceiver optimization for a time-division
duplex (TDD) based wireless powered multiuser MIMO (MU-
MIMO) system is investigated. Different to the commonly
used sum rate and max-min rate criteria, the proportional
fairness in terms of the achievable data rates among users
is considered in the objective function, which provides an
improved fairness among users compared with the sum rate
criterion and achieves a higher sum rate than the max-min rate
criterion. Both the non-robust design and the robust design are
considered. According to the best knowledge of the authors,
this topic has not been studied by existing works.

We first study the ideal case with the perfect CSI knowl-
edge, and show that the non-convex proportionally fair rate
optimization problem can be transformed into an equivalent
convex optimization problem. Then we consider the practical
systems with imperfect CSI and investigate the robust trans-
ceiver design problems. Two different types of robust designs
are proposed. The first one is based on the assumption that
the mismatch between the true and estimated CSI follows
a Gaussian distribution. This assumption is justified by the
fact that for MIMO communication systems with additive
white Gaussian noise, when a maximum-likelihood estimator
is used and the channel training sequence is orthogonal, the
CSI mismatch follows uncorrelated Gaussian distribution [32].
A chance-constrained robust system design is proposed for this
scenario, and the Bernstein inequality is applied to convert the
chance constraints into convex constraints.

In the second robust design, we consider a more general
case where only partial knowledge of the CSI mismatch is
available. Different from the Gaussian robust design, in this
case, we do not assume that the CSI mismatch follows a certain
distribution. In contrast, only the mean and the variance of
the CSI mismatch are required, which is closer to real world
applications. Estimates of the mean and covariance of the CSI
error can be obtained from accumulated channel estimates at
the base station (BS). Note that it is more convenient and easier
to have the statistics rather than the accurate distribution of the
CSI error, which requires the estimation of a larger number
of parameters to fit the distribution. Inspired by the idea of
distributionally robust optimization, the conditional value-at-
risk (CVaR) method is applied to solve the distributionally
robust system rate optimization problem. Simulation results
are presented to show the effectiveness of the proposed
algorithms.

The main contributions of this paper are summarized as
follows:

• A tractable transceiver design with proportional fairness
among users is developed for a TDD based wireless
powered MU-MIMO system. Simulation results show that
the proposed proportional fairness based system design
has a better tradeoff between the sum data rate and the
fairness among users than the sum rate and max-min rate
based designs.

• We propose a chance-constrained robust transceiver
design when the CSI mismatch follows Gaussian distri-
bution and transform the chance constraints into convex
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Fig. 1. An MU-MIMO communication system with energy-harvesting users.

Fig. 2. TDD-based communication time slots allocation for BS and users.

conic constraints. The robust design has a higher system
rate than the non-robust design.

• A distributionally robust design is proposed which only
requires the mean and variance of the CSI mismatch. The
proposed reformulation for the probability constraint is
not only exact but also tractable. Simulation results show
that the distributionally robust transceiver outperforms
the Gaussian robust design for non-Gaussian channel
estimation errors.

C. Structure

The rest of the paper is organized as follows. In Section II,
the model of a wireless powered TDD MU-MIMO is pre-
sented, and the non-robust transceiver optimization problem
is also formulated. The tractable reformulation of the non-
robust transceiver design is developed in Section III, while two
different types of robust designs are proposed in Section IV.
In Section V, the performance of the proposed non-robust and
robust designs is tested through numerical simulations. Finally,
we conclude our paper in Section VI by making some remarks.

II. PROBLEM STATEMENT

We consider a harvest-and-transmit system with one BS and
K users as shown in Fig. 1. The system is an MU-MIMO
system, where the BS and the ith user, i = 1, . . . , K , are
equipped with Nb and Ni antennas, respectively. We assume
that the BS has its own power supply, while all users are
powered by harvesting the RF energy sent from the BS.

TDD communication is adopted in this paper. Specifically,
there are K+1 time slots in one communication frame T as
shown in Fig. 2. For the simplicity of presentation, we set
T = 1 hereafter. During the first time slot with duration β,
the BS broadcasts the Nb×1 energy-carrying signal vector s
to all K users, where E

{
ssH
}

= B, E{·} stands for the
statistical expectation, (·)H denotes the Hermitian transpose,
and 0 < β < 1. A transmission power constraint is imposed on
the BS with a power limit P . Therefore, we have the following

power constraint

tr(B) ≤ P, B � 0 (1)

where tr(·) denotes the matrix trace and A � 0 means matrix
A is positive semidefinite. The input RF power at the ith user
during the first time slot is

PI,i = tr(HiBHH
i ), i = 1, · · · , K (2)

where Hi is an Ni×Nb MIMO channel matrix from the BS
to the ith user.

Remark 1: The reason for considering the power constraint
(1) at the BS is twofold. Firstly, the BS has constant power
supply in the system considered in this paper. Secondly,
we consider the application of maximizing the user data rate
in a unit time T = 1. With increasing β, the users can harvest
more energy, leading to an increased data rate. A total energy
constraint at the BS can be formulated as βB ≤ Eb, which can
be easily included in the transceiver optimization problems in
this paper.

Remark 2: Transmitting one common vector s to all K
users during the first time slot does not lose any optimal-
ity/generality as explained below. Note that different to infor-
mation transmission where for one user, signals for other users
are interference, in the energy transmission phase of the system
considered in this paper, energy beams for one user are useful
for all users in energy harvesting. Let us consider a scheme
that divides the first time slot into K equal sub-slots, where
si is transmitted to the ith user during the ith sub-slot with
E
{
sisH

i

}
= Bi. Thanks to the broadcasting nature of the

wireless channel, any energy beams for one particular user
are received by all other users. Thus, si is received by all K
users. Therefore, the normalized input RF power at the ith user
during the first time slot is given by 1

K

∑K
k=1 tr(HiBkHH

i ),
which is equivalent to (2) for B = 1

K

∑K
k=1 Bk.

