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ABSTRACT
In this paper, two novel joint channel tracking and noise
variance estimation algorithms for single-carrier underwater
acoustic communication system are proposed. The new al-
gorithms combine the advantages of the variational Bayesian
(VB) method and the compressed sensing technique. The
proposed algorithms overcome the over-fitting of conven-
tional orthogonal matching pursuit (OMP) based methods,
and thus, lead to an improved performance. The proposed
algorithms are applied to detect data received during an ex-
periment conducted in December 2012 in the Indian Ocean
off the Rottnest Island, Western Australia. The results show
that the proposed algorithms can reduce the uncoded system
BER by 1% to 6%.
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1. INTRODUCTION
The underwater acoustic (UA) channel is one of the most
challenging channels for wireless communication. Due to
the features of the medium, the UA channel is different from
terrestrial radio channels in many aspects. Firstly, the prop-
agation loss of acoustic waves in water is approximately pro-
portional to square of the frequency [1]. Therefore, UA com-
munication signals are usually transmitted at a low carrier
frequency, and thus the bandwidth available for UA com-
munication is extremely limited compared with that of ter-
restrial radio channels [2]. Secondly, the speed of UA wave
near the sea surface is typically around 1520 m/s which is
five orders of magnitude smaller than the speed of light [3].
Thirdly, the speed of UA wave is affected by many factors,
such as temperature, salinity, and the pressure of water.
These features of UA medium introduce rapid dispersion
in both time and frequency domains to UA communication
channels. The time-domain dispersion due to delay spread
results in severe inter-symbol interference. The frequency-
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domain dispersion caused by the drift of the transmitter,
receiver and/or the motion of water leads to rapidly time-
varying communication channel.

It has been shown in [4] that many shallow-water UA chan-
nels have a sparse structure, which means that although the
UA channel impulse response generally has extremely large
delay spread, most of the channel energy is carried by only
a few propagation paths. By exploiting the sparsity of the
UA channel impulse response, channel estimators at receiver
can have reduced number of taps, which reduces the noise
involved in channel estimation. Consequently, the channel
estimation can have an improved accuracy as well as a re-
duced computational complexity [5], [6].

One of the methods to exploit the sparse structure in chan-
nel estimation is the matching pursuit (MP) algorithm [7] or
its orthogonal vision named the orthogonal matching pur-
suit (OMP) algorithm [8], both of which are considered as
compressed sensing (CS) techniques. In particular, sparse
channel estimation can be implemented by first selecting
the most important paths of the sampled channel impulse
response via a greedy Lp-norm regularized method and then
estimating coefficients for all selected paths via the least-
squares (LS) method. However, the LS method adopted in
the coefficients estimation step is sensitive to noise [9].

On the other hand, a block-wise decision-directed channel
tracking method has been developed in [10], where each re-
ceived data frame is subdivided into data blocks, and each
data block is decoded by using the channel state information
(CSI) estimated from the detected symbols of the previous
data block. The authors of [10] adopted the LS approach
to perform channel estimation at each data block. In [11],
the OMP approach has been applied to estimate the CSI at
each data block by exploiting the sparsity of the UA channel,
which yields a better performance than the LS approach.
However, the paths selection step in the OMP algorithm
may suffer from the error in detected symbols during chan-
nel tracking.

In this paper, we develop two novel channel estimation and
tracking algorithms for single-carrier UA communication sys-
tem. The proposed algorithms first select the most signifi-
cant paths using the training sequence and then adopt the
variational Bayesian (VB) method [9] to estimate the coef-
ficient of the selected paths. The proposed algorithms over-
come the over-fitting of conventional OMP based methods,
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Figure 1: Frame structure of the system.

and thus, lead to an improved performance. The proposed
algorithms are applied to detect data received during an ex-
periment conducted in December 2012 in the Indian Ocean
off the Rottnest Island, Western Australia. The results show
that the proposed algorithms can reduce the uncoded system
BER by 1% to 5%.

