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In this paper, we propose a blind channel estimation and signal retrieving algorithm for two-hop 
multiple-input multiple-output (MIMO) relay systems. This new algorithm integrates two blind source 
separation (BSS) methods to estimate the individual channel state information (CSI) of the source-relay 
and relay-destination links. In particular, a first-order Z-domain precoding technique is developed for the 
blind estimation of the relay-destination channel matrix, where the signals received at the relay node are 
pre-processed by a set of precoders before being transmitted to the destination node. With the estimated 
signals at the relay node, we propose an algorithm based on the constant modulus and signal mutual 
information properties to estimate the source-relay channel matrix. Compared with training-based MIMO 
relay channel estimation approaches, the proposed algorithm has a better bandwidth efficiency as no 
bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate 
the performance of the proposed algorithm.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

In an effort to provide reliable and high rate wireless commu-
nications, multiple-input multiple-output (MIMO) relay communi-
cation systems have attracted great research interests in the last 
decade [1–3]. For the MIMO relay systems in [1–3], the knowledge 
of the instantaneous channel state information (CSI) is necessary 
for the retrieval of the source signals at the destination node. The 
individual instantaneous CSI for both the source-relay and relay-
destination links is also important for the optimization of MIMO 
relay systems through precoding matrices design and power allo-
cation [1–5]. However, the instantaneous CSI is unknown in real 
wireless communication systems, and thus, has to be estimated at 
the destination node.

One of the possible solutions is by transmitting known train-
ing sequences to assist the estimation of the instantaneous CSI 
[6–13]. In [6], a channel estimation algorithm based on the least-
squares (LS) fitting is proposed for MIMO relay systems. The per-
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formance of the algorithm in [6] is further analyzed and im-
proved by using the weighted least-squares (WLS) fitting in [7]. 
A tensor-based channel estimation algorithm is developed in [8]
for a two-way MIMO relay system. Since the algorithm in [8] ex-
ploits the channel reciprocity in a two-way relay system, its ap-
plication in one-way MIMO relay systems is not straightforward. 
A superimposed training based channel estimation algorithm has 
been developed recently for orthogonal frequency-division multi-
plexing (OFDM) modulated relay systems in [9]. A two-stage linear 
minimum mean-squared error (LMMSE)-based channel training al-
gorithm was proposed in [10]. The source-relay link CSI estimation 
in [10] was improved in [11] by taking into account the mismatch 
between the estimated and true CSI of the relay-destination link. 
In [12], a superimposed channel training algorithm for two-way 
MIMO relay systems was proposed, where the channel estimation 
is done in one stage through superimposing a training sequence at 
the relay node. A parallel factor (PARAFAC) analysis based MIMO 
relay channel estimation algorithm was developed in [13].

The main drawback of the training-based channel estimation 
algorithms is the high cost involved in sending the training se-
quences, considering the limited bandwidth available for wireless 
communication. Moreover, in some applications such as asyn-
chronous wireless network and message interception, training-
based algorithms are unrealistic and not suitable for implemen-
tation [14,15]. In these applications, blind channel estimation 
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techniques, which do not require training sequences, become im-
portant. Recursive least squares (RLS) and least mean squares 
(LMS) subspace-based adaptive algorithms were proposed in [16]
for blind channel estimation in code-division multiple access 
(CDMA) systems. A subspace-based blind channel estimation al-
gorithm with reduced time averaging was proposed in [17] for 
MIMO-OFDM systems. However, the algorithms in [16] and [17]
were developed for point-to-point (single-hop) communication 
systems, and the extension to MIMO relay systems is not straight-
forward. A blind channel estimation algorithm based on the de-
terministic maximum likelihood (DML) approach was developed in 
[18] for two-way relay networks with constant-modulus (CM) sig-
naling. In [19], non-redundant linear precoders are applied at the 
source nodes to blindly estimate the channels for two-way relay 
networks operating under OFDM modulation.

In this paper, we develop a blind channel estimation algorithm 
for two-hop MIMO relay communication systems by exploiting the 
link between blind source separation (BSS) and channel estima-
tion. BSS techniques are able to separate a mixture of signals into 
individual source signals, without the knowledge (or little knowl-
edge) of the source signals or the channel between the source and 
receiver. The proposed algorithm integrates two BSS methods to 
estimate the instantaneous CSI for the individual source-relay and 
relay-destination links. We would like to note that channel ma-
trices of both the first-hop and second-hop are estimated at the 
destination node. The advantage of directly estimating both chan-
nel matrices at the destination node is to avoid sending the CSI 
from the relay node to the destination node [12,13]. As the blind 
channel estimation algorithm we propose uses the communication 
data for channel estimation, unlike [10], there is no need for send-
ing training signals from the relay node to the destination node.

In particular, we develop a first-order Z-domain precoding tech-
nique for the blind estimation of the relay-destination channel 
matrix using signals received at the destination node. In this al-
gorithm, the signals received at the relay node are filtered by 
properly designed precoders before being transmitted to the desti-
nation node. By utilizing the Z-domain properties of the precoded 
signals, an estimation criterion is derived to recover the relay-
destination channel matrix and signals received at the relay node. 
Note that in this algorithm, the order of the precoders is fixed 
to one, while a second-order Z-domain precoding algorithm was 
developed in [20] for blind separation of spatially correlated sig-
nals. Obviously, the computational complexity of the first-order 
precoder is smaller than that of the second-order precoder.