In this paper, a two-piecewise linear function [33], [34]
is used to model the nonlinearity of the energy harvesting
circuit at the users, where before the energy harvesting circuit
is saturated, the output power increases linearly with the input
power. After reaching saturation, the output power remains
stable. Using this nonlinear model, the RF energy harvested
by the ith user, i = 1, . . . , K , during the first time slot is given
by

Ẽr,i = β min(ηatr(HiBHH
i ), E′

i) (3)

where E′
i is the maximal output power of user i, and

0 < ηa < 1 is the energy conversion efficiency.
Remark 3: There are many research on nonlinear energy

harvesting models in the literature [15]–[20]. The nonlinear
model in (3) has been shown to match the experimental
results [34], [35]. Extending the algorithms developed in
this paper to other nonlinear models (e.g. [36], [37]) is an
interesting research topic for future study.

Using the harvested energy, the ith user, i = 1, . . . , K ,
transmits information-bearing signal vector xi to the BS at the
(i+1)-th time slot with duration αi, where E

{
xixH

i

}
= Fi

and 0 < αi < 1. Thus, αi and β need to satisfy the following
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constraint

0 <
K∑

i=1

αi+β ≤ 1. (4)

In addition, considering the power limit on the users side, the
following power constraints are imposed for all K users

tr(Fi) ≤ Pi, Fi � 0, i = 1, . . . , K (5)

where Pi is the peak transmission power of user i.
The energy consumed by the ith user to transmit xi is

αitr(Fi). Based on [38], the circuit energy consumption
consists of a static part and a dynamic part. The static part
is used to maintain the basic circuit operations and is given
by αiNiPc, where Pc is the per-antenna static power consump-
tion. The dynamic part depends on the amount of information
processing. According to [38], the dynamic part is modelled as
ηbẼr,i, where ηb ∈ (0, 1). Since the users are powered by the
harvested energy, for the ith user, i = 1, . . . , K , the following
energy constraint is required to be satisfied

αi(tr(Fi)+NiPc) ≤ (1−ηb)Ẽr,i

= β min(ηtr(HiBHH
i ), Ei) (6)

where η = ηa(1−ηb) and Ei = (1−ηb)E′
i.

The information rate of the ith user is

Ri = αi log2

∣∣INb
+σ−2GiFiGH

i

∣∣ , i = 1, . . . , K (7)

where Gi is an Nb×Ni MIMO channel matrix from the ith
user to the BS, In is an n×n identity matrix, σ2 is the variance
of noise at the BS, and |·| denotes the matrix determinant.
Inspired by [39]–[41], the proportional fairness of information
rate of the users is taken as the performance measure in this
paper, which is defined as

K∑
i=1

log2 Ri. (8)

The idea of (8) can be interpreted as follows. If a user’s
information rate increases then the logarithmic function in
(8) decreases this “reward”. Compared with the commonly
used sum rate criterion

∑K
i=1 Ri, (8) avoids the starvation of

any particular user. Compared with the max-min rate criterion
mini=1,...,K Ri, (8) is not limited by the channel of the
worst user. The meaning of the term “proportional fairness”
comes from the fact that the differential of the logarithm of a
user’s information rate is inversely proportional to itself [41].
Considering (1) and (4)-(8), the proportionally fair users rate
maximization problem can be formulated as

max
Fi,B,αi,β

K∑
i=1

log2

(
αi log2

∣∣INb
+σ−2GiFiGH

i

∣∣) (9)

s.t. αi(tr(Fi)+NiPc) ≤ β min(ηtr(HiBHH
i ), Ei),

i = 1, . . . , K (10)

tr(B) ≤ P, B � 0 (11)

tr(Fi) ≤ Pi, Fi � 0, i = 1, . . . , K (12)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (13)

0 <

K∑
i=1

αi+β ≤ 1. (14)

III. NON-ROBUST DESIGN

By observing the problem in (9)-(14), we can see that the
constraints in (11)-(14) are all convex. However, the objective
function in (9) is non-convex. In addition, since αi, Fi, β,
B are optimization variables, αitr(Fi) and βηtr(HiBHH

i ) in
(10) are bilinear functions which are non-convex. Thus, the
constraints in (10) are non-convex. Therefore, the problem in
(9)-(14) is a non-convex optimization problem.

In this section, we shall show that the problem in (9)-(14),
in fact, can be solved by converting it into a convex optimiza-
tion problem. Towards this goal, we first derive the optimal
structure of Fi. Let us introduce the singular value decompo-

sition (SVD) of Gi = UiΛ
1
2
g,iV

H
i , i = 1, . . . , K , where Λg,i

is an Mi×Mi diagonal matrix with Mi = min(Nb, Ni). The
diagonal elements of Λg,i are non-negative and arranged in
a decreasing order. According to the well-known principle of
MIMO transmitter optimization [42], the optimal structure of
Fi is given by Fi = ViΛf,iVH

i in order to maximize (9),
where Λf,i is an Mi×Mi diagonal matrix with non-negative
diagonal elements. On the other hand, this structure is a unitary
transform so that it does not change tr(Fi). Therefore, this
structure does not affect the feasible region of (10) and (12).
Thus, for each i = 1, . . . , K , we prove that the optimal
structure of Fi is

Fi = ViΛf,iVH
i , i = 1, . . . , K. (15)

By substituting (15) into the problem in (9)-(14), we obtain
the optimization problem of

max
B,λf,i,j ,αi,β

K∑
i=1

log2

⎛
⎝Mi∑

j=1

αi log2

(
1+σ−2λf,i,jλg,i,j

)⎞⎠
(16)

s.t. αi

⎛
⎝Mi∑

j=1

λf,i,j+NiPc

⎞
⎠≤βmin(ηtr(HiBHH

i ), Ei),

i = 1, . . . , K (17)

tr(B) ≤ P, B � 0 (18)
Mi∑
j=1

λf,i,j ≤Pi, λf,i,j ≥0, j=1, . . . , Mi, i=1, . . . , K

(19)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (20)

0 <

K∑
i=1

αi+β ≤ 1 (21)

where λf,i,j and λg,i,j , j = 1, . . . , Mi, are the jth diagonal
element of Λf,i and Λg,i, respectively. Let us introduce
λ̃f,i,j = αiλf,i,j , j = 1, . . . , Mi, i = 1, . . . , K and B̃ = βB
to handle the non-convex terms in (17). The problem in
(16)-(21) then becomes

max
B̃,λ̃f,i,j ,αi,β

K∑
i=1

log2

⎛
⎝Mi∑

j=1

αi log2

(
1+

λ̃f,i,jλg,i,j

σ2αi

)⎞
⎠

(22)
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s.t.