2. SYSTEM MODEL
As shown in Fig. 1, each data frame contains two training
blocks with identical sequences followed by the data load.
Let us introduce Ts as the symbol duration, NT as the length
of each training sequence, and ND as the length of each data
block. Then the length of each frame is Nf = 2NT + ND

and its duration is Tf = TsNf . We assume that the channel
state is quasi-stationary within a block of N symbols, and
thus the data sequence in one frame can be divided into
P = ND/N blocks. The channel impulse response of the tth
data block, t = 1, · · · , P , can be represented by

h(t) = [h0(t), h1(t), · · · , hL−1(t)]
T

where L denotes the maximum delay spread of the channel
impulse response, and (·)T stands for the matrix transpose.

The tth data block r(t) = [r0(t), r1(t), · · · , rN−1(t)]
T at the

receiver side can be written as

r(t) = D(t)h(t) + n(t) (1)

where

D(t) =

⎛

⎜⎜⎜⎝

d0(t) dN (t− 1) · · · dN−L+2(t− 1)
d1(t) d0(t) · · · dN−L+3(t− 1)
...

...
. . .

...
dN−1(t) dN−2(t) · · · dN−L(t)

⎞

⎟⎟⎟⎠

with di(t) denoting the ith transmitted symbol of the tth
data block, and n(t) = [n0(t), n1(t), · · · , nN−1(t)]

T is the
zero mean complex white Gaussian additive noise with vari-
ance 1/β per dimension.

Fig. 2 shows the system block diagram. It can be seen that at
the receiver, the frame head is firstly found by the synchro-
nization element and then the receiver performs frequency
offset estimation and compensation for all data blocks. The
above processing is performed to the pass-band signals. Af-
ter the frequency offset compensation, the receiver removes
the carrier frequency and passes the signals through a matched
filter followed by down sampling. Then channel estima-
tion, tracking, and equalization algorithms are applied to the
down-sampled signals to estimate the transmitted data. In
this paper, we develop a block-wise channel tracking method
to track the time-varying UA channel at the receiver which
combines the advantages of the VB method and the CS tech-
nique.

3. COMPRESSED SENSING METHOD

Figure 2: System block diagram.

Table 1: The OMP algorithm.
Initialization
ĥ = 0,y(0) = r,u(0) = ∅, D̃(0) = ∅
For s = 1, · · · , S
Calculate the correlation vector b(s) = DHy(s− 1)
Find the index p = argmaxj=1···L,j /∈u(s−1)(bj(s))
Update the index set u(s) = u(s− 1) ∪ p
Update D̃(s) = D̃(s− 1) ∪D:,p

Update h̃ = [D̃(s)HD̃(s)]−1D̃(s)Hr
Update the residual measurement y(s) = r − D̃(s)h̃

end for
ĥui = h̃i for i = 1, 2, · · · , S

CS is a technique that can recover signal accurately from
its measurements provided that the signal is sparse. Let us
consider the measurement model (1). For the simplicity of
notation, in the following, we neglect the block index t and
rewrite (1) as

r = Dh+ n. (2)

Generally, the LS and/or the minimal mean-squared error
(MMSE) methods can be applied to recover h. However, if
h is S-sparse, which means that h has S(S ≤ L) non-zero
entries, and D is designed to capture the dominant infor-
mation of h into r, h can be recovered by the CS technique.

Many algorithms such as OMP, basis pursuit (BP), and com-
pressed sampling matching pursuit (CoSaMP) have been de-
veloped for sparse signal recovery. In this paper, the OMP
algorithm is adopted to perform channel estimation. Details
of this algorithm are shown in Table 1, where bj(s) is the
jth element of b in the sth iteration and D:,p denotes the
pth column of D.

It can be seen from Table 1 that the OMP algorithm in-
cludes two steps. The first step adopts a greedy Lp-norm
regularized method to search the most significant paths of
the channel impulse response in an energy decreasing or-
der, resulting in the index vector u. In the second step,
the LS method is used to estimate coefficients for all se-
lected paths, leading to h̃. Finally, the algorithm maps h̃
to the corresponding position of the estimated channel im-
pulse response ĥ using the index vector u. However, the LS
method adopted in the coefficients estimation step is sensi-
tive to noise [9]. To overcome this problem, we introduce
the VB method in the next section.