With the estimated received signals at the relay node, we then 
develop a blind channel estimation algorithm based on the con-
stant modulus and signal mutual information (MI) properties to 
estimate the source-relay channel matrix. The constant modu-
lus property of many modulated communication signals such as 
phase-shift keying (PSK) is exploited in this blind estimation al-
gorithm. However, using the constant modulus property of signals 
alone does not guarantee the complete separation of the source 
signals and the channel matrix, as the constant modulus algorithm 
might capture the same signal even though there are multiple sig-
nal streams. To overcome this difficulty, we minimize a cost func-
tion which includes the MI of the estimated signals in addition to 
the constant modulus property, to ensure that all estimated signals 
are distinct. This algorithm does not have the problem of estima-
tion error propagation as in [21] and [22]. A similar method was 
adopted in [15] for the extraction of unknown source signals, es-
sentially in single-hop (point-to-point) MIMO wireless networks. 
However, in this paper, we apply this algorithm for channel esti-
mation in dual-hop MIMO relay communication systems.

Comparing the proposed blind channel estimation algorithm 
with the training-based channel estimation techniques, the former 
one has a better bandwidth efficiency as all the bandwidth is used 
Fig. 1. Block diagram of a general two-hop MIMO relay communication system.

for the transmission of the communication signals. Simulation re-
sults show that the proposed blind channel estimation algorithm 
yields a better system bit-error-rate (BER) than that of the training-
based algorithm at low signal-to-noise ratio (SNR) due to a better 
utilization of the power available at the source and relay nodes 
for channel estimation. We would like to note that the proposed 
algorithm can be applied in dual-hop MIMO relay systems with 
multiple distributed source nodes and multiple distributed relay 
nodes.

The rest of this paper is organized as follows. The system 
model of a three-node two-hop MIMO relay system is presented 
in Section 2. In Section 3, the first-order Z-domain precoding tech-
nique is developed to estimate the relay-destination channel ma-
trix, while the signal MI modified constant modulus algorithm is 
proposed in Section 4 to estimate the source-relay channel matrix. 
Section 5 shows numerical simulations to demonstrate the perfor-
mance of the proposed algorithm. Finally, conclusions are drawn in 
Section 6.

2. System model

Let us consider a three-node two-hop MIMO communication 
system where the source node transmits information to the des-
tination node through a relay node as shown in Fig. 1. The source, 
relay, and destination nodes are equipped with nS , nR , and nD

antennas, respectively. In this paper, we assume that the direct 
link between the source node and the destination node is suffi-
ciently weak and thus can be ignored. This scenario occurs when 
the direct link is blocked by obstacles, such as tall buildings or 
mountains.

The communication process is completed in two time slots. In 
the first time slot, the source signal vector s(n) = [s1(n), s2(n), · · · ,

snS (n)]T is transmitted from the source node, where (·)T denotes 
the vector (matrix) transpose. The signal vector received at the re-
lay node can be expressed as

yr(n) = H1s(n) + v(n) (1)

where yr(n) is the nR × 1 received signal vector, H1 is the nR ×
nS MIMO channel matrix between the source node and the relay 
node, and v(n) is the nR × 1 noise vector at the relay node.

In the second time slot, each received signal stream in yr(n) is 
preprocessed separately by a first-order precoder pi(z) as

pi(z) = 1 − ri z
−1, i = 1, · · · ,nR (2)

where ri is the zero of the precoder pi(z). Note that all zeros are 
distinct and satisfy 0 < |ri| < 1, for i = 1, · · · , nR , and are known 
at the destination node. Here | · | denotes the modulus of a scalar 
and the determinant of a matrix. From (2), the ith precoded signal 
at the relay node can be written as

xi(n) = pi(z)yr,i(n)

= yr,i(n) − ri yr,i(n − 1), i = 1, · · · ,nR (3)

where yr,i(n) is the ith element of yr(n). It is worth noting that 
the precoding operation (3) can be readily implemented at phys-
ically distributed relay nodes, as there is no need for cooperation 
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among different signal streams. The first-order precoding opera-
tion in (3) serves for the blind estimation of the relay-destination 
channel matrix, where the estimation criterion will be derived by 
exploiting the Z-domain properties of the precoders as shown in 
Section 3.

The precoded signal vector x(n) = [x1(n), x2(n), · · · , xnR (n)]T is 
transmitted to the destination node, and the received signal vector 
at the destination node can be expressed as

y(n) = H2x(n) + w(n) (4)

where H2 is the nD × nR channel matrix between the relay node 
and the destination node and w(n) = [w1(n), w2(n), · · · , wnD (n)]T

is the noise vector at the destination node. We assume that:

1) All noises are independent and identically distributed (i.i.d.) 
additive white Gaussian noise (AWGN).

2) The source signals in s(n) are temporally white, have constant 
modulus, and linearly independent with each other.

3) The noises are independent of the source signals.
4) The number of antennas at the receiving sides is equal or 

greater than that of the transmitting sides, i.e., nD ≥ nR ≥ nS .

We would like to mention that the algorithm developed in this 
paper can be easily extended to MIMO relay systems with mul-
tiple source and relay nodes. With M source nodes and N relay 
nodes, each equipped with nS i and nR j antennas, respectively, 
i = 1, · · · , M , j = 1, · · · , N , the received signal at the relay node 
can be rewritten as

yr, j(n) =
M∑

i=1

H j,isi(n) + v j(n), j = 1, · · · , N (5)

where yr, j(n) is the nR j ×1 received signal vector, H j,i is the nR j ×
nSi MIMO channel matrix between the ith source node and the jth 
relay node, and v j(n) is the nR j × 1 noise vector at the jth relay 
node. We can rewrite (5) as

yr(n) = H1s(n) + v(n) (6)

where yr(n) �
[

yT
r,1(n),yT

r,2(n), · · · ,yT
r,N(n)

]T
, s(n) �

[
sT

1 (n), sT
2 (n),

· · · , sT
M(n)

]T
, v(n) �

[
vT

1 (n),vT
2 (n), · · · ,vT

N (n)
]T

, and

H1 �

⎡
⎢⎣

H1,1 · · · H1,M
...

. . .
...

HN,1 · · · HN,M

⎤
⎥⎦ .