Mi∑
j=1

λ̃f,i,j+αiNiPc ≤ min(ηtr(HiB̃HH
i ), βEi),

i = 1, . . . , K (23)

tr(B̃) ≤ βP, B̃ � 0 (24)
Mi∑
j=1

λ̃f,i,j ≤αiPi, λ̃f,i,j ≥0, j=1, . . . , Mi,

i=1, . . . , K (25)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (26)

0 <

K∑
i=1

αi+β ≤ 1. (27)

Note that the constraint in (23) is convex now. In addition,
constraints in (24)-(27) are still convex. However, the objective
function in (22) still seems non-convex. Thus, the problem
in (22)-(27) is a non-convex optimization problem. In what
follows, we shall show that the objective function in (22)
can be converted into convex alternatives by applying the
following lemma.

Lemma 1 [43]: If f : Rn → R, then the perspective of f is
the function g : Rn+1 → R defined by

g (x, t) = tf(x/t) (28)

with domain

dom g = {(x, t)|x/t ∈ dom f, t > 0} (29)

where R denotes the set of all real numbers. The perspective
operation preserves convexity, i.e., if f is a concave function,
then so is its perspective function g.

To simplify the problem in (22)-(27), we introduce new
variables ri, i = 1, . . . , K , and take the hypograph of the
terms in (22). Consequently, the problem in (22)-(27) can be
rewritten as

max
B̃,λ̃f,i,j ,αi,β,ri

K∑
i=1

log2 ri (30)

s.t.

Mi∑
j=1

αi log2

(
1+

λ̃f,i,jλg,i,j

σ2αi

)
≥ ri, i = 1, . . . , K

(31)
Mi∑
j=1

λ̃f,i,j+αiNiPc ≤ min(ηtr(HiB̃HH
i ), βEi),

i = 1, . . . , K (32)

tr(B̃) ≤ βP, B̃ � 0 (33)
Mi∑
j=1

λ̃f,i,j ≤αiPi, λ̃f,i,j ≥0,

j =1, . . . , Mi, i=1, . . . , K (34)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (35)

0 <

K∑
i=1

αi+β ≤ 1. (36)

Let us define f(λ̃f,i,j) = log2(1+σ−2λ̃f,i,jλg,i,j). Then

g(λ̃f,i,j , αi) = αi log2

(
1+ λ̃f,i,jλg,i,j

σ2αi

)
is the perspective of

f(λ̃f,i,j). Since f(λ̃f,i,j) is a concave function of λ̃f,i,j ,
according to Lemma 1, g(λ̃f,i,j , αi) is concave with respect
to (λ̃f,i,j , αi). Therefore, constraints in (31) are convex. Since
ηtr(HiB̃HH

i ) is a linear function of B̃, the constraints in
(32) are convex. Thus, the problem in (30)-(36) is a convex
optimization problem.

Remark 4: Off-the-shelf optimization software packages
are available to solve the problem in (30)-(36), for example,
the CVX toolbox [44]. Particularly, the perspective function
g(λ̃f,i,j , αi) can be handled by function ‘rel_entr’ using
CVX [44].

Remark 5: The steps used in this section to convert the
original non-convex rate optimization problem to a convex
problem can be extended to the weighted sum rate criterion∑K

i=1 wiRi, where wi is the weight factor and Ri is given by
(7). We would like to note that without a priori knowledge,
it is difficult in practice to choose the weights of users.
Wrong weights may exacerbate the fairness problem. Thus,
it is common in practice to choose wi = 1, i = 1, . . . , K ,
which gives the sum rate criterion

∑K
i=1 Ri.

Remark 6: The system design based on the max-min rate
criterion which maximizes the minimal data rate among all K
users can be formulated by substituting the objective function
(30) and the constraint (31) as below

max
B̃,λ̃f,i,j ,αi,β,r

r (37)

s.t.

Mi∑
j=1

αi log2

(
1+

λ̃f,i,jλg,i,j

σ2αi

)
≥ r, i = 1, . . . , K

(38)

constraints (32), (33), (34), (35), (36). (39)

The problem (37)-(39) is a convex optimization problem and
can be solved by the CVX toolbox.

IV. ROBUST DESIGNS

In the previous section, the CSI of channels Hi and Gi,
i = 1, . . . , K , are assumed to be perfectly known. However,
the true CSI cannot be obtained in real world applications.
For example, quantization errors and outdated channel training
may lead to CSI mismatch.

In this section, we shall propose two robust designs for
hedging the mismatch between the actual and the nominal CSI.
The first design assumes that the CSI mismatch is subject to
Gaussian distribution, while the second design only requires
the first and the second order moment of the CSI mismatch.
To begin, we define the CSI mismatch of Hi and Gi as

Δh,i = Hi−Ĥi, i = 1, . . . , K (40)

Δg,i = Gi−Ĝi, i = 1, . . . , K (41)

where Ĥi and Ĝi are the estimated channels of Hi and Gi,
respectively.

A. Gaussian Robust Design

In this subsection, all entries of Δh,i and Δg,i are assumed
to be subject to uncorrelated Gaussian distribution. We shall
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develop an efficient algorithm for solving the ‘robust’ version
of the problem in (9)-(14).