4. VARIATIONAL BAYESIAN METHOD
Let us introduce θ as the vector of parameters and latent
variables and z as the observation vector. The estimation
problem is to estimate θ or part of θ when z is provided.
This can be achieved by maximizing the posterior distribu-
tion p(θ|z) as

θ̂ = argmax
θ

p(θ|z) = argmax
θ

p(z|θ)p(θ)
p(z)

(3)

where

p(z) =

∫
p(z,θ) dθ. (4)

However, in many cases, the integration (4) is analytically
intractable, and the VB method can be used to bypass this
integral. This method introduces a distribution q(θ) which
provides an approximation to the true posterior distribution
p(θ|z). From the Jensen’s inequality, we have

ln p(z) = ln

∫
p(z,θ) dθ = ln

∫
q(θ)

p(z,θ)
q(θ)

dθ

≥
∫

q(θ) ln
p(z,θ)
q(θ)

dθ = L(q). (5)

Note that L(q) in (5) is a rigorous lower bound of the true log
marginal likelihood, which is tractable to compute provided
that a suitable q(·) distribution is chosen.

It is easy to find that the Kullback-Leibler (KL) divergence
between the approximation distribution q(θ) and the true
posterior distribution p(θ|z) is given by

KL(q||p) = ln p(z)− L(q) = −
∫

q(θ) ln
p(θ|z)
q(θ)

dθ. (6)

It can be seen from (6) that maximizing the lower bound
L(q) is equivalent to minimize the KL divergence. A suitable
form of q(θ) should be sufficiently simple so that the lower
bound L(q) can be readily evaluated. Moreover, q(θ) should
be sufficiently flexible so that the lower bound L(q) can be
reasonably tight.

However, the best q(θ) may be difficult to compute in many
cases of interest. In this situation, the VB method considers
a particular q(·) by assuming that it can be factorized over
the component variables in θ, which is called the mean field
approximation in the theoretical physics area. Then q(θ)
can be represented as

q(θ) =
∏

i

qi(θi)

where the parameters in θ is collected into separate groups
θi each with their own approximate posterior distribution
q(θi). Assuming that the posterior distributions of all groups
are independent, the computation of q(θi) is to maximize the
lower bound L(q) over q(θi), which results in

ln q(θi) = ⟨ln p(z,θ)⟩k ̸=i (7)

where ⟨·⟩k ̸=i denotes the expectation with respect to the dis-
tributions qk(θk) for all k ̸= i. The VB method iteratively
maximizes the lower bound L(q) with respect to the distri-
butions qk(θk) for all k, which is essentially the coordinate
ascent in the function space of variational distributions.

5. VB AND OMP BASED CHANNEL ESTI-
MATION/TRACKING ALGORITHMS

In this section, we propose two novel channel estimation and
tracking algorithms, namely the VB-based OMP and OMP-
based VB algorithms. Both proposed algorithms apply the
OMP method to obtain the channel paths index vector u
and then use the VB technique to update the vector h̃ before
mapping h̃ to ĥ. The difference between two algorithms is
that, in the OMP-based VB algorithm, the paths searching
step is performed during the training sequence only, while
this step is applied during both the training and data stream
in the VB-based OMP method. The additional update step
increases the computational complexity.

Using the channel paths index vector u obtained by the
OMP method as shown in Table 1, the received signal vector
r in (2) can be represented as

r = D̃h̃+ n

where the measurement matrix D̃ is generated from columns
of D in (2) using u. The likelihood distribution of h̃ and β
thus can be written as

p(r|h̃,β) = βN

πN
exp(−β(r − D̃h̃)H(r − D̃h̃)) (8)

where (·)H stands for the matrix Hermitian transpose. To
utilize the VB method for joint channel tracking and channel
noise variance estimation, we first choose a Gaussian prior
distribution with a distinct inverse variance αl, l = 1, · · · , S,
for each selected path as

p(h̃|α) =

S∏

l=1

αl

π
exp(−h̃H diag(α)h̃) (9)

where diag(α) stands for a diagonal matrix taking α as the
diagonal elements. Obviously, (9) is an over-parameterized
model with almost as many observations as parameters to be
estimated. So we treat the precision parameter vector α as
random variables and impose a Gamma prior distribution
to them because Gamma distribution is conjugate to the
Gaussian distribution. We have

p(α) =
S∏

l=1

Γ(αl|a, b)

=
S∏

l=1

1
baΓ(a)