Equation (6) is equivalent to (1), and the same analysis can be ap-
plied to MIMO relay systems with multiple source and relay nodes. 
Note that the first-order precoder pi(z) is redefined as

pi(z) = 1 − ri z
−1, i = 1, · · · ,nR

where nR = ∑N
j=1 nR j for the later case. All precoders are distinct 

and are known at the destination node. We would like to note that 
a narrow-band frequency-flat channel model is used in (1) and (4). 
For broadband orthogonal frequency-division multiplexing (OFDM) 
based communication systems such as 4G LTE, the proposed algo-
rithms in this paper can be applied to each subcarrier of the OFDM 
system, where the channel fading is frequency-flat.

The model in (4) has a similar structure to the classical BSS 
problem. In BSS techniques, signal separation is usually achieved 
by exploiting the statistical properties of the source signals, ei-
ther based on the higher-order statistics (HOS) or second-order 
statistics (SOS). Independent component analysis (ICA) is one ex-
ample of the HOS-based BSS methods, and is generally applied for 
non-Gaussian source signals. One of the drawbacks of the HOS-
based methods is the large number of data samples required for 
a satisfactory result. On the contrary, the number of data samples 
required by the SOS-based BSS methods is generally much smaller 
than the HOS-based BSS techniques. However, the SOS-based BSS 
methods usually require the source signals to be mutually uncor-
related. This limits the application of the SOS-based BSS methods 
in MIMO relay communication systems as the signals received at 
the relay node (yr in (1)) are mutually correlated.

The algorithms in [18] and [19] only estimate the cascaded 
source-relay-destination channel in a single-input single-output 
(SISO) relay system, and does not provide the estimation of the 
individual second-hop channel in MIMO relay systems. The exten-
sion of these algorithms to MIMO relay case is not straightforward. 
Note that the information on the individual second-hop channel is 
important for the optimization of the receiver design at the des-
tination node. For example, the MMSE receiver [3,4] requires the 
second-hop channel information.

A second-order precoding-based BSS algorithm has been devel-
oped in [20] to separate mutually correlated sources. However, this 
algorithm might not be applicable to MIMO relay systems. This is 
because the algorithm in [20] does not allow any source signal to 
be linear combination of the other source signals (see [20], the 
paragraph after Assumptions A1)–A4)), while in a MIMO relay sys-
tem, the signal component at the relay node (i.e. H1s(n)) is a linear 
combination of the source signals s(n). Thus, when the noise at 
the relay node is sufficiently small, the signal at the relay node 
(1) does not satisfy the requirement of the second-order precod-
ing method. This motivates us to develop the first-order precoding 
technique for blind channel estimation in MIMO relay systems as 
presented in the next section.

3. First-order Z-domain precoding based channel estimation

In this section, we develop a first-order Z-domain precoding al-
gorithm for the blind estimation of the relay-destination channel 
matrix H2. The main idea of this approach is to preprocess the re-
ceived signals at the relay node with the first-order Z-domain pre-
coders before retransmitting them to the destination node. Then, 
by utilizing the Z-domain properties of the precoders, this blind 
channel estimation algorithm aims to find a separation matrix B1
to separate x(n) and H2 in (4) with only the observable output at 
the destination node y(n). Compared with [20], the first-order pre-
coding technique requires less transmission time at the relay node 
and simplifies the implementation of the precoders at the relay 
node in practical MIMO relay systems.

Let B1 = [b1,1, b1,2, · · · , b1,nR ] be an nD ×nR matrix, the desired 
outcome of the blind channel estimation algorithm is given by

x̂(n) = BH
1 y(n) = �x(n) + BH

1 w(n) (7)

where x̂(n) is an estimation of the precoded signal vector, (·)H de-
notes complex conjugate transpose, and � � BH

1 H2 is a diagonal 
matrix of scaling ambiguity inherited in the blind estimation al-
gorithm. Note that the permutation ambiguity usually associated 
with BSS methods does not exist in (7) as proved in Theorem 1
later on. Intuitively, this is due to the filtering operation (3) at the 
relay node before retransmitting the signals, as each signal stream 
in yr(n) is preprocessed by a distinct precoder. The scaling ambigu-
ity can be resolved and will be discussed later. Once the separation 
matrix B1 is obtained, H2 and yr(n) can be efficiently estimated as 
shown later on. In the following subsection, we will first propose 
an estimation criterion by exploiting the Z-domain properties of 
the precoders and find the separation matrix B1 based on this cri-
terion.

3.1. Estimation criterion

Let us define the autocorrelation matrix of yr(n) at time lag k
as
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Cyr yr (k) = E
[
yr(n)yr(n − k)H ]

= H1Css(k)HH
1 + Cvv(k) (8)

where Css(k) = E
[
s(n)s(n − k)H

]
and Cvv(k) = E

[
v(n)v(n − k)H

]
are 

the autocorrelation matrices of s(n) and v(n), respectively, and E[·]
stands for the statistical expectation. Note that Cvv(k) = 0 for k �= 0
as the noises are temporally independent. Based on (8), the power 
spectral matrix of yr(n) is defined as

Qyr yr (z) =
∞∑

k=−∞
Cyr yr (k)z−k. (9)

When the noise covariance matrix at the relay node Cvv(0) is of 
full rank, it is easy to see that matrix Qyr yr (z) is of full rank at z =
ri , i = 1, · · · , nR . For the case where the noise at the relay node is 
arbitrarily small, i.e., Cvv(0) is a rank-deficient matrix, we assume 
that the number of antennas at the source and relay nodes are 
the same, i.e., nS = nR . With this assumption, the matrices H1 and 
HH

1 are of full rank. Since any source signal s(n) is not a linear 
combination of the other source signals, the following proposition 
is established.

Proposition 1. The power spectral matrix Qyr yr (z) is of full rank at z = ri
for i = 1, · · · , nR .