By considering the CSI mismatch of Hi and Gi in
(40)-(41) and taking the hypograph of each user’s information
rate in (9), the problem in (9)-(14) becomes the following
robust proportionally fair rate optimization problem

max
Fi,B,αi,β,ri

K∑
i=1

log2 ri (42)

s.t. Pr[G]

{
αi log2

∣∣∣INb
+σ−2(Ĝi+Δg,i)Fi(Ĝi+Δg,i)H

∣∣∣
≥ ri} ≥ 1−ε1, i = 1, . . . , K (43)

Pr[G]

{
βηtr((Ĥi+Δh,i)B(Ĥi+Δh,i)H)

≥ αi(tr(Fi)+NiPc)} ≥ 1−ε2, i = 1, . . . , K (44)

tr(B) ≤ P, B � 0 (45)

αi(tr(Fi)+NiPc) ≤ βEi, tr(Fi) ≤ Pi, Fi � 0,

i = 1, . . . , K (46)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (47)

0 <

K∑
i=1

αi+β ≤ 1. (48)

Note that the chance constraints in (43) and (44) are introduced
since Δg,i and Δh,i are random matrices. Here, Pr[G][·] in
(43) and (44) stands for the probability under the Gaussian
distribution G, 0 < ε1 < 1 and 0 < ε2 < 1 in (43) and (44)
are chosen according to quality-of-service (QoS) specifications
in practice.

It is well-known [45] that chance constraints are usually
non-convex. Hence, the optimization problem in (42)-(48) is
a non-convex optimization problem due to the chance con-
straints in (43) and (44). To overcome this difficulty, the Bern-
stein inequality [46], [47], which is elaborated in Lemma 2,
is utilized in this paper to convert the chance constraints in
(43) and (44) into deterministic convex constraints.

Lemma 2 (Bernstein Inequality [46], [47]): Let f(x) =
xHYx+2Re{xHu}, where Re{·} denotes the real part, Y ∈
HN×N is a complex Hermitian matrix, x ∼ CN (0, IN ) is
a standard circularly symmetric complex Gaussian (CSCG)
random vector with zero mean and unit variance, and u ∈
CN×1. Then, for any δ > 0, we have the following statement

Pr[G]

{
f(x) ≥ tr(Y)−

√
2δ

√
‖Y‖2

F+2 ‖u‖2−δc+(Y)
}

≥ 1−e−δ (49)

where c+(Y) = max {λmax(−Y), 0} with λmax(−Y) denot-
ing the maximum eigenvalue of matrix −Y, ‖·‖F and ‖·‖
denote the matrix Frobenius norm and the vector Euclidean
norm, respectively.

However, Lemma 2 cannot be applied to (43) straight away
since it is not a quadratic function of Δg,i. For this, the Taylor
series expansion is applied to approximate (43). To proceed,
we note that the first-order Taylor series expansion of function
ln |I+X| is equal to tr(X). Then, by introducing B̃ = βB,
F̃i = αiFi, i = 1, . . . , K , and taking the first-order Taylor
series expansion of (43), the problem in (42)-(48) becomes

the following problem1

max
Fi,B,αi,β,ri

K∑
i=1

log2 ri (50)

s.t. Pr[G]

{
tr((Ĝi+Δg,i)F̃i(Ĝi+Δg,i)H)

≥ riσ
2 ln 2

} ≥ 1−ε1, i = 1, . . . , K (51)

Pr[G]

{
ηtr((Ĥi+Δh,i)B̃(Ĥi+Δh,i)H)

≥ tr(F̃i)+αiNiPc

}
≥ 1−ε2, i = 1, . . . , K (52)

tr(B̃) ≤ βP, B̃ � 0 (53)

tr(F̃i)+αiNiPc ≤ βEi, tr(F̃i) ≤ αiPi, F̃i � 0,

i = 1, . . . , K (54)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (55)

0 <
K∑

i=1

αi+β ≤ 1. (56)

In fact, the trace term in (51) is equivalent to the following
quadratic form

tr((Ĝi+Δg,i)F̃i(Ĝi+Δg,i)H)
= gH

i (INb
⊗F̃i)gi, i = 1, . . . , K (57)

where ⊗ denotes the Kronecker product and gi = vec((Ĝi+
Δg,i)H), vec(A) denotes the vector formed by stacking all
columns of matrix A on top of each other. Thus, considering
(57), (51) can be rewritten as

Pr[G]

{
δδδH

g,iF̄iδδδg,i+2Re{δδδH
g,iF̄iĝi} ≥ riσ

2 ln 2−ĝH
i F̄iĝi

}
≥ 1−ε1, i = 1, . . . , K (58)

where F̄i = INb
⊗F̃i, ĝi = vec(ĜH

i ), and δδδg,i = vec(ΔH
g,i).

We assume that δδδg,i ∼ CN (0, 2τ2
i INbNi).

Using the Bernstein inequality in Lemma 2, (58) holds by

2τ2
i tr(F̄i)−2

√
−2 lnε1

√
‖τ2

i F̄i‖2
F+‖τiF̄iĝi‖2

+ ln ε1c
+(2τ2

i F̄i) ≥ riσ
2 ln 2−ĝH

i F̄iĝi, i = 1, . . . , K (59)

where c+(2τ2
i F̄i) = max{λmax(−2τ2

i F̄i), 0}. For each
i = 1, . . . , K , the constraint (59) can be rewritten as

2τ2
i tr(F̄i)−2

√
−2 ln ε1θ1,i+lnε1θ2,i

+ĝH
i F̄iĝi ≥ riσ

2 ln 2 (60)√∥∥τ2
i F̄i

∥∥2
F
+
∥∥τiF̄iĝi

∥∥2 ≤ θ1,i (61)

θ2,iINbNi+2τ2
i F̄i ≥ 0, θ2,i ≥ 0. (62)

Note that (60)-(62) are convex constraints. In particular, (61)
is a second-order cone constraint, which can be rewritten as∥∥∥∥