αa−1
l e−αl/b (10)

where Γ(·) stands for the Gamma distribution. The prior
distribution for the inverse of the channel noise variance β
is also imposed as a Gamma distribution as

p(β) = Γ(β|c, d)

=
1

dcΓ(c)
βc−1 e−β/d . (11)

The joint tracking of the channel impulse response and the
channel noise variance requires the computation of the pos-
terior distribution

p(h̃,α,β|r) = p(r|h̃,β)p(h̃|α)p(α)p(β)
p(r)

. (12)



However, the marginal likelihood p(r) is analytically in-
tractable here. Thus, following the VB method in Sec-
tion 4, we assume an approximate posterior distribution
q(h̃,α,β) ≈ p(h̃,α,β|r) and apply the mean field approxi-
mation to enforce independency between channel h̃ and the
variance parameters α and β as

q(h̃,α,β) = q(h̃)q(α)q(β). (13)

From (6), the KL divergence between the posterior distribu-
tion p(h̃,α,β|r) and its approximate posterior distribution
q(h̃,α,β) can be written as

KL(q||p) = −
∫

q(h̃,α,β) ln
p(h̃,α,β|r)
q(h̃,α,β)

dh̃dαdβ. (14)

It can be shown that the minimum of (14) is achieved when
q(h̃,α,β) = p(h̃,α,β|r), which yields the flowing results
considering (7), as derived in [9]

q(h̃) = exp(⟨ln p(h̃,α,β|r)⟩q(α)q(β)) = N (µ,Σ) (15)

q(α) = exp(⟨ln p(h̃,α,β|r)⟩q(h̃)q(β)) =
S∏

l=1

Γ(ã, b̃l) (16)

q(β) = exp(⟨ln p(h̃,α,β|r)⟩q(h̃)q(α)) = Γ(c̃, d̃) (17)

where N (µ,Σ) stands for a multivariate Gaussian distribu-
tion with the mean vector µ and the covariance matrix Σ
and

Σ= (β̄D̃HD̃ + diag(ᾱ))−1

µ= β̄ΣD̃Hr

ã= a+ 1

b̃l = b+ |hl|2, l = 1, · · · , S
c̃= c+N

d̃= d+ rHr − rHD̃µ− µHD̃Hr + tr(D̃HD̃Σ) + µHD̃HD̃µ.

Here tr(·) stands for the matrix trace, β̄ and ᾱ denote the
mean values of β and α, respectively, |hl| represents the am-
plitude of hl, and |hl|2 is the mean value of |hl|2. By setting
the parameters a, b, c, and d to very small values to make
prior distributions non-informative, the approximate poste-
rior distributions in (15)-(17) are then iteratively updated
until convergence, since they depend on the statistics of each
other. The parameter updating procedure is summarized in
Table 2, where (·) denotes complex conjugate and [Σ(i)]l,l
is the (l, l)-th element of Σ(i). After the convergence of the
VB procedure, the estimated h̃ is given by µ.

6. EXPERIMENT ARRANGEMENT
An UA communication experiment was conducted in De-
cember 2012, in the Indian Ocean off the coast of the Rot-
tnest Island, Western Australia (Fig. 3). The average water
depth was about 50 meter. As shown in Fig. 4, a single hy-
drophone at the receiver was attached through a cable at one
meter above the seabed. A transducer attached to a drifting
vessel through cable for data transmission was located ap-
proximately 20 meters below the sea surface. Signals were
transmitted when the vessel and transducer were at the po-
sitions as denoted by the red dots with labels of T52, T54,
T55, T56, T57, T58, T59 , T60, and T61 in Fig. 3, which
correspond to 125m, 250m, 500m, 1km, 2km, 4km, 6km,

Table 2: Procedure of the VB algorithm.
Initialization
set a,b,c,d with sufficient small value
set ᾱ(0) and β̄(0)
For iteration i
update Σ(i) using ᾱ(i− 1) and β̄(i− 1)
update µ(i) using Σ(i) and β(i− 1)
calculate |hl|2(i) = [Σ(i)]l,l + µl(i)µ

∗
l (i), l = 1, · · · , S

update ã = a+ 1
update b̃l(i) = b+ |hl|2(i) for l = 1, · · · , S
then update ᾱ(i)
update c̃ = c+N
update d̃(i) using Σ(i) and µ(i)
then update β̄(i)

Figure 3: General location of the experiment envi-
ronment.