Let us denote the autocorrelation matrices of y(n) and w(n) as 
Cyy(k) and Cww(k), respectively. It follows from (4) that

Cyy(k) = E
[
y(n)y(n − k)H]

= H2Cxx(k)HH
2 + Cww(k) (10)

where Cxx(k) = E
[
x(n)x(n − k)H

]
is the autocorrelation matrix of 

x(n) and Cww(k) = E
[
w(n)w(n − k)H

] = 0 for k �= 0 as the noises 
are temporally independent. Similarly, the power spectral matrix 
of y(n) can be derived based on (3), (9), and (10) as

Qyy(z) =
∞∑

k=−∞
Cyy(k)z−k

= H2Qxx(z)HH
2 + Qww(z)

= H2P(z)Qyr yr (z)P(z−1)H HH
2 + Qww(z) (11)

where Qxx(z) = ∑∞
k=−∞ Cxx(k)z−k and Qww(z) = ∑∞

k=−∞ Cww(k)×
z−k are the power spectral matrices of x(n) and w(n), respectively, 
and P(z) = diag(p1(z), p2(z), · · · , pnR (z)) is a diagonal matrix.

Let us introduce

Ti(z) = Pi(z)Qyr yr (z)P(z−1)H , i = 1, · · · ,nR

where Pi(z) is the matrix P(z) with the ith diagonal entry replaced 
by zero, i.e.,

Pi(z) = diag(p1(z), · · · , pi−1(z),0, pi+1(z), · · · , pnR (z)). (12)

Lemma 1. The rank of Ti(ri) is nR − 1, for i = 1, · · · , nR , and all rows of 
Ti(ri) except for the ith row are linearly independent.

Proof. It can be shown that for any ri ,

rank(Pi(ri)) = nR − 1

while the matrix P(r−1
i )H is of full rank, since r−1

i is not a zero of 
any precoder. It can be shown using (12) that all elements in the 
ith row of Ti(ri) are zero. Using these results and Proposition 1, we 
obtain the rank of Ti(ri) as nR − 1. We can further deduce that all 
rows of Ti(ri) except for the ith row are linearly independent. �
Let H2,i be equal to H2 with the ith column replaced by a zero 
vector, i.e.,

H2,i = [h2,1, · · · ,h2,i−1,0,h2,i+1, · · · ,h2,nR ]. (13)

We can rewrite (11) as

Qyy(ri) = H2P(ri)Qyr yr (ri)P(r−1
i )H HH

2 + Qww(ri)

= H2,iPi(ri)Qyr yr (ri)P(r−1
i )H HH

2 + Cww(0)

= H2,iTi(ri)HH
2 + Cww(0). (14)

Assuming that Cww(0) can be estimated, which will be shown 
later, and removed from (14), we have

Q̄yy(ri) = H2,iTi(ri)HH
2 . (15)

The following theorem establishes the estimation criterion for our 
blind channel estimation algorithm.

Theorem 1. For i = 1, · · · , nR , b1,i is an nD × 1 separation vector en-
suring

bH
1,iH2 = [0, · · · ,0, ci,0, · · · ,0], ci �= 0 (16)

if and only if{
bH

1,iQ̄yy(ri) = 0 (a)

bH
1,iCyy(1)b1,i �= 0 (b).

(17)

Proof. See Appendix A. �
Theorem 1 holds when the autocorrelation matrix of y(n) has a 

time lag of τ = 1, i.e., Cyy(1). Interestingly, it is shown in the fol-
lowing corollary that Theorem 1 is not valid for Cyy(τ ) with other 
time lag values.

Corollary 1. Theorem 1 does not hold for Cyy(τ ), τ �= 1.

Proof. See Appendix B. �
It can be seen that the proposed first-order precoding algo-

rithm has different requirements on the selection of parameters 
compared with the second-order precoding algorithm in [20]. For 
example, τ can be 1 or 2 in the second-order precoding method 
but can only be 1 in the proposed first-order precoding algorithm. 
The implementation of the first-order Z-domain precoding based 
blind channel estimation algorithm is shown in the following sub-
section.

3.2. Algorithm implementation

The following blind channel estimation procedures are applied 
to obtain the relay-destination channel matrix H2.

1) Compute the estimated autocorrelation matrix of y(n) as

Ĉyy(k) ≈ 1

L

L−1∑
n=0

y(n)y(n − k)H (18)

where L ≥ nD is the number of samples of the received signal.
2) Compute the estimated power spectral matrix of y(n) as

Q̂yy(ri) ≈
∑

k

Cyy(k)r−k
i , i = 1, · · · ,nR (19)

where k is a finite integer.
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3) Estimate the noise covariance matrix Cww(0). It follows from 
(10) that

Cyy(0) = H2Cxx(0)HH
2 + Cww(0). (20)

Since the noises are assumed to be i.i.d. white Gaussian, we 
have

Cww(0) = σ 2
w InD (21)

where σ 2
w is the noise variance and In is an n × n identity 

matrix. Let us introduce the eigenvalue decomposition (EVD) 
of

Cyy(0) = UY �Y UH
Y (22)

where UY is the unitary eigenvector matrix and �Y is the di-
agonal eigenvalue matrix with descending diagonal elements. 
Obviously, from (20) there is

�Y = �X + σ 2
w InD (23)

where �X is the eigenvalue matrix of H2Cxx(0)HH
2 with de-

scending diagonal elements.
If nD > nR , i.e., H2 is a tall matrix, from (23), we have

λy,i = λx,i + σ 2
w , i = 1, · · · ,nR

λy,i = σ 2
w , i = nR + 1, · · · ,nD (24)

where λy,i , i = 1, · · · , nD , and λx, j , j = 1, · · · , nR , are the diag-
onal elements of �Y and �X , respectively. From (24), we can 
estimate σ 2

w as

σ̂ 2
w = 1

nD − nR

nD∑
i=nR+1

λ̂y,i (25)

where λ̂y,i is estimated λy,i obtained from the EVD of Ĉyy(0). 
The estimated noise covariance matrix is given by

Ĉww(0) = σ̂ 2
w InD . (26)

If nD = nR , i.e., H2 is a square matrix, the noise covariance 
matrix can be estimated prior to the transmission of data, i.e., 
when y(n) = w(n), n = 1, · · · , J , we have

Ĉww(0) ≈ 1

J

J−1∑
n=0

y(n)y(n)H .