(
vec
(
τ2
i F̄i

)
τiF̄iĝi

)∥∥∥∥ ≤ θ1,i, i = 1, . . . , K. (63)

The constraint in (52) can be treated in a similar manner as
the constraint in (51). Thus, the problem in (50)-(56) can be

1Using the first-order Taylor series expansion changes the feasible region
specified by (43). However, since log2(1+x) > x for 0 < x < 1 and
log2(1+x) < x when x > 1, whether the feasible region of (43) is
expanded or reduced after the Taylor series expansion depends on the value
of σ−2(Ĝi+Δg,i)Fi(Ĝi+Δg,i)H . Therefore, it is difficult to analyze the
relationship between the original problem (42)-(48) and the approximated
problem (50)-(56).
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converted to the following problem

max
F̃i,B̃,αi,β,ri,θ1,i,θ2,i,ξ1,i,ξ2,i

K∑
i=1

log2 ri (64)

s.t. 2τ2
i tr(F̄i)−2

√
−2 lnε1θ1,i+lnε1θ2,i+ĝH

i F̄iĝi

≥ riσ
2 ln 2, i = 1, . . . , K (65)∥∥∥∥

(
vec
(
τ2
i F̄i

)
τiF̄iĝi

)∥∥∥∥ ≤ θ1,i, i = 1, . . . , K(66)

θ2,iINbNi+2τ2
i F̄i � 0, θ2,i ≥ 0,

i = 1, . . . , K (67)

2ητ2
i tr(B̄i)−2

√
−2 lnε2ξ1,i+lnε2ξ2,i

+ηĥH
i B̄iĥi ≥ tr(F̃i)+αiNiPc,

i = 1, . . . , K (68)∥∥∥∥
(

vec
(
ητ2

i B̄i

)
ητiB̄iĥi

)∥∥∥∥ ≤ ξ1,i,

i = 1, . . . , K (69)

ξ2,iINbNi+2ητ2
i B̄ � 0, ξ2,i ≥ 0,

i = 1, . . . , K (70)

tr(B̃) ≤ βP, B̃ � 0 (71)

tr(F̃i)+αiNiPc ≤ βEi,

tr(F̃i) ≤ αiPi, F̃i � 0,

i = 1, . . . , K (72)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (73)

0 <

K∑
i=1

αi+β ≤ 1 (74)

where B̄i = INi⊗B̃, ĥi = vec(ĤH
i ), and δδδh,i = vec(ΔΔΔH

h,i).
We assume that δδδh,i ∼ CN (0, 2τ2

i INbNi

)
. The problem

in (64)-(74) is a convex problem, and is in the form of
disciplined convex programming, which can be solved by the
CVX toolbox [44].

B. Distributionally Robust Design

In practice, the exact distribution information of the CSI
mismatch might not be available. Moreover, the distribution
of the CSI mismatch might not be subject to the Gaussian
distribution even if some historical data can be obtained. Thus,
in this section, we shall develop an algorithm which only
requires partial information of the CSI mismatch distribution.

More specifically, we assume that only the mean and the
variance of the CSI mismatch are known to the transmitter
and the users. Without loss of generality, we assume that

E[P][Re{[Δg,i]m,n}] = E[P][Im{[Δg,i]m,n}] = 0 (75)

E[P][Re{[Δh,i]m,n}] = E[P][Im{[Δh,i]m,n}] = 0 (76)

E[P][(Re{[Δg,i]m,n})2] = E[P][(Im{[Δg,i]m,n})2] = τ2
i

(77)

E[P][(Re{[Δh,i]m,n})2] = E[P][(Im{[Δh,i]m,n})2] = τ2
i

(78)

where [A]m,n denotes the (m, n)-th entry of matrix A
and E[P][·] stands for the statistical expectation under the
distribution of P.

Considering (75)-(78) and the problem in (42)-(48),
we obtain a distributionally robust rate optimization problem
below

max
Fi,B,αi,β,ri

K∑
i=1

log2 ri (79)

s.t. Pr[P]

{
αi log2

∣∣∣INb
+σ−2(Ĝi+Δg,i)Fi(Ĝi+Δg,i)H

∣∣∣
≥ ri} ≥ 1−ε1, i = 1, . . . , K (80)

Pr[P]

{
βηtr((Ĥi+Δh,i)B(Ĥi+Δh,i)H)

≥ αi(tr(Fi)+NiPc)} ≥ 1−ε2, i = 1, . . . , K (81)

tr(B) ≤ P, B � 0 (82)

αi(tr(Fi)+NiPc) ≤ βEi, tr(Fi) ≤ Pi, Fi � 0,

i = 1, . . . , K (83)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (84)

0 <
K∑

i=1

αi+β ≤ 1. (85)

constraints (75), (76), (77), (78). (86)

Comparing the problem in (79)-(86) with the problem in
(42)-(48), it can be seen that the CSI mismatch P in the
problem in (79)-(86) is not subject to G as that in the problem
in (42)-(48).

Similarly, by introducing F̃i = αiFi and B̃ = βB and
applying the first-order Taylor series expansion to (80), the
problem in (79)-(86) is simplified to the following problem

max
F̃i,B̃,αi,β,ri

K∑
i=1

log2 ri (87)

s.t. Pr[P]

{
tr((Ĝi+Δg,i)F̃i(Ĝi+Δg,i)H)

≥ riσ
2 ln 2

} ≥ 1−ε1, i = 1, . . . , K (88)

Pr[P]

{
ηtr((Ĥi+Δh,i)B̃(Ĥi+Δh,i)H)

≥ tr(F̃i)+αiNiPc

}
≥ 1−ε2, i = 1, . . . , K (89)

tr(B̃) ≤ βP, B̃ � 0 (90)

tr(F̃i)+αiNiPc ≤ βEi, tr(F̃i) ≤ αiPi, F̃i � 0,

i = 1, . . . , K (91)

0 < β < 1, 0 < αi < 1, i = 1, . . . , K (92)

0 <

K∑
i=1

αi+β ≤ 1. (93)

constraints (75), (76), (77), (78). (94)

Obviously, the constraints in (88) and (89) are non-convex.
In addition, the distribution of P in (88) and (89) is not
fully known. In the following, the distributionally robust
optimization technique [48]–[53] is introduced to handle the
chance constraints with partial distribution information.