8km, and 10km from the receiver, respectively. It should be
noted that both transmitter and receiver were drifting while
signals were transmitted, which leads to significant Doppler
spreading. GPS data showed that the average drifting speed
of the vessel was 0.96 m/s and the peak drift speed was 1.7
m/s when the communication distance is 1 km.

The transmitted signal occupied the frequency band be-
tween 10 kHz and 14 kHz and the system sampling rate was
96 kHz. Each training sequence involved 511 symbols while
the data sequence included 2046 symbols. BPSK modulated
pseudo random sequence was used for the training sequence.
For data sequences, 8PSK and QPSK signals were transmit-
ted at ranges of 125m, 250m, 500m, 1km, 2km, and 4km.
QPSK and BPSK signals were transmitted at the ranges of
6km and 8km.

Figure 4: Transmitter and receiver diagram.



Table 3: Average uncoded BER using the LS equal-
ization.

Distance 1km 2km 4km 6km 8km
Trad. OMP 17.3% 29.4% 27.6% 12.7% 29.8%

VB-based OMP 13.1% 28.3% 27.9% 12.3% 29.7%
OMP-based VB 10.9% 25.9% 25.3% 9.4% 26.2%

Table 4: Average uncoded BER using the MMSE
equalization.

Distance 1km 2km 4km 6km 8km
Trad. OMP 7.0% 14.7% 10.9% 2.8% 10.1%

VB-based OMP 6.5% 13.9% 10.7% 2.7% 10%
OMP-based VB 6.0% 12.2% 9.7% 2.6% 9.3%

7. EXPERIMENT RESULTS
In this section, we study the BER performance of the exper-
imental system. The channel estimation algorithm during
the channel training period is developed assuming that the
UA channel has 75 taps. While during the data transmission
stage, the channel tracking method uses the information of
the first 25 taps, as the energy of the remaining 50 chan-
nel taps is sufficiently small to be neglected. Table 3 shows
the uncoded system BER when the LS method is applied for
channel equalization, while Table 4 demonstrates the system
BER results using the MMSE-based channel equalization.

It can be seen from Tables 3 and 4 that both proposed chan-
nel tracking algorithms almost outperform the traditional
OMP algorithm. When the LS-based channel equalization
is used, the OMP-based VB channel tracking algorithm re-
duces the system BER by over 6% for the 1km range, and
around 3% for the 2km–8km ranges. With the MMSE-based
channel equalization, the OMP-based VB algorithm reduces
the BER by about 1%. The VB-based OMP method slightly
increases the system BER by 0.3% at the 4km range with
the LS equalization method, which is the only case where
the new algorithm results in a slightly worse performance
during our experiments. This is because the BER perfor-
mance may also be affected by many other factors, such as
frequency offset and additive noise.

We can also observe from Tables 3 and 4 that for both the LS
and MMSE equalization cases, the OMP-based VB method
yields a larger BER improvement than the VB-based OMP
method. Moreover, both proposed algorithms have a larger
BER improvement when the LS-based equalization is used
compared with the case of the MMSE equalizer. For in-
stance, when the LS equalization method is used, the VB-
based OMP method reduces the system BER by around 4%
at the 1km range, while the OMP-based VB method re-
duces the BER by 6%. However, when the MMSE equalizer
is adopted, the BER benefit of the VB-based OMP method
is only 0.5%, while the advantage of the OMP-based VB
method is only 1% for the 1km range. The reason is that, in
general, detected symbols with higher BER are more likely
to cause paths positions detecting error during paths search-
ing stage of the OMP algorithm. Thus, the proposed algo-
rithms can bring more benefit in the cases where the system
already has a low BER than the cases with high BER.

8. CONCLUSIONS
Two novel joint channel tracking and noise variance esti-
mation algorithms, which combine the advantages of the
VB method and the CS technique, are developed for single-
carrier underwater acoustic communication system in this
paper. It is shown by our experiment that the VB-based
OMP method overcomes the over-fitting of the conventional
OMP method, and the OMP-based VB method can also
avoid the detecting error of channel paths positions, result-
ing in a better BER performance. The results show that the
proposed algorithms can reduce the uncoded system BER
by 1% to 6%.
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