4) Estimate Q̄yy(ri) as

Q̄yy(ri) � Q̂yy(ri) − Ĉww(0), i = 1, · · · ,nR . (27)

5) Obtain separation matrix B1 as follows. From Lemma 1, it can 
be seen that Q̄yy(ri) has a rank of nR − 1. Since Q̄yy(ri) is an 
nD × nD matrix, there are nD − nR + 1 zero singular values. 
As we assume nD ≥ nR , there exists at least one zero singular 
value. Let Vi be an nD × (nD − nR + 1) matrix whose columns 
consist of the nD − nR + 1 left singular vectors corresponding 
to the zero singular values of Q̄yy(ri), and column vector ui be 
the eigenvector corresponding to any nonzero eigenvalue λ of 
VH

i Ĉyy(1)Vi . It can be proven that

uH
i VH

i Q̄yy(ri) = 0

and

uH
i VH

i Ĉyy(1)Viui = λuH
i ui �= 0.

Then, the separation vector b1,i can be selected as bH
1,i =

uH
i VH

i . The operations in this step are carried out for i =
1, · · · , nR .
6) The precoded signals can be estimated by

x̂(n) = BH
1 y(n), n = 1, · · · , L. (28)

7) The relay-destination channel matrix is estimated as

Ĥ2 = YX̂† (29)

where Y = [y(1), y(2), · · · , y(L)] and X̂ = [x̂(1), ̂x(2), · · · , ̂x(L)]. 
Note that since L ≥ nR , we have the right inverse of X̂ as

X̂† = X̂T (X̂X̂T )−1 (30)

where (·)−1 stands for matrix inversion.

4. Channel estimation based on signal MI modified constant 
modulus algorithm

In this section, we develop a signal MI modified constant mod-
ulus algorithm to estimate the first-hop channel matrix H1. Based 
on the estimated precoded signals x̂i(n), i = 1, · · · , nR , the signals 
received at the relay node can be estimated by

ŷr,i(n) = x̂i(n) + ri ŷr,i(n − 1), i = 1, · · · ,nR . (31)

Let us introduce an nR × nS separation matrix B2 and let

ŝ(n) = BH
2 ŷr(n) = Cs(n) + BH

2 v(n) (32)

where ŝ(n) is the estimated source signal vector and C � BH
2 H1. 

This blind channel estimation algorithm aims to obtain the sepa-
ration matrix B2 in order to recover the first-hop channel H1, only 
from the estimated relay channel output signals ŷr(n). Obviously, 
the estimation of H1 is affected by the accuracy of the estima-
tion of yr(n). As the source signals are unknown at the destination, 
there are inherent scaling and permutation ambiguities in this al-
gorithm, i.e.,

C = BH
2 H1 = P�

where P is a permutation matrix and � is a diagonal matrix.

4.1. Development of the algorithm

The general cost function for the constant modulus algorithm is 
given by

nS∑
i=1

E
[
(|ŝi(n)|2 − γ )2]

where ŝi(n) is the ith element of ŝ(n) and γ is a constant. As 
mentioned earlier, the constant modulus algorithm is capable of 
retrieving one source signal at a time. However, it does not guar-
antee the extraction of all source signals as the constant modulus 
algorithm might extract the same signal.

Similar to [15], we propose to exploit the MI property of the 
estimated signals, along with the constant modulus algorithm, to 
ensure that the channel matrix and source signals are completely 
separated. In particular, the following cost function with the addi-
tion of the MI term is minimized

J (B2) =
nS∑

i=1

E
[
(|ŝi(n)|2 − γ )2] + β

[
nS∑

i=1

log(rii) − log|Rŝŝ|
]

(33)

where β is a positive real number that balances the constant mod-
ulus term and the MI term, rii is the ith diagonal element of Rŝŝ , 
and Rŝŝ � E

[
ŝ(n)ŝ(n)H

]
is the covariance matrix of ŝ(n). From [15], 

we have the following proposition.

Proposition 2. The MI term is zero when Rŝŝ is a diagonal matrix, i.e., 
when the elements of ŝ(n) are uncorrelated.
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Proposition 2 is important to ensure that all source signals are 
separated from the channel matrix H1 at the destination node. The 
cost function (33) can be rewritten as

J (B2) = E

[
nS∑

i=1

(
eT

i BH
2 ŷr(n)ŷr(n)H B2ei − γ

)2

]

+ β

[
nS∑

i=1

log
(
eT

i BH
2 Rŷr ŷr

B2ei
) − log

∣∣BH
2 Rŷr ŷr

B2
∣∣]

where Rŷr ŷr
� E

[
ŷr(n)ŷr(n)H

]
is the covariance matrix of ŷr(n) and 

ei is an nS × 1 column vector whose elements are zero except for 
the ith element which is one. The gradient of J (B2) is given by

∇ J (B2) = ∂ J (B2)

∂B∗
2

= 2
nS∑

i=1

E
[(|ŝi(n)|2 − γ

)
ŷr(n)eT

i

(
ŷr(n)H B2ei

)]

+ βRŷr ŷr
B2

[
(diag(Rŝŝ))

−1 − R−1
ŝŝ

]
. (34)

4.2. Algorithm implementation

The procedure of applying the signal MI modified constant 
modulus algorithm to estimate the source-relay channel matrix H1
is listed below.

1) Initialize B(0)
2 and R(0)

ŷr ŷr
; Set i = 1.