The idea of distributionally robust optimization is to opti-
mize the ‘worst-case’ distribution among all possible distribu-
tions. More specifically, an ambiguity set P is created, which
contains all possible P. Then, the problem is to optimize the
worst-case performance of P ∈ P . Therefore, the ‘distribu-
tionally robust version’ of the problem in (87)-(94) is shown
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below

max
F̃i,B̃,αi,β,ri

K∑
i=1

log2 ri (95)

s.t. inf
P∈P

Pr[P]{tr((Ĝi+Δg,i)F̃i(Ĝi+Δg,i)H)

≥ riσ
2 ln 2} ≥ 1−ε1, i = 1, . . . , K (96)

inf
P∈P

Pr[P]{ηtr((Ĥi+Δh,i)B̃(Ĥi+Δh,i)H)

≥ tr(F̃i)+αiNiPc} ≥ 1−ε2, i = 1, . . . , K (97)

P = {P : (75), (76), (77), (78)} (98)

constraints (90), (91), (92), (93). (99)

Although the constraints in (96) and (97) seem more compli-
cated than the constraints in (88) and (89), we shall show that
they turn out to be more ‘tractable’.

By defining

Fi =
(

INb
⊗Re{F̃i} −INb

⊗Im{F̃i}
INb

⊗Im{F̃i} INb
⊗Re{F̃i}

)
, gi =

(
Re{gi}
Im{gi}

)
(100)

where Im{·} denotes the imaginary part, it is straightforward
to verify that (57) can be rewritten as

gH
i (INb

⊗F̃i)gi = gi
TFi gi (101)

where (·)T denotes the transpose. According to the definition
in (100), gi is a real-valued random vector. By considering
(75), (77), and (100), we obtain a new ambiguity set satisfying

P1 =
{

P : E[P][gi] = ĝi,

E[P][(gi−ĝi)(gi−ĝi)T ] = τ2
i I2NbNi

}
(102)

where ĝi =
(

Re{ĝi}
Im{ĝi}

)
. Therefore, considering (57), (101),

and (102), the chance constraints in (96) become

inf
P∈P1

Pr[P]

{
gi

TFigi≥riσ
2 ln 2

}≥1−ε1, i = 1, . . . , K.

(103)

Note that although (103) is in a simpler real-valued quadratic
form, it is still non-convex. To convert (103) into a tractable
convex alternative, we need the following lemma.

Lemma 3 (Theorem 2.2 in [48]): Let L : Rk → R be a
continuous loss function that is either concave in ξ or quadratic
in ξ. Then, the following equivalence holds

inf
P∈P′

Pr[P]{L(ξ)≤0} ≥ 1−ε

⇐⇒ sup
P∈P′

P−CVaRε[L(ξ)] ≤ 0 (104)

where

P ′

=
{
P : E[P][ξ] = μ, E[P]

[
(ξ−μ)(ξ−μ)T

]
= Σ

}
(105)

P−CVaRε

[
ξ̃
]

= inf
γ∈R

{
γ+

1
ε
E[P]

[(
ξ̃−β

)+
]}

(106)

and for a real number a, (a)+ = max(a, 0).

The term ‘CVaR’ stands for the conditional value-at-risk.
It is a special class of risk measure introduced in [54] and
further developed by Rockafellar and Uryasev [55], which is
regarded as the tightest convex approximation of the chance
constraints according to [56]. Usually, the CVaR is only an
approximation of the chance constraint. Fortunately, as shown
in Lemma 2 of [55], this approximation is exact under
the distributionally robust optimization setting. CVaR is not
computationally tractable although it is convex. The following
lemma gives a tractable semidefinite programming (SDP)
alternative for the worst-case CVaR under the distributionally
robust framework.

Lemma 4 (Theorem 2.3 in [48]): If L(ξ) = ξTQξ+qT ξ+
q0 for some Q ∈ Sk, q ∈ Rk, and q0 ∈ R, where Sk denotes
the space of symmetric matrices of dimension k. Then,{

x ∈ R
n : sup

P∈P′
P−CVaRε [L(ξ)] ≤ 0

}
(107)

can be written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M � 0, γ+
1
ε
tr(ΩM) ≤ 0

M−

⎡
⎢⎣ Q

1
2
q

1
2
qT q0−γ

⎤
⎥⎦ � 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(108)

where

Ω =
[
Σ+μμT μ

μT 1

]
(109)

and Σ and μ are defined as in (105).
For each i = 1, . . . , K , by applying Lemma 3 and Lemma

4 to (103), it follows that

M1,i � 0, γ1,i+
1
ε1

tr(ΩΩΩ1,iM1,i) ≤ 0 (110)

M1,i−
(−Fi 0

0 riσ
2 ln 2−γ1,i

)
� 0 (111)

where

Ω1,i =

[
τ2
i I2NbNi+ĝi ĝi

T ĝi

ĝi
T 1

]
, i = 1, . . . , K.

Similarly, for each i = 1, . . . , K , the chance constraint (97)
can be transformed into the following constraints

M2,i � 0, γ2,i+
1
ε2

tr(ΩΩΩ2,iM2,i) ≤ 0 (112)

M2,i−
(−Bi 0

0 η−1(tr(Re{F̃i})+αiNiPc)−γ2,i

)
� 0

(113)

where for each i = 1, . . . , K

Ω2,i =

[
τ2
i I2NbNi+ĥi ĥi

T
ĥi

ĥi
T

1

]

Bi =
(

INi⊗Re{B̃} −INi⊗Im{B̃}
INi⊗Im{B̃} INi⊗Re{B̃}

)
, ĥi =

(
Re{ĥi}
Im{ĥi}

)
.
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By replacing (96) and (97) with (110)-(113), the problem
in (95)-(99) can be converted to the following problem

max
F̃i,B̃,M1,i,M2,i,αi,β,γ1,i,γ2,i,ri

K∑
i=1

log2 ri (114)

s.t. M1,i � 0, γ1,i+
1
ε1

tr(ΩΩΩ1,iM1,i)

≤ 0, i = 1, . . . , K (115)

M1,i−
(−Fi 0

0 riσ
2 ln 2−γ1,i

)
� 0, i = 1, . . . , K (116)

M2,i � 0, γ2,i+
1
ε2

tr(ΩΩΩ2,iM2,i) ≤ 0,

i = 1, . . . , K (117)

M2,i

−
⎛
⎝−Bi 0

0 η−1(tr(Re{F̃i})
+αiNiPc)−γ2,i

⎞
⎠ � 0,

i = 1, . . . , K (118)

tr(Re{B̃}) ≤ βP (119)

Re{B̃} � 0, (Im{B̃})T =−Im{B̃} (120)

tr(Re{F̃i})+αiNiPc ≤ βEi,

i = 1, . . . , K (121)

tr(Re{F̃i}) ≤ αiPi,

i = 1, . . . , K (122)

Re{F̃i} � 0, (Im{F̃i})T= −Im{F̃i},
i = 1, . . . , K (123)

0 < β < 1, 0 < αi < 1,

i = 1, . . . , K (124)

0 <
K∑

i=1

αi+β ≤ 1. (125)

The problem in (114)-(125) is an SDP problem, which is
computationally tractable and can be solved by the CVX
toolbox [44]. Note that the real and imaginary parts of F̃i

and B̃ are treated as independent matrices and optimized
separately. The constraint in (120) ensures B̃ � 0, and the
constraints in (123) ensure F̃i � 0.

V. SIMULATION RESULTS

In this section, the performance of the proposed non-robust
and robust designs for wireless powered MU-MIMO systems
is tested through numerical simulations. We consider a sce-
nario in which there are two users around the BS. The distance
between the BS and each user is di = 10 meters, i = 1, 2.
The BS is equipped with Nb = 3 antennas and each user is
equipped with Ni = 2 antennas, i = 1, 2. Following [36], [37],
[46], the channel matrices are modeled as Hi = (0d

−ζ
i )

1
2 H̄i

and Gi = (0d
−ζ
i )

1
2 Ḡi, i = 1, 2, where 0 = (λ/4π)2 is

the path loss at a reference distance of d0 = 1 meter, λ is the
wavelength of the carrier signal, 0d

−ζ
i denotes the large-scale

path loss, and H̄i and Ḡi are the small-scale channel fading
with the Rayleigh distribution as [H̄i]n,m ∼ CN (0, 1) and
[Ḡi]n,m ∼ CN (0, 1). The suburban environment is assumed

Fig. 3. Example 1: Proportional fairness performance versus P ,
σ2 = −50 dBm and �0 = 0 dB.

here and hence the path loss exponent is set as ζ = 3 according
to [57]–[59]. We set the efficiency η = 0.6 and the per-antenna
static power consumption Pc = 0.1μW. All the numerical
simulation results are averaged over 1000 independent channel
realizations.

A. Example 1: Perfect CSI

In the first numerical example, we assume that the CSI
is perfectly known. We choose two combinations of 0 and
σ2: (i) A high noise and low path loss scenario where σ2 =
−50 dBm and 0 = 0 dB (i.e., λ = 4π m and the carrier
frequency fc = 75

π MHz); (ii) A low noise and high path
loss scenario with σ2 = −90 dBm and 0 = −30 dB (i.e.,
fc = 750 MHz and λ = 0.4 m). The peak transmission power
of users is set as Pi = 10 dBm, i = 1, 2 and the maximal
harvest power of users is set as Ei = 13 dBm, i = 1, 2.

Fig. 3 and Fig. 4 show the proportional fairness measure
in (8) of the proposed non-robust design algorithm, the sum
rate maximization algorithm, and the max-min rate algorithm
versus the BS transmission power P in the two scenarios
considered. The proposed proportional fairness algorithm is
run by solving the problem in (30)-(36), while the sum rate
algorithm is obtained by replacing the objective function in
(30) with

∑K
i=1 Ri, as discussed in Remark 5, and the max-

min rate algorithm is run by solving the problem in (37)-(39).
It can be seen from Fig. 3 and Fig. 4 that the proposed
proportional fairness algorithm outperforms the existing sum
rate algorithm and the max-min rate algorithm in terms of the
proportional fairness measure.

Fig. 5 and Fig. 6 demonstrate the sum rate of the three
algorithms versus P in the two scenarios considered. It can
be seen that the sum rate algorithm achieves a higher system
sum rate compared with the proposed proportional fairness
algorithm and the max-min rate algorithm. This is because
the latter two algorithms are suboptimal for the sum rate
performance. We can also observe that the proportional fair-
ness algorithm has a higher sum rate than the max-min rate
algorithm, as the latter one is limited by the channel of the
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Fig. 4. Example 1: Proportional fairness performance versus P ,
σ2 = −90 dBm and �0 = −30 dB.

Fig. 5. Example 1: Sum rate versus P , σ2 = −50 dBm and �0 = 0 dB.

Fig. 6. Example 1: Sum rate versus P , σ2 = −90 dBm and �0 = −30 dB.

worst user. By comparing Fig. 5 with Fig. 6, we can find that
due a higher path loss, the achievable system sum rate is over
an order lower in the simulation scenario (ii).

Fig. 7. Example 1: User information rate versus P , σ2 = −50 dBm and
�0 = 0 dB.

Fig. 8. Example 1: User information rate versus P , σ2 = −90 dBm and
�0 = −30 dB.