2) Update R(i)
ŷr ŷr

through

R(i)
ŷr ŷr

= (1 − κ)R(i−1)

ŷr ŷr
+ κ ŷr(i)ŷr(i)H (35)

where 0 < κ < 1 is a small positive real number.

3) Estimate ŝ(i) =
(

B(i−1)
2

)H
ŷr(i).

4) Calculate R(i)
ŝŝ =

(
B(i−1)

2

)H
R(i)

ŷr ŷr
B(i−1)

2 .

5) From Steps 1–4, an estimation of (34) is obtained by removing 
the expectation operator E in the equation. Let us denote this 
estimation as ∇̂ J (B2).

6) Update the separation matrix B2 as

B(i)
2 = B(i−1)

2 − μ∇̂ J (B2)|B2=B(i−1)
2

. (36)

7) Repeat Steps 2–6 for i = 2, 3, · · · , L to obtain B2 = B(L)
2 .

8) The source signals are estimated as

ŝ(n) = BH
2 ŷr(n), n = 1, · · · , L (37)

9) Estimate the source-relay channel matrix as

Ĥ1 = Ŷr Ŝ† (38)

where Ŷr = [ŷr(1), ̂yr(2), · · · , ̂yr(L)] and Ŝ = [ŝ(1), ̂s(2), · · · ,

ŝ(L)]. Note that since L ≥ nS , we have the right inverse of Ŝ
as

Ŝ† = ŜT (ŜŜT )−1. (39)

We would like to note that the algorithm proposed in [15] was 
developed for blind signal separation in one-hop systems, whereas 
in this paper we apply this algorithm for channel estimation in 
dual-hop MIMO relay communication systems.
Fig. 2. Example 1: BER versus number of samples for various nS and nR with 
SNRr−d = SNRs−r = 20 dB and nD = 4.

5. Numerical examples

In this section, we study the performance of the proposed 
blind MIMO relay channel estimation algorithm through numerical 
simulations. We consider a three-node two-hop MIMO relay sys-
tem with nS , nR , and nD antennas equipped at the source, relay, 
and destination nodes, respectively. For the proposed first-order 
Z-domain precoding based channel estimation algorithm, the ze-
ros of the precoders in (2) are chosen as

ri = ηie
jπ(2i−1)

2nR , i = 1, · · · ,nR (40)

where j = √−1 and 0 < ηi < 1, i = 1, · · · , nR . This model ensures 
that all zeros are distinct and satisfy 0 < |ri| < 1, i = 1, · · · , nR , 
and the angles of zeros are equally spaced on the Z-plane. For the 
signal MI modified constant modulus based channel estimation al-
gorithm, unless explicitly mentioned, the matrices B(n)

2 and R(n)

ŷr ŷr

are initialized as B(0)
2 = [

InS ,0nS ×(nR−nS )

]H
and R(0)

ŷr ŷr
= InR , respec-

tively, where 0m×n is an m ×n zero matrix. We choose μ = 0.0005, 
κ = 0.05, β = 1, and γ = 1 based on the following reasons. The 
step size of the gradient descent algorithm μ is chosen to be small 
enough to ensure the convergence of the algorithm, while γ is 
chosen to be 1 as the absolute value of the source signals has 
a constant unit value. We apply the quadrature phase-shift key-
ing (QPSK) modulation scheme in all our simulations. We assume 
that the channel matrices H1 and H2 are complex Gaussian dis-
tributed with zero mean and unit variance, and channels do not 
change within L symbols of transmission. All simulation results 
are averaged over 1000 random channel realizations. The SNR of 
the source-relay and relay-destination link is denoted as SNRs−r
and SNRr−d, respectively.

In the first example, we evaluate the performance of the pro-
posed blind channel estimation algorithm at various number of 
samples L of the received signal. Fig. 2 shows the BER of the pro-
posed algorithm versus L for various nS and nR with nD = 4 and 
SNRs−r and SNRr−d fixed at 20 dB. It can be seen from Fig. 2 that 
the BER performance of the proposed algorithm improves when 
L increases. This is because in the proposed first-order Z-domain 
precoding based channel estimation algorithm, the accuracy of es-
timating the autocorrelation matrix Cyy(k) is affected by L, i.e., 
the estimated Cyy(k) approaches its theoretical value at a large L. 
Moreover, the performance of the signal MI modified constant 
modulus algorithm improves when a larger L is used as more 
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Fig. 3. Example 2: MIRL versus SNRr−d for nS = nR = 3, nD = 4, and SNRs−r = 20 dB.
iterations are involved in finding the separation matrix. In the fol-
lowing simulation examples, the number of samples is chosen as 
L = 5000 to achieve a good tradeoff between the performance and 
the computational complexity. For indoor wireless relay channels, 
channel fading is often relatively slow whenever the mobility of 
the nodes is relatively low, and for static nodes, the CSI can be 
almost constant [23,24]. In this case, the required number of sam-
ples can be collected within the channel coherent time. Therefore, 
our algorithm can be applied to wireless systems with static nodes 
such as indoor machine-to-machine (M2M) communication.

In the second example, we study the performance of the pro-
posed blind channel estimation algorithm in finding the separation 
matrix. For each channel realization, the mean interference rejec-
tion level (MIRL) for the first-order Z-domain precoding algorithm 
is calculated as

MIRLH2 = 10log10

(
1

nR(nR − 1)

nR∑
i=1

nR∑
j=1, j �=i

|(BH
1 H2)i j|2

|(BH
1 H2)ii |2

)
(41)

while the MIRL of the signal MI modified constant modulus algo-
rithm is given by

MIRLH1 = 10log10

(
1

nS(nS − 1)

nS∑
i=1

nS∑
j=1

|(C)i j|2 − max
j

(|(C)i j |2)

max
j

(|(C)i j |2)

)
.