The corresponding information rate of each user is plotted
in Fig. 7 and Fig. 8 for the two scenarios simulated, where
User 1 has a weaker channel compared with that of User 2.
As shown in Fig. 7 and Fig. 8, the rate difference between
two users using the proposed proportional fairness algorithm is
smaller than that of the sum rate algorithm, which verifies the
effectiveness of the proposed algorithm in providing fairness
among users. As expected, the two users have the same rate in
the max-min rate algorithm. We can also observe from Fig. 7
and Fig. 8 that the rate gap between the two users increases
with P .

Interestingly, from Fig. 5–Fig. 8 we can see that the pro-
posed proportional fairness based system design has only a
slightly lower sum rate but provides a better fairness among
users compared with the sum rate based design. On the
other hand, the proposed design has a much higher sum rate
compared with the max-min rate based design when the path
loss is high (see Fig. 6). This is due to the fact that the
max-min rate based design is limited by the channel of the
worst user. Therefore, the proposed design has a better tradeoff
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Fig. 9. Example 2: Sum rate versus P .

between the sum data rate and the fairness among users than
the other two algorithms.

In the remaining simulation examples, we study the perfor-
mance of the proposed robust designs in the case of imperfect
CSI. We set Pi = Ei = 20 dBm, i = 1, 2, and focus on the
simulation scenario (i).

B. Example 2: Gaussian CSI Mismatch

In the second example, the channel mismatch Δh,i and
Δg,i is independent of Hi and Gi and has independent and
identically distributed (i.i.d.) Gaussian entries with
[Δh,i]n,m ∼ CN (0, 2τ2

i ) and [Δg,i]n,m ∼ CN (0, 2τ2
i ).

Here we set τ2
i = 0.4d−ξ

i , i = 1, 2. For the proposed
distributionally robust design and the Gaussian robust design,
we choose εi = 0.2, i = 1, 2.

We compare the performance of the non-robust algorithm
in (30)-(36), the Gaussian robust design in (64)-(74), and the
distributionally robust design in (114)-(125). Fig. 9 shows the
sum rate of these three algorithms versus the BS transmit
power P . From Fig. 9, we can see that the two robust
designs have a better performance than the non-robust design.
Between the two robust designs, the Gaussian robust design
yields a higher system sum rate than the distributionally robust
design.

Fig. 10 shows the sum rate achieved by the three algorithms
at various levels of the CSI mismatch, which is given by
τ2
i = 0.5νd−ξ

i , i = 1, 2. It can be seen from Fig. 10 that with
the increase of ν, the achievable rate of the three algorithms
decreases. We can also observe that the non-robust design
has the fastest decreasing rate with respect to ν, while the
distributionally robust algorithm has the slowest decreasing
rate. This indicates that the distributionally robust algorithm
has a stable performance over a large range of the CSI
mismatch level.

C. Example 3: Gaussian Mixture CSI Mismatch

In the third example, we consider that the CSI mismatch
follows the Gaussian mixture model. The Gaussian mixture
model has been widely used to approximate the non-Gaussian

Fig. 10. Example 2: Sum rate versus the CSI mismatch level ν.

Fig. 11. Example 3: Sum rate versus P .

noise in communication channels [60]. The probability density
function (PDF) of [Δh,i]n,m is given as

f
(
[Δh,i]n,m

)
=

L∑
l=1

λi,l

πσ2
h,i,l

exp

⎧⎪⎨
⎪⎩−

∣∣∣[Δh,i]n,m

∣∣∣2
σ2

h,i,l

⎫⎪⎬
⎪⎭ (126)

where
∑L

l=1 λi,l = 1, i = 1, 2. The PDF of [Δg,i]n,m
is defined in a similar way. According to [60], (126) is a
spherically symmetric, bivariate PDF for the complex-valued
random variable [Δh,i]n,m. In particular, for the case of L = 2,
it is a typical model for impulsive noise if σh,i,2  σh,i,1 and
λi,2 < λi,1.

Fig. 11 shows the system sum rate versus P for a
CSI mismatch scenario of σ2

h,i,1 = 0.1d−ξ
i , λi,1 = 0.9,

σ2
h,i,2 = 9.1d−ξ

i , and λi,2 = 0.1, i = 1, 2. It can be seen
that the proposed distributionally robust design has a better
performance than the Gaussian robust algorithm, since the CSI
is not Gaussian distributed.
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Fig. 12. Example 4: Sum rate versus P .

D. Example 4: Laplacian CSI Mismatch

In this example, the Laplacian CSI mismatch [61] is con-
sidered. The PDF of [Δh,i]n,m is given by

f
(
[Δh,i]n,m

)
=

1
σh,i

exp
{
− 2

σh,i

(∣∣∣Re{[Δh,i]n,m}
∣∣∣

+
∣∣∣Im{[Δh,i]n,m}

∣∣∣)}
where σ2

h,i is the variance of the Laplace distribution and is
set to σ2

h,i = 0.2 d−ξ
i , i = 1, 2. The PDF of [Δg,i]n,m is

defined in a similar way. We plot the system sum rate of the
three algorithms versus P in Fig. 12. We can see that the two
robust designs have a better performance than the non-robust
design. It can also be seen from Fig. 12 that the distributionally
robust design yields a higher system rate than the Gaussian
robust design.

VI. CONCLUSION

We have investigated the transceiver optimization for a TDD
MU-MIMO system with wireless powered users. The propor-
tional fairness of users’ rates has been considered in the objec-
tive function. Depending on the availability of the CSI, both
the non-robust and robust system designs have been developed.
We have adopted the Bernstein inequality based method to
solve the chance constrained problem for the Gaussian CSI
mismatch case. Furthermore, we have utilized the CVaR based
method to reformulate the distributionally robust version of
the chance constraint into an exact and tractable alternative.
Simulation results show that the proportional fairness objective
function leads to a smaller gap between the rates of two
users, compared with the commonly used sum rate criterion.
The robust designs perform better than the non-robust design.
The proposed distributionally robust design and the Gaussian
robust design have different performance advantages under
different types of the CSI mismatch.
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