(42)

Note that a smaller value of MIRL indicates a better performance 
of the blind channel estimation algorithm.

Fig. 3 shows the MIRL for the proposed blind channel esti-
mation algorithm versus SNRr−d with nS = nR = 3, nD = 4, and 
SNRs−r = 20 dB. It can be seen from Fig. 3 that the MIRL per-
formance of the proposed blind channel estimation algorithm im-
proves with the increase of SNRr−d. Interestingly, the first-order 
Z-domain precoding technique performs better than the signal MI 
modified constant modulus algorithm, as the latter algorithm is af-
fected by the accuracy of the estimation of yr(n). Note that for the 
first-order Z-domain precoding technique, theoretically the deriva-
tion of the separation matrix is not affected by the noise at the 
destination node, thus only a small improvement is observed when 
SNRr−d increases. A plot of the MIRL of the proposed blind channel 
Fig. 4. Example 2: MIRL versus SNRr−d for various nS and nR with SNRs−r = 20 dB
and nD = 4.

estimation algorithm versus SNRr−d for SNRs−r = 20 dB, nD = 4, 
and various nS and nR is shown in Fig. 4. It can be seen from 
Fig. 4 that when the number of antennas at the source node and 
relay node increases, the MIRL also increases.

In the third example, we demonstrate the performance of 
the proposed blind channel estimation algorithm in terms of the 
normalized mean-squared error (NMSE). For the relay-destination 
channel, the NMSE is calculated as

NMSEH2 = ‖H2 − Ĥ2‖2
F

nRnD
(43)

where ‖ · ‖F denotes the matrix Frobenius norm. Similarly, the 
NMSE for the estimation of the source-relay channel matrix is 
given by

NMSEH1 = ‖H1 − Ĥ1‖2
F

nSnR
. (44)

Similar to [20], the scaling ambiguity in estimating H2 is removed 
by minimizing the MSE between x(n) and x̂(n). The scaling and 
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Fig. 5. Example 3: normalized MSE versus SNRr−d for various nS and nR with 
SNRs−r = 20 dB and nD = 4.

permutation ambiguity in the estimation of H1 is removed by min-
imizing the MSE between s(n) and ŝ(n).

Fig. 5 shows the NMSE of the proposed blind estimation algo-
rithm versus SNRr−d for various nS and nR with SNRs−r fixed at 
20 dB and nD = 4. It can be seen from Fig. 5 that the NMSE of 
estimating H1 and H2 decreases when the number of antennas at 
the source and relay nodes decreases. Note that only small im-
provement is observed in the estimation of H2 at high SNRr−d due 
to the error floor introduced in the estimation of the scaling am-
biguity. We also investigate the performance of signal MI modified 
constant modulus channel estimation scheme when this algorithm 
is initialized with random matrices. It can be seen from Fig. 5 that 
the NMSE of the first-hop channel estimation with random matri-
ces initialization is very similar to the NMSE when the scheme is 
initialized with identity matrix.

In the fourth example, we compare the proposed blind MIMO 
relay channel estimation algorithm with the training-based MIMO 
relay channel estimation algorithm developed in [10], where the 
training sequences are optimized with proper adjustment of the 
power available at the source and relay nodes for a fair compari-
son.1 The channel correlation matrices used in the training-based 
algorithm [10] are set to identity matrices to have the same statis-
tical distribution as the channel model used in the proposed blind 
channel estimation algorithm. Fig. 6 shows the NMSE performance 
of estimating H2 and H1 versus SNRr−d with SNRs−r = 20 dB, 
nS = nR = 2, and nD = 4. The NMSE performance of two algorithms 
versus SNRr−d with SNRs−r = 20 dB, nS = nR = 3, and nD = 4 is 
demonstrated in Fig. 7. It can be seen from Figs. 6 and 7 that at 
low SNR, the performance of the proposed algorithm is comparable 
to that of the training-based algorithm in estimating H1. Note that 
the proposed algorithm performs better than the training-based al-
gorithm in the estimation of H2 at low SNR. This is because in the 
training-based approach, a large portion of the transmission power 
is allocated to broadcast information, while only a small part of 
the transmission power is used for channel estimation. In con-
trast, our proposed algorithm utilizes the transmitted information 
to estimate the channels, thus, all the power available for trans-
mission is used for channel estimation. However, at high SNR, the 
training-based algorithm outperforms the proposed algorithm at 

1 From (3), the transmission power consumed by the relay node for the proposed 
blind channel estimation algorithm is higher than the one in [10] by a factor of 
(1 + |ri |2), due to the precoder applied at the relay node.
Fig. 6. Example 4: normalized MSE versus SNRr−d for nS = nR = 2 and nD = 4 with 
SNRs−r = 20 dB.

Fig. 7. Example 4: normalized MSE versus SNRr−d for nS = nR = 3 and nD = 4 with 
SNRs−r = 20 dB.

the expense of bandwidth efficiency. The MSE error floors of the 
proposed algorithm at high SNRr−d are mainly due to the error 
introduced in the estimation of the ambiguities. For a fair compar-
ison, both the proposed blind channel estimation algorithm and 
the training-based algorithm are adjusted to have the same trans-
mission power. This limits the performance of the training-based 
algorithm as the power available for transmission is essentially 
fixed. Thus, error floors appear in the simulation results of the 
training-based algorithm.

Fig. 8 illustrates the BER performance of two algorithms versus 
SNRr−d when nS = nR = 2, nD = 4, and SNRs−r is fixed at 20 dB. 
As a benchmark, we also show the BER performance of the MIMO 
relay system where the channel matrices are perfectly known. It 
can be seen from Fig. 8 that the BER performance of the proposed 
blind channel estimation algorithm is close to the performance of 
the training-based algorithm. Due to the error floors, further incre-
ment of SNR would not result in a better BER performance.

Finally, we compare the computational complexity of the pro-
posed blind channel estimation algorithm and the training-based 
channel estimation technique [10]. The complexity of the first-
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Fig. 8. Example 4: BER versus SNRr−d for nS = nR = 2 and nD = 4 with SNRs−r =
20 dB.

order Z-domain precoding based channel estimation algorithm is 
governed by the EVD and the singular value decomposition (SVD) 
operations required in deriving the separation matrix, while the 
complexity of the signal MI modified constant modulus algorithm 
is governed by the matrix inversion operation in the gradient 
descent method. Thus, the computational complexity of the pro-
posed blind channel estimation algorithm can be estimated as 
O(n3

D + Ln3
S), where the first term represents the complexity of 

the first-order Z-domain precoding based channel estimation al-
gorithm, and the second term is the complexity of the signal MI 
modified constant modulus algorithm.

The complexity of the training-based channel estimation tech-
nique [10] can be estimated as O(dνdcn2

R + dadμ1 dλF nS + dadμ2 ×
dμ3 dλS nD), where dν, dμ1 , dμ2 , and dμ3 stand for the number of 
iterations required to obtain the optimal Lagrangian multipliers 
associated with the optimization problem in [10], dc and dλS rep-
resent the number of bisection operations required to obtain the 
optimal training sequences, dλF is the number of bisection oper-
ations required to derive the optimal relay amplification matrix, 
and da stands for the number of iterations required to find the lo-
cal optimal solution to the problem.

The implementation of channel coding and decoding will bene-
fit both the proposed algorithm and the training-based algorithm. 
However, channel coding and decoding are not included in this 
paper as the focus of this paper is on the channel estimation of 
MIMO relay networks.

6. Conclusions

We have developed a new blind channel estimation algorithm 
for two-hop MIMO relay systems. The proposed algorithm is able 
to estimate the individual source-relay and relay-destination CSI at 
the destination node, which is necessary for retrieving the source 
signals at the destination node. In particular, a novel first-order 
Z-domain precoding technique has been developed for the blind 
estimation of the relay-destination channel matrix. The proposed 
algorithm has a similar BER performance to the training-based 
channel estimation algorithm, and better bandwidth efficiency as 
all the bandwidth is used for sending communication signals. The 
proposed algorithm can be extended to other MIMO relay com-
munication systems such as multiuser MIMO relay systems with 
multiple relay nodes.
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Appendix A. Proof of Theorem 1

We prove Theorem 1 through verifying the necessity and suf-
ficiency conditions. Assuming that (16) is satisfied, we prove the 
necessity of (17)(a) as follow

bH
1,iQ̄yy(ri) = bH

1,iH2,iTi(ri)HH
2 = 0. (45)

Since we assumed the source signals to be temporally white, from 
(3), (10), and (16), we prove the necessity condition for (17)(b) as

bH
1,iCyy(1)b1,i = bH

1,iH2Cxx(1)HH
2 b1,i

= cic
∗
i E

[
xi(n)xi(n − 1)∗

]
= |ci |2E

[(
yr,i(n) − ri yr,i(n − 1)

)(
yr,i(n − 1)

− ri yr,i(n − 2)
)∗]

= |ci |2E
[ − ri yr,i(n − 1)yr,i(n − 1)∗

]
= −|ci |2riσ

2
i

�= 0

where σ 2
i � E[yr,i(n − 1)yr,i(n − 1)∗].

Now we prove the sufficiency of (17)(a) and (17)(b). Since 
bH

1,iQ̄yy(ri) = 0, from (15) we have

bH
1,iH2,iTi(ri)HH

2 = 0. (46)

The matrix HH
2 is of full row rank, and thus implying that

bH
1,iH2,iTi(ri) = 0. (47)

From Lemma 1, all the rows of the matrix Ti(ri) excluding the ith 
row are linearly independent, and therefore we obtain that

bH
1,ih2, j = 0, j = 1, · · · ,nR , j �= i. (48)

Subsequently, from (13) and (48), we have

bH
1,iH2 =

[
0, · · · ,0,bH

1,ih2,i,0, · · · ,0
]
. (49)

Next, we consider bH
1,iCyy(1)b1,i �= 0. From (10), we have

bH
1,iH2Cxx(1)HH

2 b1,i �= 0 (50)

which implies that bH
1,iH2 �= 0, and from (49), we can infer that

bH
1,iH2 = [0, · · · ,0, ci,0, · · · ,0] (51)

where ci = bH
1,ih2,i �= 0. �

Appendix B. Proof of Corollary 1

B.1. For τ = 0

For the case of nD > nR , the channel matrix H2 has a row-
rank deficiency, i.e., the rows of H2 are linearly dependent. Sub-
sequently, an nD × 1 non-zero vector bi exists such that

bH
i H2 = 0. (52)

From (15) and (52), we have
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bH
i Q̄yy(ri) = bH

i H2,iTi(ri)HH
2 = 0. (53)

Based on (10) and (52), there is

bH
i Cyy(0)bi = bH

i H2Cxx(0)HH
2 bi + bH

i Cww(0)bi

= bH
i Cww(0)bi

= σ 2
w bH

i bi

�= 0. (54)

It can be observed from (52)–(54) that bH
i Q̄yy(ri) = 0 and

bH
i Cyy(0)bi �= 0 do not guarantee (16).

B.2. For τ ≥ 2

Assuming (16) is satisfied, we have

bH
i Cyy(τ )bi = bH

i H2Cxx(τ )HH
2 bi

= cic
∗
i E

[
xi(n)xi(n − τ )∗

]
= |ci |2E

[(
yr,i(n) − ri yr,i(n − 1)

)(
yr,i(n − τ )

− ri yr,i(n − τ − 1)
)∗]

= 0.

This indicates that no separation vector bi can satisfy the condition 
bH

i Cyy(τ )bi �= 0 for time lag τ ≥ 2. �
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